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ABSTRACT 
The aim of this paper is to introduce the concept of (i, j)-regular weakly generalized closed sets, (i, j)-regular weakly 
generalized open sets and study their basic properties in ideal bitopological spaces. 
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1. INTRODUCTION 
 
The concept of bitopological space was introduced by J.C.Kelly [8]. Generalised closed sets with respect to an ideal in 
bitopological spaces was introduced by T.Noiri, N.Rajesh [9]. 
 
In this paper, regular weakly generalized closed and open sets with respect to ideal in bitopological spaces are 
introduced. 
 
A non-empty collection I of subsets on a topological space (X, τ) is called a topological ideal if it satisfies the following 
two conditions: 

(i) If A  I and B  A implies B∈I (heredity) 
(ii) If A∈ I and B I, then A∪B I (finite additivity) 

 
Let (X, 𝜏𝜏1, 𝜏𝜏2, I) or simply X denote an ideal bitopological space. For any subset A⊆  X, 𝜏𝜏i - int(A) and  𝜏𝜏i-cl(A) denote 
the interior and closure of a set A with respect  to the topology 𝜏𝜏i  respectively. The closure and interior of B relative to 
A with respect to the topology 𝜏𝜏I are written as 𝜏𝜏i – clA(B)  and 𝜏𝜏i – intA(B) respectively. 
 
2. PRELIMINARIES 
 
Definition 2.1: ([2], [3], [5], [7], [11]). A set A of a bitopological space 1 2(X, , )τ τ  is called  

(a) 𝜏𝜏i𝜏𝜏j - semi open  if there exists a iτ -open set U such that U⊆A⊆ jτ -cl(U), i, j = 1,2 and i ≠  j. 

(b) 𝜏𝜏i𝜏𝜏j - semi closed if X-A is 𝜏𝜏i𝜏𝜏j -semi open. Equivalently, a set A of a bitopological space 1 2(X, , )τ τ  is called    

𝜏𝜏i𝜏𝜏j - semi closed if there exists a iτ - closed set F such that jτ - int (F) ⊆A ⊆  F.  

(c) 𝜏𝜏i𝜏𝜏j - regular closed if iτ - cl[ jτ - int(A)] = A. 

(d) 𝜏𝜏i𝜏𝜏j - regular open if iτ - int[ jτ  - cl(A)] = A. 

(e) 𝜏𝜏i𝜏𝜏j - regular generalised closed (𝜏𝜏i𝜏𝜏j -rg closed) in X if jτ - cl(A)⊆U whenever A⊆U and U is 𝜏𝜏i𝜏𝜏j -regular 
open in X. 
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(f) 𝜏𝜏i𝜏𝜏j - regular generalized open (𝜏𝜏i𝜏𝜏j -rg open) in X if F⊆ jτ - int(A) whenever F⊆A and F is 𝜏𝜏i𝜏𝜏j -regular closed 

in X. 
(g) 𝜏𝜏i𝜏𝜏j- regular generalized star closed ( 1 2τ τ - rg∗  closed) in X if and only if 2τ -rcl(A)⊆U whenever A⊆U and 

U is 1 2τ τ -regular open in X. 

(h) 𝜏𝜏 1𝜏𝜏 2- regular generalized star open (𝜏𝜏 1𝜏𝜏 2- rg∗  open) in X if and only if its complement is 𝜏𝜏 1𝜏𝜏 2 - regular 

generalized star closed (𝜏𝜏1𝜏𝜏2 - rg∗  closed) in X. 

(i) 𝜏𝜏1𝜏𝜏2 - generalized star regular closed ( 1 2τ τ - g r∗  closed) in X if and only if 2τ -rcl(A)⊆U whenever A⊆U and 

U is 1τ - open in X. 

(j) 𝜏𝜏1𝜏𝜏2 - generalized star open ( 1 2τ τ - g r∗  open) in X if and only if its complement is 1 2τ τ - generalized star 

closed ( 1 2τ τ - g r∗  closed) in X. 
 
Lemma 2.1: [2] Let a be an 𝜏𝜏i – open set in ( X, 𝜏𝜏1 , 𝜏𝜏2) and let U be 𝜏𝜏i 𝜏𝜏j – regular open in A. Then U = A ∩ W for 
some 𝜏𝜏i 𝜏𝜏j – regular open set W in X, i,j = 1,2 and i ≠ j.           
 
