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ABSTRACT 
In this paper we introduce sp-R1 and weakly –sp- R0 space with the help of semi-preopen sets defined by Andrijevic/[1]. 
Semi-pre θ-closure of a set is defined and used to investigate basic properties of sp-R1 space. Some results on 
invariance and productivity of   weakly - sp- R0 spaces have been obtained.                                   
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1. INTRODUCTION  
 
In 1943, N. Shanin [10] introduced a new separation axiom termed as R0 and in 1961, Davis [5] introduced the R1- 
axiom. In 1963 Levine [11] defined semi-open set and Maheswari [7] et al. introduced (R0)s space with the aid of semi-
open sets while Caldas et al. [4] defined R0 and R1 spaces utilising preopen sets of Mashhour [9]. On the otherhand 
J.D.Maio [8] introduced weakly R0 space and Arya et al. [2] defined weakly semi-R0 using semi-open sets.  
Bandyopadhyay et al. [3] defined sp- R0 space using semi- preopen sets introduced by Andrejevic/ [1]. This paper is the 
continuation of our study on separation axiom by introducing sp-R1 space and weakly-sp- R0 space using semi- preopen 
sets. In section 2 of this paper some known definitions and results are given which will be required in the sequel. 
Section 3 and section 4 deal with the definitions and characterisation along with some basic properties of sp- R1 and 
weakly -sp- R0 spaces respectively. 
 
2.  PRELIMINARIES 
 
Throughout the paper (X, τ) or X always denotes a non trivial topological space. The family of all open sets containing 
x is denoted by Σ(x). Interior and closure of a subset A of X is denoted by Int(A) and Cl(A) respectively. 
 
Definition 2.1: A ⊂ X is called a semi-preopen set (briefly s.p.o. set) [1] iff A ⊂ Cl (Int (Cl (A))). The family of all 
s.p.o.  sets is denoted by SPO(X). For each x ∈ X, the family of all s.p.o. sets containing x is denoted by SPO(X, x). 
 
Definition 2.2: The complement of a s.p.o. set is called semi-preclosed [1].   
 
Definition 2.3: The semi-preclosure [1] of A ⊂ X is denoted by spcl (A) and is defined by spcl (A) = ∩ {B: B is semi-
preclosed and B ⊃ A}. 
 
Definition 2.4: A topological space X is said to be sp - T1 [6] iff for every pair of points x, y∈ X such that x ≠ y, there 
exist a U∈SPO(X, x) not containing y and a V ∈ SPO (X, y) not containing x. 
 
Definition 2.5: A topological space X is said to be sp - T2 [6] iff for every pair of distinct points x, y∈ X there exist 
disjoint sets U∈SPO(X, x) and V∈ SPO (X, y). 
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Definition 2.6: A space X is said to be a semi-pre R0 [3] (briefly sp-R0) space if spcl ({x}) ⊂U for every U∈ SPO (X, x). 
 
Definition 2.7: Let A⊂X. Then the semi-pre Kernel [3] of A (briefly sp-Ker (A)) is defined to be the set                     
sp-Ker (A) = ∩ {U: U ∈ SPO (X), A ⊂ U}. 
 
Definition 2.8: A space X is called weakly-R0 [8] iff ∩{Cl ({x}) : x∈X} = φ. 
 
Theorem 2.1 [3]: A topological space is sp-R0 iff it is sp-T1. 
 
Theorem 2.2 [3]: A topological space X is sp-T1 iff every one pointic set is semi-preclosed.  
 
Lemma 2.1 [6]: If A ∈ SPO (X) and B ∈ SPO (Y) then, A × B ∈ SPO (X × Y). 
 
3. SEMI - PRE R1 SPACES 
 
We start with the definition of a sp-R1 space, which runs as follows: 
 
Definition 3.1: A topological space X is said to be semi-pre-R1 (briefly sp-R1)  if for every pair of points x, y ∈ X with 
spcl ({x}) ≠ spcl ({y}) there exist two disjoint sets U ∈ SPO (X, x), V ∈ SPO (X, y) such that spcl ({x}) ⊂ U and    
spcl ({y}) ⊂ V. 
 
Theorem 3.1: Every sp-R1 space is sp-R0. 
 
Proof: Let U ∈ SPO (X, x) and y ∉ U. This gives x ∉ spcl ({y})  ⇒ spcl ({x}) ≠ spcl ({y}).Since X is sp-R1 there 
exists V ∈ SPO (X, y) such that spcl ({y}) ⊂ V and x ∉ V. Thus y ∉ spcl ({x}).The non-containment condition 
regarding y induces spcl ({x}) ⊂ U. Hence X is sp-R0. 
 
Theorem 3.2: A topological space is sp-R1 iff it is sp-T2. 
 
Proof: Let X be sp-R1.  Theorem 3.1 ensures that X is sp-R0 and hence by Theorem 2.1, X is sp-T1.  We assert that X is 
sp-T2. To this end let x, y ∈ X with x ≠ y. Now sp-T1-ness of X guarantees by Theorem 2.2 that spcl ({x}) = {x} and 
spcl ({y}) = {y}.Thus spcl ({x}) ≠ spcl ({y}). Therefore sp-R1-ness of X provides two disjoint s.p.o. sets U and V 
such that x ∈ U and y ∈ V. Hence X is sp-T2. 
 
