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ABSTRACT 
We study the complete synchronization behavior of the planar magnetic-binaries problem by taking into consideration 
the bigger primary is oblate spheroids and smaller is ellipsoid evolving from deferent initial conditions using active 
control technique based on the Lyapunov-stability theory and Routh-Hurwitz criteria. Numerical simulations are  
performed to  plot  time  series  analysis  graphs  of the  master system  and  the  slave  system  which  further illustrate 
the effectiveness of the  proposed  control  techniques. 
. 
Key words: Space dynamics, magnetic-binaries problem, complete synchronization, Lyapunov stability theory and 
Routh- Hurwitz criteria. 
 
 
1. INTRODUCTION 
 
In the last few years considerable research has been done in non-linear dynamical systems and their various properties. 
One of the most important properties is synchronization which is an important topic in the nonlinear dynamics. Chaos 
control and synchronization are especially noteworthy and important research fields leveling to affect dynamics of 
chaotic systems in order to apply them for different kinds of applications that can be examined within many different 
scientific research. At present, there are different kinds of control methods and techniques that have been proposed for 
carrying out chaos control and synchronization of chaotic dynamical systems. Chaotic synchronization did not attract 
much attention until Pec-ora and Carroll introduced a method to synchronize two identical chaotic systems with 
deferent initial conditions in 1990 and they demonstrated that chaotic synchronization could be achieved by driving or 
replacing one of the variables of a chaotic system with a variable of another similar chaotic device. Various techniques 
have been proposed and implemented successfully for achieving stable synchronization between identical and non-
identical systems. Notable among these methods, the active control scheme proposed by E. W. Bai & K. E. Lonngren 
1997 has been received and successfully implemented in almost all the field of nonlinear sciences for synchronization 
for different systems with various techniques E. W. Bai et al. 2002, H. K. Chen 2005, U. E. Vincent 2005, A. N. Njah 
2006,Y. Lei et al. 2006, A. Ucar et al. 2007, Y. Lei et al. 2007, U. E. Vincent 2008, A. N. Njah & U. E. Vincent 2008, 
U. E. Vincent & J. A. Laoye 2007, A. Khan & M. Shahzad 2013. M. Shahzad, I. Ahmed. 2013 Israr Ahmad, Azizan 
Bin Saaban etc. 2015. 
 
Chaos synchronization using active control has recently been widely accepted as an efficient technique for 
synchronizing chaotic systems. This method has been applied to many practical systems such as spatiotemporal 
dynamical systems (Codreanu 2003), the Rikitake two-disc dynamo-a geographical system (Vincent 2005), Non-linear 
Bloch equations modeling "jerk" equation (Ucar et al. 2003), Chua's circuits (Tang & Wang 2006), Complex dynamos  
(Mahmoud 2007), Non-linear equations  of acoustic gravity  waves (Vincent 2008b), Qi system  (Lei et al. 2006 ; Lei  
et al. 2007. Active Control technique is based on Lyanupov Stability theory and Routh-Hurwitz criterion. In 2013 Ayub 
Khan and Priyamvada Tripathi have investigated the synchronization behavior of a restricted three body problem under 
the effect of radiation pressure. In an another paper the Complete synchronization, anti-synchronization and hybrid 
synchronization of two identical parabolic restricted three body problem have been studied by Ayub Khan and Rimpi 
pal in 2013. Anti-synchronization between two different hyperchaotic systems systems by using active control have 
been studied by M. Mossa Al-sawalha and M.S.M. Noorani in 2009.  
 
In 2013 M javid Idrisi and Z. A. Taqvi have been studied the restricted three body problem when one of the primaries is 
an ellipsoid. 
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Stormer (1907) has studied the motion of a charged particle which is moving in the field of a magnetic diploe as a two 
body problem. This problem in general is quite complicated and is a non integrable. A. Mavragnais (1978 … 1988) has 
studied the motion of a charge particle which is moving in the field of two rotating magnetic dipoles instead of one 
dipole.  
 