3. (i, j)-Irwg-CLOSED SETS  
 
Definition 3.1: Let (X, 𝜏𝜏1, 𝜏𝜏2, I) be a bitopological space and I be an ideal on X. A subset A of X is said to be (i, j)-
regular weakly generalized closed set with respect to an ideal I( shortly (i, j)- Irwg-closed set)  if and only if                   
𝜏𝜏j-cl*(int(A)) ⊆ U whenever A ⊆ U and U is 𝜏𝜏i-regular open in X, i, j = 1, 2 and i ≠ j. 
 
Example 3.2: Let X = {a, b, c}, 𝜏𝜏1 = {∅, X, {b}, {a, b}}, 𝜏𝜏2 = {∅, X, {a},{a,c}}, I = {∅, {b}}.  Then, ∅, X, {a}, {a,c}, 
{b,c}, {a,b} are (i, j)- Irwg-closed sets in (X, 𝜏𝜏1, 𝜏𝜏2, I). 
 
Theorem 3.3: Let (X, 𝜏𝜏1, 𝜏𝜏2, I) be an ideal bitopological space. Then every (i, j)- rg closed set is (i, j)-Irwg -closed in X, 
i, j = 1,2 and i ≠ j. 
 
Proof: Let A be (i, j) -rg-closed subset of X. Let A⊆ U and U is 𝜏𝜏i -regular open in X, i, j = 1, 2 and i ≠ j. Then            
𝜏𝜏j-cl(int(A)) ⊆ 𝜏𝜏j-cl(A) ⊆ U.  Hence 𝜏𝜏j-cl(int(A))  – U= ∅ ∈ I.  Therefore A is (i, j)-rg closed. 
 
Remark 3.4: The converse of the above theorem is not be true from the following example. 
 
Example 3.5: Let X = {a, b, c}, 𝜏𝜏1={∅, X, {a}, {a,b}},  𝜏𝜏2 = {∅, X, {b}, {b, c}}, I = {∅, {b},{c},{b,c}}. Then {a}       
(i, j) -Irwg-closed but not (i, j)- rg closed set in X. 
 
Theorem 3.6: Let A be a subset of an ideal bitopological space (X, 𝜏𝜏1, 𝜏𝜏2, I).  If A is (i, j)-Irwg-closed then 𝜏𝜏j-cl*(int(A)) 
– A does not contain 𝜏𝜏i-regular closed sets such that F ∉  I, i, j = 1, 2 and i ≠ j. 
 
Proof: Suppose that A is (i, j)-Irwg-closed, i, j = 1, 2 and i ≠  j.  Let F be an 𝜏𝜏 i - regular closed set such that                      
F ⊆  𝜏𝜏 j-cl*(int(A)) – A.  Since F ⊆  𝜏𝜏 j-cl*(int(A)) – A, we have F ⊆ [𝜏𝜏 j-cl*(int(A)) – A] ∩ (X – A). Consequently           
F ⊆ X – A and F ⊆  𝜏𝜏j -cl*(int(A)).  Since F ⊆ X – A, we have    A ⊆ X – F.  Since F is 𝜏𝜏i - regular closed set, X – F is 
𝜏𝜏 i-regular open.  Since A is (i, j)-Irwg-closed, we have 𝜏𝜏 j-cl*(int(A)) – (X – F) = 𝜏𝜏 j-cl*(int(A)) ∩ F = F ∈ I. Thus            
𝜏𝜏j-cl*(int(A)) – A does not contain 𝜏𝜏i-regular closed sets such that F ∉ I.    
 
Theorem 3.7: The union of two (i, j)-Irwg-closed sets in (X, 𝜏𝜏1, 𝜏𝜏2, I) is also an (i, j)-Irwg-closed set.  
 
Proof: Let A and B be (i, j)-Irwg-closed sets in X, i, j = 1, 2 and i ≠ j. We have to prove that A∪ B is also (i, j)-Irwg-
closed. Let A∪ B ⊆ U and U is 𝜏𝜏i-regular open. Since A∪ B ⊆ U, we have A ⊆ U and B ⊆ U.  Since A ⊆ U then U is 
𝜏𝜏i-regular open, we have 𝜏𝜏j-cl*(int(A)) ⊆ U (since A is (i, j)-Irwg-closed). Similarly B ⊆ U and U is 𝜏𝜏i-regular open, we 
have 𝜏𝜏j-cl*(int(B)) ⊆ U. Therefore 𝜏𝜏j-cl*(int(A∪ B)) = (𝜏𝜏j- cl*(int(A)) ∪  (𝜏𝜏j-cl*(int(B)) ⊆ U. Hence A ∪ B is (i, j)-Irwg-
closed set. 
 
Remark 3.8: The intersection of two (i, j)-Irwg-closed sets is not an (i, j)-Irwg- closed set in general as seen from the 
following example. 
 
