International Journal of Mathematical Archive-7(8), 2016, 30-32 MA Available online through www.ijma.info ISSN 2229 - 5046 ## (i, j)-I_{rwg} - CLOSED SETS IN IDEAL BITOPOLOGICAL SPACES ## 1S. MARAGATHAVALLI, 2C. R. PARVATHY* ¹Department of Mathematics, Govt. Arts College, Udumelpet, Tamilnadu, India. ²Department of Mathematics, PSGR Krishnammal College for women, Coimbatore, Tamilnadu, India. (Received On: 31-07-16; Revised & Accepted On: 17-08-16) #### **ABSTRACT** T he aim of this paper is to introduce the concept of (i, j)-regular weakly generalized closed sets, (i, j)-regular weakly generalized open sets and study their basic properties in ideal bitopological spaces. **Key words:** (i, j)- I_{rwg} -closed sets, (i, j)- I_{rwg} -open sets, τ_i -regular open sets and τ_i -regular closed sets. #### 1. INTRODUCTION The concept of bitopological space was introduced by J.C.Kelly [8]. Generalised closed sets with respect to an ideal in bitopological spaces was introduced by T.Noiri, N.Rajesh [9]. In this paper, regular weakly generalized closed and open sets with respect to ideal in bitopological spaces are introduced. A non-empty collection I of subsets on a topological space (X, τ) is called a topological ideal if it satisfies the following two conditions: - (i) If $A \subseteq I$ and $B \subseteq A$ implies $B \in I$ (heredity) - (ii) If $A \in I$ and $B \in I$, then $A \cup B \in I$ (finite additivity) Let (X, τ_1, τ_2, I) or simply X denote an ideal bitopological space. For any subset $A \subseteq X$, τ_i - int(A) and τ_i -cl(A) denote the interior and closure of a set A with respect to the topology τ_i respectively. The closure and interior of B relative to A with respect to the topology τ_I are written as $\tau_i - \text{cl}_A(B)$ and $\tau_i - \text{int}_A(B)$ respectively. #### 2. PRELIMINARIES **Definition 2.1:** ([2], [3], [5], [7], [11]). A set A of a bitopological space (X, τ_1, τ_2) is called - (a) $\tau_i \tau_j$ semi open if there exists a τ_i -open set U such that $U \subseteq A \subseteq \tau_i$ -cl(U), i, j = 1,2 and i \neq j. - (b) $\tau_i \tau_j$ semi closed if X-A is $\tau_i \tau_j$ -semi open. Equivalently, a set A of a bitopological space (X, τ_1, τ_2) is called $\tau_i \tau_j$ semi closed if there exists a τ_i closed set F such that τ_j int (F) \subseteq A \subseteq F. - (c) $\tau_i \tau_j$ regular closed if τ_i cl[τ_i int(A)] = A. - (d) $\tau_i \tau_j$ regular open if τ_j int[τ_j cl(A)] = A. - (e) $\tau_i \tau_j$ regular generalised closed ($\tau_i \tau_j$ -rg closed) in X if τ_j cl(A) \subseteq U whenever A \subseteq U and U is $\tau_i \tau_j$ -regular open in X. Corresponding Author: ²C. R. Parvathy*, ²Department of Mathematics, PSGR Krishnammal College for women, Coimbatore, Tamilnadu, India. - (f) $\tau_i \tau_j$ regular generalized open ($\tau_i \tau_j$ -rg open) in X if $F \subseteq \tau_j$ int(A) whenever $F \subseteq A$ and F is $\tau_i \tau_j$ -regular closed in X. - (g) $\tau_i \tau_{j^-}$ regular generalized