In this article, active control techniques base on the Lyapunov stability theory and Routh-Hurwitz criteria have been 
used to study the complete synchronization behavior of planar magnetic-binaries problem by taking into consideration 
the small primary is ellipsoid and bigger primary is an oblate spheroid including the effect of the gravitational forces of 
the primaries on the small body. The system under consideration is chaotic for some values of parameter involved in 
the system. Here two systems (master and slave) are synchronized and start with deferent initial conditions. Hence the 
slave chaotic system completely traces the dynamics of the master system in the course of time. 
 
2. EQUATION OF MOTION 
 
In formulating the problem we shall assume that the two dipoles (primaries) one is in the shape of oblate spheroid and  
other is ellipsoid of magnetic moments 𝑀𝑀1 and 𝑀𝑀2 respectively participate in the circular motion around their centre of 
mass O Fig(1). The motion of a charged particle P of charge q and mass m defined by its radius vector 𝒓𝒓 will be 
referred to a frame of reference 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 that rotates in the same direction and the same angular velocity 𝝎𝝎 as the dipoles, 
which in this frame are taken to stay at rest on 𝑥𝑥-axis. Here we assumed that the distance between the primaries as the 
unit of distance and the coordinate of one primary is (µ, 0, 0) then the other is (µ−1, 0, 0). We also assumed that the 
sum of their masses as the unit of mass. If mass of the one primaries µ then the mass of the other is (1− µ). The unit of 
time in such a way that the gravitational constant G has the value unity and q= mc where c is the velocity of light.    
𝑟𝑟12= (𝑥𝑥 − µ)2+𝑦𝑦2,  𝑟𝑟2

2 = (𝑥𝑥 + 1 − µ)2+𝑦𝑦2, 𝝀𝝀 = 𝑀𝑀2
𝑀𝑀1

 (𝑀𝑀1, 𝑀𝑀2 are the magnetic moments of the primaries which lies 
perpendicular to the plane of the motion). 
 

 
Figure-1 

    
Then the equation of motion of the particle P may be written as:  

𝑥̈𝑥 − 𝑦̇𝑦 ƒ= 𝑈𝑈𝑥𝑥                                                                                                                                                       (1) 
 
𝑦̈𝑦 + 𝑥̇𝑥 ƒ= 𝑈𝑈𝑦𝑦                                                                                                                                                          (2) 

Where  
ƒ =2 𝜔𝜔 – � 1

r1
3 + 𝐼𝐼

2(1−µ)r1
5  +  𝜆𝜆𝜆𝜆

µ𝑟𝑟2
2�,  𝑈𝑈𝑥𝑥 = 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
  and  𝑈𝑈𝑦𝑦 = 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
 

 

𝑈𝑈 =   (𝑥𝑥2 + 𝑦𝑦2) 𝜔𝜔
2

2
 + 𝜔𝜔 {(𝑥𝑥2 + 𝑦𝑦2)  − 𝑥𝑥µ} � 1

r1
3 + 𝐼𝐼

2(1−µ)r1
5� + �(𝑥𝑥2 + 𝑦𝑦2) −  𝑥𝑥(1 − µ)� V𝜔𝜔𝜆𝜆

µ𝑟𝑟2
2 + (1−µ)

r1
+ 𝐼𝐼

2(1−µ)r1
5 + V                                                                           

                                                                                                                                                                                                  (3) 

𝐼𝐼 =
(1−µ)�Re

2−Rp
2 �

5
  𝑅𝑅𝑒𝑒 ,𝑅𝑅𝑝𝑝   Equatorial and polar radius of oblate spheroid respectively 

 

V =
3
2
��1 +

𝑦𝑦2 − (𝑥𝑥 + 1 − µ)2

(𝑎𝑎2 −  𝑏𝑏2) �
F(φ, k)

�(𝑎𝑎2 −  𝑐𝑐2)
+ �

(𝑥𝑥 + 1 − µ)2

(𝑎𝑎2 −  𝑏𝑏2) +
(𝑐𝑐2 −  𝑎𝑎2)𝑦𝑦2

(𝑎𝑎2 −  𝑏𝑏2)(𝑏𝑏2 −  𝑐𝑐2)�
E(φ, k)

