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ABSTRACT 
In this paper, we prove that a 2- and 3- divisible prime accessible ring is either associative or commutative and a 2- 
and 3- divisible semiprime accessible ring is associative.  
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1. INTRODUCTION 
 
Kleinfeld [1] studied the structure of standard and accessible rings. He proved that simple accessible rings are either 
associative or commutative. Thedy [3] studied the rings, in which the associator commutes with all elements of the ring 
i.e., ((w, x, y), z) = 0. He proved that simple nonassociative rings satisfying this identity are either associative or 
commutative.  

 
In this paper we see that accessible rings satisfy the identity ((w, x, y), z) = 0. We prove that the associator and multiple 
of the associator are in the nucleus of an accessible ring. Using these properties, we show that a 2- and 3- divisible 
prime accessible ring is either associative or commutative and a 2- and 3- divisible semiprime accessible ring is 
associative.  
 
2. PRELIMINARIES  
 
A ring is defined to be accessible if the following two identities hold:  

(x, y, z) + (z, x, y) – (x, z, y) = 0.                                                                             (1) 
((w, x), y, z) = 0.                                                                               (2) 

for all x, y, z in R, where the associator is defined as (x, y, z) = (xy)z – x(yz) for all x, y, z in R, the commutator is 
defined as (x, y) = xy – yx for all x, y in R. 
 
Throughout this paper R represents an accessible ring. R is said to be prime whenever A and B are ideals of R such that 
AB=0, then either A=0 or B=0. R is said to be semiprime if for any ideal A of R, A2 = 0 implies A=0. R is said to be    
n-divisible if nx = 0 imples x = 0 for all x in R and n, a natural number The nucleus N of R is defined as the set of all 
elements n in R such that (n, R, R) = (R, n, R) = (R, R, n) = 0.  
 
By substituting z = y in (1), we obtain the flexible law  

(y, x, y) = 0.                                                                          (3)  
 
A linearization of the above identity yeilds   

(y, x, z) = - (z, x, y).                                                                (4)  
 
Then       (x, y, z) + (y, z, x) + (z, x, y) = 0.                                                  (5) 
 
In any arbitrary ring the identity 

(xy, z) = x(y, z) + (x, z)y + (x, y, z) + (z, x, y) – (x, z, y) holds. 
 
From (1) this identity becomes (xy, z) = x(y, z) + (x, z)y.                                                             (6) 
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Another identity which holds in an arbitrary ring is  

(wx, y, z) – (w, xy, z) + (w, x, yz) = w(x, y, z) + (w, x, y)z.                                               (7) 
 
If n is an element of the nucleus N of R, then because of the flexible law (R, R, n) = 0. Finally because of (1) it follows 
that (R, n, R) = 0. 
 
If n is substituted for w in (7), we obtain 

(nx, y, z) = n(x, y, z), n∈N.  
 
Combining this with (2) yeilds   

(nx, y, z) = n(x, y, z) = (xn, y, z), n∈N.                                                              (8) 
 
We now proceed to develop further identities that hold in arbitrary accessible rings. The elements u, v, w, x, y, z will 
denote arbitrary elements of such rings. 
 
By repeated use of (6), we break up ((w, x, y), z) as 

((w, x, y), z) = (wx⋅y - w⋅xy, z) 
 = wx⋅(y, z) + w(x, z)⋅y + (w, z)x⋅y - w⋅x(y, z) - w⋅(x, z)y – (w, z)⋅xy 
 = (w, x, (y, z)) + (w, (x, z),y) + ((w, z), x, y). 

 
Since (2) implies that every commutator is in the nucleus,  
 
We obtain ((w, x, y), z) = 0.                                                   (9)  
 
Hence every associator commutes with every element of R. 
 
The associator ideal A of R is defined as A=Σ(R, R, R) + (R, R, R)R 
 
Let         S(x, y, z) = (x, y, z) + (y, z, x) + (z, x, y). 
 
In every ring we have the identities  

(xy, z) + (yz, x) + (zx, y) = S(x, y, z),                                                            (10) 
((x, y), z) + ((y, z), x) + ((z, x), y) = S(x, y, z) – S(x, z, y).                                             (11) 

 
3. MAIN RESULTS  
 
First we prove some properties of the nucleus in R. 
 
Lemma 1: If R is a prime accessible ring, then the associator is in the nucleus N of R. 
 
Proof: From (8) and the fact that every commutator is in the nucleus, we get (v, x) (x, y, z) = ((v, x)x, y, z). 
 
It follows from (6) that (vx, x) = v(x, x) + (v, x)x (or) (vx, x) = (v, x)x. 
 
Consequently ((v, x)x, y, z) = ((vx, x),y, z) = 0. 
 
Therefore (v, x) (x, y, z) = 0.                                                 (12) 
 
A linearization of this identity becomes 

(v, w) (x, y, z) = - (v, x) (w, y, z).                                                             (13) 
 
Using (6), (9), (13) and (2), we obtain 

((v, w) (x, y, z), u) = (v, w) ((x, y, z), u) + ((v, w), u) (x, y, z) 
 = ((v, w), u) (x, y, z) 
 = - (u, (v, w)) (x, y, z) 
 = (u, x) ((v, w), y, z) 
 = 0. 

Therefore ((v, w) (x, y, z), u) = 0. 
 
Now using (8), (13) and (9), we obtain 

((v, w) (x, y, z), t, u) = (v, w) ((x, y, z), t, u) 
  = - (v, (x, y, z)) (w, t, u) 
  = 0. 
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Thus ((v, w) (x, y, z), t, u) = 0. 
 
Since (v, w)∈N we have (v, w) ((x, y, z), t, u) = 0.                                                            (14) 
 
Since R is prime and not commutative, (14) implies that ((x, y, z), t, u) = 0. 
 