star closed ($\tau_1 \tau_2 rg^*$ closed) in X if and only if τ_2 -rcl(A) \subseteq U whenever A \subseteq U and U is $\tau_1 \tau_2$ -regular open in X. - (h) $\tau_1\tau_2$ regular generalized star open ($\tau_1\tau_2$ rg^* open) in X if and only if its complement is $\tau_1\tau_2$ regular generalized star closed ($\tau_1\tau_2$ rg^* closed) in X. - (i) $\tau_1\tau_2$ generalized star regular closed ($\tau_1\tau_2$ - g^*r closed) in X if and only if τ_2 -rcl(A) \subseteq U whenever A \subseteq U and U is τ_1 open in X. - (j) $\tau_1\tau_2$ generalized star open ($\tau_1\tau_2$ g^*r open) in X if and only if its complement is $\tau_1\tau_2$ generalized star closed ($\tau_1\tau_2$ g^*r closed) in X. **Lemma 2.1:** [2] Let a be an τ_i – open set in (X, τ_1, τ_2) and let U be $\tau_i \tau_j$ – regular open in A. Then $U = A \cap W$ for some $\tau_i \tau_j$ – regular open set W in X, i,j = 1,2 and $i \neq j$. ## 3. (i, j)- I_{rwg} -CLOSED SETS **Definition 3.1:** Let (X, τ_1, τ_2, I) be a bitopological space and I be an ideal on X. A subset A of X is said to be (i, j)-regular weakly generalized closed set with respect to an ideal I(shortly (i, j)- I_{rwg} -closed set) if and only if τ_i -cl*(int(A)) $\subseteq U$ whenever $A \subseteq U$ and U is τ_i -regular open in X, i, j = 1, 2 and $i \neq j$. **Example 3.2:** Let $X = \{a, b, c\}$, $\tau_1 = \{\emptyset, X, \{b\}, \{a, b\}\}$, $\tau_2 = \{\emptyset, X, \{a\}, \{a, c\}\}$, $I = \{\emptyset, \{b\}\}$. Then, $\emptyset, X, \{a\}, \{a, c\}$, $\{b, c\}, \{a, b\}$ are (i, j)- I_{rwg} -closed sets in (X, τ_1, τ_2, I) . **Theorem 3.3:** Let (X, τ_1, τ_2, I) be an ideal bitopological space. Then every (i, j)- rg closed set is (i, j)-I_{rwg} -closed in X, i, j = 1,2 and $i \neq j$. **Proof:** Let A be (i, j) -rg-closed subset of X. Let $A \subseteq U$ and U is τ_i -regular open in X, i, j = 1, 2 and $i \neq j$. Then τ_i -cl(int(A)) $\subseteq \tau_i$ -cl(A) $\subseteq U$. Hence τ_i -cl(int(A)) $-U = \emptyset \in I$. Therefore A is (i, j)-rg closed. **Remark 3.4:** The converse of the above theorem is not be true from the following example. **Example 3.5:** Let $X = \{a, b, c\}$, $\tau_1 = \{\emptyset, X, \{a\}, \{a,b\}\}$, $\tau_2 = \{\emptyset, X, \{b\}, \{b, c\}\}$, $I = \{\emptyset, \{b\}, \{c\}, \{b,c\}\}$. Then $\{a\}$ (i, j) - I_{rwg} -closed but not (i, j)- rg closed set in X. **Theorem 3.6:** Let A be a subset of an ideal bitopological space (X, τ_1, τ_2, I) . If A is (i, j)- I_{rwg} -closed then τ_j -cl*(int(A)) – A does not contain τ_i -regular closed sets such that $F \notin I$, i, j = 1, 2 and $i \neq j$. **Proof:** Suppose that A is (i, j)- I_{rwg} -closed, i, j = 1, 2 and i \neq j. Let F be an τ_i - regular closed set such that $F \subseteq \tau_j$ -cl*(int(A)) - A. Since $F \subseteq \tau_j$ -cl*(int(A)) - A, we have $F \subseteq [\tau_j$ -cl*(int(A)) - A] \cap (X - A). Consequently $F \subseteq X - A$ and $F \subseteq \tau_j$ -cl*(int(A)). Since $F \subseteq X - A$, we have $A \subseteq