�(𝑎𝑎2 −  𝑐𝑐2)

+
�(𝛾𝛾 + 𝑐𝑐2) 𝑦𝑦2

(𝑏𝑏2 −  𝑐𝑐2)�(𝛾𝛾 + 𝑎𝑎2)(𝛾𝛾 + 𝑏𝑏2)
� 

 

F(φ, k) = ∫ dθ
�1−𝑘𝑘2𝑠𝑠𝑠𝑠𝑠𝑠 2𝜃𝜃

φ
0   Elliptic integral of first kind 
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E(φ, k) = ∫ √1 − 𝑘𝑘2𝑠𝑠𝑠𝑠𝑠𝑠2𝜃𝜃 dθφ

0     Elliptic integral of second kind 
 

𝑘𝑘 = �(𝑎𝑎2− 𝑏𝑏2)
(𝑎𝑎2− 𝑐𝑐2)

          0 ≤ 𝑘𝑘2 ≤ 1,       φ = sin−1 �(𝑎𝑎2− 𝑐𝑐2)
(𝛾𝛾+ 𝑐𝑐2)

       0 ≤ φ ≤ 𝜋𝜋
2

 , 

 

𝛾𝛾 = 1
2
�(𝑥𝑥 + 1 − µ)2 + 𝑦𝑦2 − 𝑝𝑝1 + �{(𝑥𝑥 + 1 − µ)2 + 𝑦𝑦2 − 𝑝𝑝1}2 + 4{𝑝𝑝3(𝑥𝑥 + 1 − µ)2 + 𝑝𝑝4𝑦𝑦2 − 𝑝𝑝2}�, 

 
𝑝𝑝1 = 𝑎𝑎2 + 𝑏𝑏2 + 𝑐𝑐2,  𝑝𝑝2 = 𝑎𝑎2𝑏𝑏2 + 𝑏𝑏2𝑐𝑐2 + 𝑎𝑎2 𝑐𝑐2,  𝑝𝑝3 = 𝑏𝑏2 + 𝑐𝑐2,  𝑝𝑝4 = 𝑎𝑎2 + 𝑐𝑐2,  
 
𝑝𝑝5 = 𝑎𝑎2 + 𝑏𝑏2.  𝑎𝑎, 𝑏𝑏 and 𝑐𝑐 are the axes of the ellipsoid. 
 

𝜔𝜔 = 1 +
3

10
µ

(1 − µ)
[2𝑎𝑎2 − 𝑏𝑏2 −  𝑐𝑐2] +

3𝐼𝐼
2µ

 

 
3. COMPLETE SYNCHRONIZATION VIA ACTIVE CONTROL 
 
Let 

𝑥𝑥 = 𝑥𝑥1,   𝑥̇𝑥 = 𝑥𝑥2,  𝑦𝑦 = 𝑥𝑥3,  𝑦̇𝑦 = 𝑥𝑥4 
 
Then the equation (1) and  (2) can be written as:  

𝑥𝑥1̇ = 𝑥𝑥2                                                                                                                                                                                     (4)      
                                                                                                                                                                         
𝑥𝑥2̇ = 𝑥𝑥4 �2 𝜔𝜔 – � 1

r1
3 + 𝐼𝐼

2(1−µ)r1
5 + 𝜆𝜆𝜆𝜆

𝑟𝑟2
2�� + 𝜔𝜔2𝑥𝑥1 + 𝐴𝐴1                                                                                                 (5) 

 
𝑥𝑥3̇ = 𝑥𝑥4                                                                                                                                                                                     (6) 
 
𝑥𝑥4̇ = −𝑥𝑥2 �2 𝜔𝜔 – � 1

r1
3 + 𝐼𝐼

2(1−µ)r1
5 + 𝜆𝜆𝜆𝜆

𝑟𝑟2
2�� + 𝜔𝜔2𝑥𝑥3 + 𝐴𝐴2                                                                                             (7)                                                                                                                                                