By using the linearization of flexible property (3), we obtain (u, t, (x, y, z)) = 0. Finally because of (1), it follows that   
(t, (x, y, z), u) = 0. Therefore the associator (x, y, z) is in the nucleus N. 
 
This completes the proof of the lemma.                                                                                                                                             
 
Lemma 2: In an accessible ring R, (R(R, R, R), R) = 0. 
 
Proof: By commuting (7) with r, we get 

((wx, y, z), r) – ((w, xy, z), r) + ((w, x, yz), r) = (w(x, y, z), r) + ((w, x, y)z, r) 
 
By using (9), we obtain 

(w(x, y, z), r) + ((w, x, y)z, r) = 0. 
(w(x, y, z), r) = - ((w, x, y)z, r).                                   (15) 

 
Equation (15) with w=y and using (3) gives  

(y(x, y, z), r) = - ((y, x, y)z, r) = 0. 
 
So that    (y(x, y, z), r) = 0.                                                 (16) 
 
Linearization of (16) with y=w+y yeilds  

(w(x, y, z), r) = - (y(x, w, z), r).                                                                                                                        (17) 
 
By substituting z=y in (15) and using (17) repeatedly, we get 

(w(x, y, y), r)  = - ((w, x, y)y, r) 
= ((w, y, y)x, r) 
= - ((x, w, y)y, r) 
= ((y, w, x)y, r) 
= - ((x, y, w)y, r) 
= ((y, x, y)w, r) 
= 0. 

 
i.e. (w(x, y, y), r) = 0.                                                  (18) 
 
Linearization of (18) with y=y+z yeilds  

(w(x, y, z), r) = - (w(x, z, y), r). 
 
Using the linearization of flexible identity, the above equation yeilds  

(w(x, y, z), r) = (w(y, z, x), r). 
 
Similarly (w(y, z, x), r) = (w(z, x, y), r). 
 
Therefore (w(x, y, z), r) = (w(y, z, x), r) = (w(z, x, y), r).                                              (19) 
 
Using (19) and (5) gives  

0 = (w((x, y, z) + (y, z, x) + (z, x, y)), r) 
0 = 3(w(x, y, z), r). 

 
Since R is 3- divisible, we have (w(x, y, z), r) = 0. 
i.e. (R(R, R, R), R) = 0. 
 
This completes the proof of the lemma.                                                                                                                                            
 
Theorem 1: A 2- and 3- divisible prime accessible ring is either associative or commutative.  
 
Proof: By using (6) we get 

(w(x, y, z), r) = w((x, y, z), r) + (w, r) (x, y, z). 
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By using (9) and lemma 2, we obtain 

(w, r) (x, y, z) = 0.                                                               (20) 
 
We know that A is an ideal consisting of all finite sums of elements of the form (x, y, z) or of the form w(x, y, z) and B 
is an ideal consisting of all finite sums of elements of the form (x, y) or of the form w(x, y). 
 
From (20), it follows that BA=0 
 
Since R is prime, we have either B=0 or A=0. 
 
If B=0, then R is commutative. If A=0, then R is associative. 
 
Hence R is either commutative or associative. 
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 
Theorem 2: A 2- and 3- divisible semiprime accessible ring R is associative.  
 
Proof: From lemma 1, we have 

((x, y, z), r, s) = 0.                                                              (21) 
 
By taking associators of (7) and using (9) we get 

(w(x, y, z), r, s) + ((w, x, y)z, r, s) = 0.                                               (22) 
 
By substituting w=y in (22) and using (3) 

(y(x, y, z), r, s) + ((y, x, y)z, r, s) = 0 
 
So that (y(x, y, z),r, s) = 0.                                                 (23) 
 
By linearizing (23) with y=w+y  yields  

(w(x, y, z), r, s) + (y(x, w, z), r, s) = 0.                                               (24) 
 
By substituting z = y in (22) and (24) we have 

(w(x, y, y), r, s) + ((w, x, y)y, r, s) = 0.                                               (25) 
 
and         (w(x, y, y), r, s) + (y(x, w, y), r, s) = 0.                                               (26) 
 
By subtracting the equation (26) from (25), we get 

((w, x, y)y, r, s) – (y(x, w, y), r, s) = 0. 
 
i.e.         ((w, x, y)y, r, s) = (y(x, w, y), r, s).                                                             (27) 
 
Since (y(x, y, z), r, s) = 0, we have (y(y, x, z), r, s) = 0 and – (z(y, y, x), r, s) = 0. 
 
This implies that (z(x, y, y), r, s) = 0. 
i.e.          ((x, y, y)z, r, s) = 0.                                                                                                                                           (28) 
 
Linearization of (28) with y=w+y yeilds 

((x, w, y)z, r, s) + ((x, y, w)z, r, s) = 0. 
 
Using linearization of flexible identity, the above equation yeilds 

((x, w, y)z, r, s) = ((w, y, x)z, r, s).  
 
Similarly ((w, y, x)z, r, s) = ((y, x, w)z, r, s). 
 
Therefore ((x, w, y)z, r, s) = ((w, y, x)z, r, s) = ((y, x, w)z, r, s).                                             (29) 
 
Using (29) and (5) gives  

0 = (((w, x, y) + (x, y, w) + (y, w, x))z, r, s) 
0 = 3((w, x, y)z, r, s).  

 
Since R is 3- divisible, we have ((w, x, y)z, r, s) = 0. 
 
Using (8) and lemma 1, we have (w, x, y) (z, r, s) = 0.                                              (30) 
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We know that A is an associator ideal consisting of all elements of the form (x, y, z) and w(x, y, z). From (30) it 
follows that A2=0. Since R is semiprime, we obtain A=0. Hence R is associative. 
 
This completes the proof of the theorem
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