X - F$. Since F is τ_i - regular closed set, X - F is τ_i -regular open. Since A is (i, j)- I_{rwg} -closed, we have τ_j -cl*(int(A)) - (X - F) = τ_j -cl*(int(A)) \cap F = F \in I. Thus τ_i -cl*(int(A)) - A does not contain τ_i -regular closed sets such that $F \notin I$. **Theorem 3.7:** The union of two (i, j)- I_{rwg} -closed sets in (X, τ_1, τ_2, I) is also an (i, j)- I_{rwg} -closed set. **Proof:** Let A and B be (i, j)- I_{rwg} -closed sets in X, i, j = 1, 2 and $i \neq j$. We have to prove that $A \cup B$ is also (i, j)- I_{rwg} -closed. Let $A \cup B \subseteq U$ and U is τ_i -regular open. Since $A \cup B \subseteq U$, we have $A \subseteq U$ and $B \subseteq U$. Since $A \subseteq U$ then U is τ_i -regular open, we have τ_j -cl*(int(A)) $\subseteq U$ (since A is (i, j)- I_{rwg} -closed). Similarly $B \subseteq U$ and U is τ_i -regular open, we have τ_j -cl*(int(B)) $\subseteq U$. Therefore τ_j -cl*(int(AUB)) = $(\tau_j$ -cl*(int(A)) $\cup (\tau_j$ -cl*(int(B)) $\subseteq U$. Hence $A \cup B$ is (i, j)- I_{rwg} -closed set. **Remark 3.8:** The intersection of two (i, j)- I_{rwg} -closed sets is not an (i, j)- I_{rwg} - closed set in general as seen from the following example. **Example 3.9:** Let $X = \{a, b, c\}$, $\tau_1 = \{\emptyset, X, \{a\}, \{a, b\}\}$, $\tau_j = \{\emptyset, X, \{b\}, \{b, c\}\}$, $I = \{\emptyset, \{b\}, \{c\}, \{b, c\}\}$, $A = \{a, b\}$, $B = \{a, c\}$ are (i, j)- I_{rwg} -closed sets, but $A \cap B = \{a\}$ is not an (i, j)- I_{rwg} -closed set. **Lemma 3.10:** Let A be an τ_i -open set in (X, τ_1, τ_2) and let U be τ_i -regular open in A. Then $U = A \cap W$ for some τ_i -regular open set W in X, i, j= 1, 2 and i \neq j. **Lemma 3.11:** If A is $\tau_i \tau_i$ -open and U is τ_i -regular open in X then U \cap A is τ_i -regular open in A, i, j=1, 2 and $i \neq j$. **Lemma 3.12:** If A is $\tau_i \tau_j$ -open in (X, τ_1, τ_2) , then τ_j - $cl_A(B) \subseteq A \cap \tau_j$ -cl(B) for any subset B of A, i, j = 1, 2 and i \neq j. **Theorem 3.13:** Let I be an ideal in X. Let $B \subseteq A$ where A is τ_i -regular open, τ_j -regular open and (i, j)- I_{rwg} -closed. Then B is (i, j)- I_{rwg} -closed relative to A with respect to an ideal $I_A = \{F \subseteq A \mid F \in I\}$ if B is (i, j)- I_{rwg} -closed in X, i, j = 1, 2 and $i \neq j$. **Proof:** Suppose that B is (i, j)- I_{rwg} -closed in X, i, j=1, 2 and $i \neq j$. We have to prove that B is (i, j)- I_{rwg} -closed relative to A. Let $B \subseteq U$ and U is τ_i -regular open in A. Since A is $\tau_i\tau_j$ -open in X and U is τ_i -regular open in A, we have $U = A \cap W$ for some τ_i -regular open set W in X (by Lemma 3.10). Since A is $\tau_i\tau_j$ -open in X and W is τ_i -regular open in X, we have $U = A \cap W$ is τ_i -regular open set in X (by Lemma 3.11). Hence $B \subseteq U$ and U is τ_i -regular open in X. Since B is (i, j)- I_{rwg} - closed in X, τ_j -cl*(int(B) $\subseteq U$. Therefore τ_j -cl*(int(B)) \cap (X - U) \in I. Consequently, τ_j - cl*(int(B)) \cap A \cap (X - U) \in I_A. Since A is τ_i τ_j -open in X, we have τ_j - cl*(int(B)) \cap A = τ_j -cl** int(B). Hence τ_j -cl** int(B) \subseteq U. Therefore B is (i, j)- I_{rwg} -closed relative to A. **Theorem 3.14:** If A is (i, j)- I_{rwg} -closed, and $A \subseteq B \subseteq \tau_j$ - $cl^*(int(A))$ in (X, τ_1, τ_2, I) then B is (i, j)- I_{rwg} -closed, i, j = 1, 2 and $i \neq j$. **Proof:** Let A and B be subsets such that $A \subseteq B \subseteq \tau_j\text{-cl}^*(\text{int}(A))$. Suppose that A is $(i, j)\text{-}I_{\text{rwg}}\text{-closed}$, i, j = 1, 2 and $i \neq j$. Let $B \subseteq U$ and U is τ_i -regular open in X. Since $A \subseteq B$ and $B \subseteq U$, we have $A \subseteq U$. Hence $A \subseteq U$ and U is τ_i -regular open in X. Since A is $(i, j)\text{-}I_{\text{rwg}}\text{-closed}$, we have τ_j -cl $^*(\text{int}(A)) \subseteq U$. Since $B \subseteq \tau_j\text{-cl}^*(\text{int}(A))$, then τ_j -cl $^*(\text{int}(B))\subseteq \tau_j$ -cl $^*(\text{int}(A))$. Hence τ_j -cl $^*(\text{int}(B))\subseteq U$. Therefore B is $(i, j)\text{-}I_{\text{rwg}}$ -closed. #### REFERENCES - 1. R. Alagar, R. Thenmozhi. Regular generalized star closed sets with respect to an ideal. Int.J. of Math. Sci. & Engg. Appls., 2007, I(2): 183{191. - 2. K. Chandrasekhara Rao, K. Kannan. Regular generalized star closed sets. Thai Journal of Mathematics, 2006, 4(2): 341{349. - 3. K. Chandrasekhara Rao, K. Kannan. Generalized star regular closed sets in bitopological spaces. Antarctica Math. J., 2007, 4(2): 139-146. - 4. K. Chandrasekhara Rao, N. Palaniappan. Regular generalized star closed sets. Bulletin of Pure and Applied Sciences, 2000, 19(2): 291-306 - 5. K. Chandrasekhara Rao, N. Palaniappan. Regular generalized closed sets. Kyungpook Mathematical Journal, 1993, 33(2): 211-219. - 6. O.A. El-Tantawy, H.M. Abu-Donia. Generalized separation axioms in bitopological spaces. The Arabian Journal for Science and Engineering, 2005, 30(1A): 117-129. - 7. T. Fukutake. Semi open sets on bitopological spaces. Bull. Fukuoka Uni. Education, 1989, 38(3): 1-7. - 8. J. C. Kelly. Bitopological spaces. Proc. London Math. Society, 1963, 13: 71-89. - 9. T. Noiri, N. Rajesh. Generalized closed sets with respect to an ideal in bitopological spaces. Acta Math. Hungar., 2009, 125(1-2): 17-20. - 10. N. Palaniappan, R. Alagar. Regular generalized locally closed sets with respect to an ideal. Antarctica J. Math, 2006, 3(1): 1-6. - 11. M. K. Singal, Asha Rani Singal. On some pairwise normality conditions in bitopological spaces. Publications Mathematicae, 1974, 21: 71-81 - 12. M. Sheik John, P. Sundaram. *g**-closed sets in Bitopological spaces. Indian J. Pure Appl. Math., 2004, 35(1): 71-80. #### Source of support: Nil, Conflict of interest: None Declared [Copy right © 2016. This is an Open Access article distributed under the terms of the International Journal of Mathematical Archive (IJMA), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.]