Where 
𝐴𝐴1 = 𝜔𝜔(2𝑥𝑥1 − µ) �1−µ

r1
3 + I

2r1
5� −  𝜔𝜔 { (𝑥𝑥1

2  + 𝑥𝑥3
2 )   − 𝑥𝑥1µ}(𝑥𝑥1 − µ) �3 (1−µ)

r1
5 + 5I

2r1
7� − 

                          (𝑥𝑥1 − µ) �
(1 − µ)

r1
3 +

5I
2r1

7� + (2𝑥𝑥1 − 1 + µ)
V𝜔𝜔𝜆𝜆
𝑟𝑟22

− 2{ (𝑥𝑥1
2  + 𝑥𝑥3

2 ) + 𝑥𝑥1(1 − µ)} 

                              ×
(𝑥𝑥1 + 1 − µ)V𝜔𝜔𝜆𝜆

𝑟𝑟24
+ �{ (𝑥𝑥1

2  + 𝑥𝑥3
2 ) + 𝑥𝑥1(1 − µ)}

𝜔𝜔𝜆𝜆
𝑟𝑟22

 + 1    �    

                               × �
E(φ, k) − F(φ, k)

𝑝𝑝6𝑝𝑝8
− �1 − 𝑘𝑘2𝑠𝑠𝑠𝑠𝑠𝑠2𝜑𝜑

(𝑥𝑥1 + 1 − µ)2

𝑝𝑝6
+ �

1
𝑝𝑝6

+
1 − 𝑘𝑘2𝑠𝑠𝑠𝑠𝑠𝑠2𝜑𝜑

𝑝𝑝9
�𝑥𝑥3

2�

×
𝛾𝛾1 + 𝑝𝑝3

2(𝛾𝛾1 + 𝑎𝑎2)(2𝛾𝛾1 + 𝑝𝑝1 −  r2
2)�(𝛾𝛾1 + 𝑐𝑐2)�1 − 𝑘𝑘2𝑠𝑠𝑠𝑠𝑠𝑠2𝜑𝜑  

−
(2𝑐𝑐2𝛾𝛾1 + 𝑝𝑝11 + 𝛾𝛾1

2)(𝛾𝛾1 + 𝑝𝑝3)𝑥𝑥3
2

2𝑝𝑝7(2𝛾𝛾1 + 𝑝𝑝1 −  r2
2)�(𝛾𝛾1 + 𝑐𝑐2)(𝑝𝑝10 + 𝑝𝑝5𝛾𝛾1 + 𝛾𝛾1

2)
3
2 
� �−3µ (𝑥𝑥1 + 1 − µ)� 

 
𝑟𝑟12= (𝑥𝑥1 − µ)2+𝑥𝑥3

2,   𝑟𝑟2
2 = (𝑥𝑥1 + 1 − µ)2+ 𝑥𝑥3

2, 𝑝𝑝6 = 𝑎𝑎2 − 𝑏𝑏2, 𝑝𝑝7 = 𝑏𝑏2 − 𝑐𝑐2, 𝑝𝑝8 = √𝑎𝑎2 −  𝑐𝑐2, 
 

𝑝𝑝9 = (𝑎𝑎2− 𝑏𝑏2)(𝑏𝑏2− 𝑐𝑐2)
(𝑐𝑐2− 𝑎𝑎2)

,  𝑝𝑝10 = 𝑏𝑏2𝑎𝑎2, 𝑝𝑝11 = 𝑝𝑝10 − 𝑐𝑐2𝑝𝑝5, 
 

𝛾𝛾1 =
1
2
�(𝑥𝑥1 + 1 − µ)2 + 𝑥𝑥3

2 − 𝑝𝑝1 + �{(𝑥𝑥1 + 1 − µ)2 + 𝑥𝑥3
2 − 𝑝𝑝1}2 + 4{𝑝𝑝3(𝑥𝑥1 + 1 − µ)2 + 𝑝𝑝4𝑥𝑥3

2 − 𝑝𝑝2}� 
 

𝐴𝐴2 =  2𝑥𝑥3𝜔𝜔 �
1 − µ

r1
3 +

I)
2r1

5� −  𝜔𝜔 𝑥𝑥3{ (𝑥𝑥1
2  + 𝑥𝑥3

2 )   − 𝑥𝑥1µ} �3
(1 − µ)