Example 3.9: Let X = {a, b, c}, 𝜏𝜏1 = {∅, X, {a}, {a, b}},  𝜏𝜏j = {∅, X, {b}, {b, c}}, I = {∅, {b},{c}, {b,c}}, A = {a,b}, 
B = {a, c} are (i, j)- Irwg-closed sets, but A ⋂ B ={a} is not an (i, j)- Irwg-closed set.    
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Lemma 3.10: Let A be an 𝜏𝜏i-open set in (X, 𝜏𝜏1, 𝜏𝜏2) and let U be 𝜏𝜏i-regular open in A. Then U = A ⋂ W for some          
𝜏𝜏i-regular open set W in X, i, j= 1, 2 and i ≠ j. 
 
Lemma 3.11: If A is 𝜏𝜏i𝜏𝜏j-open  and U is 𝜏𝜏i-regular open in X then U ⋂ A is  𝜏𝜏i- regular open in A, i, j= 1, 2 and i ≠ j. 
 
Lemma 3.12: If A is 𝜏𝜏i𝜏𝜏j-open  in (X, 𝜏𝜏1, 𝜏𝜏2), then 𝜏𝜏j-𝑐𝑐𝑐𝑐𝐴𝐴(B) ⊆ A ⋂ 𝜏𝜏j-cl(B) for any subset B of A, i, j = 1, 2 and  i ≠ j. 
 
Theorem 3.13: Let I be an ideal in X. Let B ⊆ A where A is 𝜏𝜏i-regular open, 𝜏𝜏j-regular open and (i, j)-Irwg-closed. Then 
B is (i, j)-Irwg-closed relative to A with respect to an ideal IA  = {F ⊆ A \ F ∈ I} if B is (i, j)-Irwg-closed in X, i, j = 1,2 
and i ≠ j. 
 
Proof: Suppose that B is (i, j)-Irwg-closed in X, i, j = 1, 2 and i ≠ j. We have to prove that B is (i, j)-Irwg-closed relative 
to A. Let B ⊆ U and U is 𝜏𝜏i-regular open in A.  Since A is 𝜏𝜏i𝜏𝜏j-open   in X and U is 𝜏𝜏i-regular open in A, we have          
U = A ∩ W for some 𝜏𝜏i-regular open set W in X (by Lemma 3.10).  Since A is 𝜏𝜏i𝜏𝜏j-open in X and W is 𝜏𝜏i-regular open 
in X, we have U = A ∩ W is 𝜏𝜏i-regular open set in X (by Lemma 3.11).  Hence B ⊆ U and U is 𝜏𝜏i-regular open in X.  
Since B is (i, j)-Irwg- closed in X, 𝜏𝜏j-cl*(int(B) ⊆ U. Therefore 𝜏𝜏j-cl*(int(B)) ∩(X– U) ∈ I.  Consequently, 𝜏𝜏j - cl*(int(B) 
∩ A ∩ (X – U) ∈ IA.  Since A is 𝜏𝜏i 𝜏𝜏j-open in X, we have 𝜏𝜏j- cl*(int(B) ∩ A = 𝜏𝜏j-𝑐𝑐𝑐𝑐𝐴𝐴∗  int(B). Hence 𝜏𝜏j-𝑐𝑐𝑐𝑐𝐴𝐴∗  int(B) ⊆ U. 
Therefore B is (i, j)-Irwg-closed relative to A. 
 
Theorem 3.14: If A is (i, j)-Irwg-closed, and A ⊆ B ⊆ 𝜏𝜏j-cl*(int(A)) in (X, 𝜏𝜏1, 𝜏𝜏2, I)  then B is  (i, j)-Irwg-closed, i, j = 1, 2 
and i ≠ j. 
 
Proof: Let A and B be subsets such that A ⊆ B ⊆ 𝜏𝜏j-cl*(int(A)). Suppose that A is (i, j)-Irwg-closed, i, j = 1, 2 and i ≠ j. 
Let B ⊆ U and U is 𝜏𝜏i-regular open in X. Since A ⊆ B and B ⊆ U, we have A ⊆ U. Hence A ⊆ U and U is 𝜏𝜏i-regular 
open in X.  Since A is (i, j)-Irwg-closed, we have 𝜏𝜏 j -cl*(int(A)) ⊆  U. Since B ⊆  𝜏𝜏 j-cl*(int(A)), then                                
𝜏𝜏𝑗𝑗 -cl*(int(B))⊆ 𝜏𝜏𝑗𝑗 -cl*(int(A)). Hence𝜏𝜏j-cl*(int(B))⊆ 𝜏𝜏j-cl*(int(A))⊆U.  Therefore B is  (i, j)-Irwg-closed. 
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