r1
5 +

5I
2r1

7� 

                              − 𝑥𝑥3 �
(1 − µ)

r1
3 +

5I
2r1

7� − 2𝑥𝑥3
V𝜔𝜔𝜆𝜆
𝑟𝑟22

− 2𝑥𝑥3{ (𝑥𝑥1
2  + 𝑥𝑥3

2 )   − 𝑥𝑥1(1 − µ)}
V𝜔𝜔𝜆𝜆
𝑟𝑟24

 

                              −3µ𝑥𝑥3 �{ (𝑥𝑥1
2  + 𝑥𝑥3

2 )   − 𝑥𝑥1(1 − µ)}
𝜔𝜔𝜆𝜆
𝑟𝑟22

 + 1    � 
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                                × �
E(φ, k)
𝑝𝑝9𝑝𝑝8

+
F(φ, k)
𝑝𝑝6𝑝𝑝8

− �1 − 𝑘𝑘2𝑠𝑠𝑠𝑠𝑠𝑠2𝜑𝜑
(𝑥𝑥1 + 1 − µ)2

𝑝𝑝6
+ �

1
𝑝𝑝6

+
1 − 𝑘𝑘2𝑠𝑠𝑠𝑠𝑠𝑠2𝜑𝜑

𝑝𝑝9
�𝑥𝑥3

2�

×
𝛾𝛾1 + 𝑝𝑝4

2(𝛾𝛾1 + 𝑎𝑎2)(2𝛾𝛾1 + 𝑝𝑝1 −  r2
2)�(𝛾𝛾1 + 𝑐𝑐2)�1 − 𝑘𝑘2𝑠𝑠𝑠𝑠𝑠𝑠2𝜑𝜑  

−
(2𝑐𝑐2𝛾𝛾1 + 𝑝𝑝11 + 𝛾𝛾1

2)(𝛾𝛾1 + 𝑝𝑝4)𝑥𝑥3
2

2𝑝𝑝7(2𝛾𝛾1 + 𝑝𝑝1 −  r2
2)�(𝛾𝛾1 + 𝑐𝑐2)(𝑝𝑝10 + 𝑝𝑝5𝛾𝛾1 + 𝛾𝛾1

2)
3
2 

+
�(𝛾𝛾1 + 𝑐𝑐2) 

𝑝𝑝7�(𝑝𝑝10 + 𝑝𝑝5𝛾𝛾1 + 𝛾𝛾1
2)
� 

 
Corresponding to master system (4, 5, 6 and 7), the identical slave system is defined as: 

𝑦𝑦1̇ = 𝑦𝑦2 + 𝑢𝑢1(𝑡𝑡)                                                                                                                                                   (8) 
 
𝑦𝑦2̇ = 𝑦𝑦4 �2 𝜔𝜔 – � 1

r1
3 + 𝐼𝐼

2(1−µ)r1
5  +  𝜆𝜆𝜆𝜆

𝑟𝑟2
2�� + 𝜔𝜔2𝑦𝑦1 + 𝐵𝐵1 + 𝑢𝑢2(𝑡𝑡)                                                                 (9) 

                                                 
𝑦𝑦3̇ = 𝑦𝑦4 + 𝑢𝑢3(𝑡𝑡)                                                                                                                                                 (10) 
 
𝑦𝑦4̇ = −𝑦𝑦2 �2 𝜔𝜔 – � 1

r1
3 + 𝐼𝐼

2(1−µ)r1
5  +  𝜆𝜆𝜆𝜆

𝑟𝑟2
2�� + 𝜔𝜔2𝑦𝑦3 + 𝐵𝐵2 + +𝑢𝑢4(𝑡𝑡)                                                        (11)                                                                                                                                                  

Where 
𝐵𝐵1 = 𝜔𝜔(2𝑦𝑦1 − µ) �1−µ

r1
3 + I)

2r1
5� −  𝜔𝜔 { (𝑦𝑦1

2  + 𝑦𝑦3
2 )   − 𝑦𝑦1µ}(𝑦𝑦1 − µ) �3 (1−µ)

r1
5 + 5I

2r1
7� 

                           − (𝑦𝑦1 − µ) �
(1 − µ)

r1
3 +

5I
2r1

7� + (2𝑦𝑦1 − 1 + µ)
V𝜔𝜔𝜆𝜆
𝑟𝑟22

− 2{ (𝑦𝑦1
2  + 𝑦𝑦3

2 )   − 𝑦𝑦1(1 − µ)} 

                                ×
(𝑦𝑦1 + 1 − µ)V𝜔𝜔𝜆𝜆

𝑟𝑟24
+ �{ (𝑦𝑦1

2  + 𝑦𝑦3
2 )   − 𝑦𝑦1(1 − µ)}

𝜔𝜔𝜆𝜆
𝑟𝑟22

 + 1    � 

                                × �
E(φ, k) − F(φ, k)

𝑝𝑝6𝑝𝑝8
− �1 − 𝑘𝑘2𝑠𝑠𝑠𝑠𝑠𝑠2𝜑𝜑

(𝑦𝑦1 + 1 − µ)2

𝑝𝑝6
+ �

1
𝑝𝑝6

+
1 − 𝑘𝑘2𝑠𝑠𝑠𝑠𝑠𝑠2𝜑𝜑

𝑝𝑝9
�𝑦𝑦3

2�

×
𝛾𝛾1 + 𝑝𝑝3
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where 𝑢𝑢𝑖𝑖(𝑡𝑡); 𝑖𝑖 =1 ,2,3,4 are control functions to be determined. Let 𝑒𝑒𝑖𝑖  = 𝑦𝑦𝑖𝑖 − 𝑥𝑥𝑖𝑖 ; i = 1, 2, 3, 4 be the synchronization 
errors. From (4) to (11), we obtain the error dynamics as follows: 

𝑒𝑒1̇ = 𝑒𝑒2 + 𝑢𝑢1(𝑡𝑡)                                                                                                                                                (12)        
                                                                                                                                                                                                                                                      
𝑒𝑒2̇ = 2𝜔𝜔𝑒𝑒4 + 𝜔𝜔2𝑒𝑒1 + 𝐵𝐵1 − 𝐴𝐴1 + 𝑢𝑢2(𝑡𝑡)                                                                                                       (13)         
                                                       
𝑒𝑒3̇ = 𝑒𝑒4 + 𝑢𝑢3(𝑡𝑡)                                                                                                                                                 (14)   
 
𝑒𝑒4̇ = −2𝜔𝜔𝑒𝑒2 + 𝜔𝜔2𝑒𝑒3 + 𝐵𝐵2 − 𝐴𝐴2 + 𝑢𝑢4(𝑡𝑡)                                                                                                    (15) 

 
This error system to be controlled is a linear system with control functions. Thus, let us redefine the control functions 
so that the terms in (12) to (15) which cannot be expressed as linear terms in  𝑒𝑒𝑖𝑖  's are eliminated: 

𝑢𝑢1(𝑡𝑡) = 𝑣𝑣1(𝑡𝑡) 
𝑢𝑢2(𝑡𝑡) = −𝐵𝐵1 + 𝐴𝐴1 + 𝑣𝑣2(𝑡𝑡) 
𝑢𝑢3(𝑡𝑡) = 𝑣𝑣3(𝑡𝑡) 
𝑢𝑢4(𝑡𝑡) = −𝐵𝐵2 + 𝐴𝐴2 + 𝑣𝑣4(𝑡𝑡) 

 
The new error system can be expressed as:   

𝑒𝑒1̇ = 𝑒𝑒2 + 𝑣𝑣1(𝑡𝑡) 
𝑒𝑒2̇ = 2𝜔𝜔𝑒𝑒4 + 𝜔𝜔2𝑒𝑒1 + 𝑣𝑣2(𝑡𝑡) 
𝑒𝑒3̇ = 𝑒𝑒4 + 𝑣𝑣3(𝑡𝑡)                                                                                                                                                    (16) 
𝑒𝑒4̇ = −2𝜔𝜔𝑒𝑒2 + 𝜔𝜔2𝑒𝑒3 + 𝑣𝑣4(𝑡𝑡) 

 
The above error system to be controlled is a linear system with a control input 𝑣𝑣𝑖𝑖(𝑡𝑡) ( 𝑖𝑖 = 1, … 4) as function of the 
error states 𝑒𝑒𝑖𝑖  ( 𝑖𝑖 = 1, … 4). As long as these feedbacks stabilize the system 𝑒𝑒𝑖𝑖  ( 𝑖𝑖 = 1, … 4) converge to zero as time 𝑡𝑡 
tends to infinity. This implies that master and the slave system are synchronized with active control. We choose.                                                                                                                                     

�

𝑣𝑣1(𝑡𝑡) 
𝑣𝑣2(𝑡𝑡) 
𝑣𝑣3(𝑡𝑡) 
𝑣𝑣4(𝑡𝑡) 

� = 𝐴𝐴 �

𝑒𝑒1 
𝑒𝑒2 
𝑒𝑒3 
𝑒𝑒4 
�                                                                                                                                                  (17) 

 
Here 𝐴𝐴 is a 4 × 4 coefficient matrix to be determined. As per Lyapunov stability theory and Routh-Hurwitz criterion, in 
order to make the closed loop system (17) stable, proper choice of elements of 𝐴𝐴 has to be made so that the system 
(17) 
 
must have all eigen values with negative real parts. Choosing 

𝐴𝐴 = �

−1 −1 0 0 
−𝜔𝜔2 −1 0 −2𝜔𝜔

0 0 −1 −1
0 2𝜔𝜔 −𝜔𝜔2 −1

�                                                                                                        (18) 

 
and, defining a matrix 𝐵𝐵 as 

        �

𝑒𝑒1̇ 
𝑒𝑒2̇ 
𝑒𝑒3̇ 
𝑒𝑒4̇ 

� = 𝐵𝐵 �

𝑒𝑒1 
𝑒𝑒2 
𝑒𝑒3 
𝑒𝑒4 
�                                                                                                                                (19) 

Where 𝐵𝐵 is 

𝐵𝐵 = �

−1 0 0 0 
0 −1 0 0
0 0 −1 0
0 0 0 −1

�                                                                                                                (20) 

 
Clearly, 𝐵𝐵 has eigen values with negative real parts. This implies lim𝑡𝑡→∞|𝑒𝑒𝑖𝑖| = 0;  𝑖𝑖 = 1, 2, 3, 4 and hence, complete 
synchronization is achieved between the master and slave systems. Time Series Analysis graphs of the above are shown 
next to each via figures 2 and 9. 
 
4. NUMERICAL SIMULATION  
 
We select the parameters 𝜇𝜇 = .00230437 and 𝜆𝜆 = 1 with the different initial conditions for master and slave systems. 
Simulation results for uncoupled system are presented in figures.2,4,6,8 and that of controlled system are shown in 
figures.3,5,7 and 9 for respectively. 
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Figure-2                                                                              Figure-3 

 

   
Figure-4                                                                        Figure-5 

 

      
Figure-6                                                                                     Figure-7 

                                          

    
Figure-8                                                                                  Figure-9 

 
5. CONCLUSION 
 
An investigation on complete synchronization and in the planar magnetic-binaries problem by taking into consideration 
the small primary is ellipsoid including the effect of the gravitational forces of the primaries on the small body, via 
active control technique based on Lyapunov stability theory and Routh-Hurwitz criteria have been made. Here two 
systems (master and slave) are compete synchronized and start with deferent initial conditions. This problem may be 
treated as the design of control laws for chaotic slave system using the known information of the master system so as to 
ensure that the controlled receiver synchronizes with master system. Hence the slave chaotic system completely traces 
the dynamics of the master system in the course of time. The results were validated by numerical simulations using 
Mathematica. 
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