Definition 3.2: For A ⊂ X, the semi pre θ-closure of A, denoted by spclθ (A), is defined by spclθ (A) ={x ∈ X;          
spcl (V) ∩ A ≠ φ for every V ∈ SPO (X, x)}. 
 
A is called semi-pre θ-closed if spclθ (A) = A.  
 
Lemma 3.1: For any subset A of a topological space X, spcl (A) ⊂ spclθ (A). 
 
Proof is straight forward and is omitted. 
 
Lemma 3.2: Let (X, τ) be a topological space and x, y ∈ X. Then y ∈ spclθ ({x}) iff x ∈ spclθ ({y}). 
 
Proof: Let y ∈ spclθ ({x}). If possible suppose x ∉ spclθ ({y}).This guarantees the existence of a U ∈ SPO (X, x) such 
that spcl (U) ∩{y} = φ  ⇒ y ∉ spcl (U).Then there exists a V ∈ SPO (X, y) such that V ∩ U = φ ⇒ spcl (V)∩U =  φ 
⇒ spcl (V) ∩{x} = φ ⇒ y ∉ spclθ ({x})⇒ a contradiction .Thus y ∈ spclθ ({x}) ⇒ x ∈ spclθ ({y}). 
 
The proof of the converse part follows by pursuing the same argument. 
 
Theorem 3.3: A topological space X is sp-R1 iff  spcl ({x}) = spclθ ({x}) for every x∈X. 
 
Proof: Assume X be sp-R1. If possible suppose there exists a point x∈X such that spcl({x}) ≠ spclθ ({x}). By Lemma 
3.1 spcl ({x}) ⊂ spclθ ({x}).This guarantees the existence of a y ∈ X such that y ∈ spclθ ({x}) but y ∉ spcl ({x}). 
Hence spcl ({x}) ≠ spcl ({y}). Again sp-R1-ness of X provides us U1 ∈ SPO (X, x), U2 ∈ SPO (X, y) such that        
spcl ({x}) ⊂ U1, spcl ({y}) ⊂ U2 and U1 ∩ U2=φ. Thus {x} ∩ spcl (U2) = φ ⇒ y ∉ spclθ ({x}) ⇒ a 
contradiction.Therefore, the foregoing gives spclθ ({x}) = spcl ({x}). 
 
 
 



Dr. N. Bandyopadhyay*, Prof. P. Bhattacharyya / Semi - Pre R1 and Weakly Semi-Pre R0 Spaces / IJMA- 7(7), July-2016. 

© 2016, IJMA. All Rights Reserved                                                                                                                                                     137  

 
Conversely, suppose that the given condition holds for every x ∈ X.  We assert that X is sp-R0.  To this end let x ∈ X 
and U ∈ SPO (X, x).  We take y ∉ U.  Obviously spclθ ({y}) = spcl ({y}) ⊂ X – U. ⇒ x ∉ spclθ ({y}) So, Lemma 3.2 
induces that y ∉ spclθ ({x}).Using Lemma3.1 one infers that y ∉ spcl ({x}) ⇒spcl ({x}) ⊂ U. Hence X is sp-R0.  
Therefore by Theorem 2.1, X is sp-T1. Next let α, β ∈ X with α ≠ β. By Theorem 2.2 spcl ({α}) ={α} and              
spcl ({β}) = {β}.Clearly β ∉ spcl ({α}) = spclθ ({α}). Therefore there exists a V ∈ SPO (X, β) such that                     
spcl (V) ∩  {α} = φ  ⇒ α ∈ X – spcl (V) ∈ SPO (X).Thus for every α, β ∈ X with α ≠  β there exist                            
X – spcl (V) ∈ SPO (X, α), V ∈ SPO (X, β)such that (X – spcl (V)) ∩ V = φ.This indicates that X is sp-T2 and hence, 
by Theorem 3.2, X is sp-R1 
 
4. WEAKLY SEMI-PRE R0 SPACES 
 
Definition 4.1: A topological space X is said to be weakly semi-pre-R0 (briefly wsp-R0) iff ∩{spcl ({x}) : x ∈ X} = φ. 
 
Remark 4.1: Obviously every sp-R0 space is wsp-R0 but the converse need not be true as the following shows. 
 
Example 4.2: Let X = {a, b, c, d} be the set with the topology τ = {φ, X, {b}, {a, b}, {b, c}, {a, b, c}}.Then X is wsp-
R0 but not sp-R0. 
 
Remark 4.2: Every weakly R0 space is wsp-R0 follows from the fact that ∩{spcl ({x}): x ∈ X} ⊆ ∩{Cl ({x}): x ∈ X}. 
But the reverse relation does not hold in general which is clear from the following example. 
 
Example 4.3: Let X = {a, b, c} be the set with the topology τ = {φ, X, {a}}.Then SPO(X) = {φ, X, {a}, {a, b}, {a, c}}. 
Here∩{Cl ({x}): x ∈ X} =  {b, c} ≠ φ but ∩{spcl ({x}): x∈ X}= φ,which shows that (X, τ) is wsp-R0 but not weakly 
R0. 
 
Remark 4.3: Maio [8] showed that a set equipped with the point exclusion topology cannot be weakly R0. On the other 
hand, this space may be wsp-R0 as shown below. 
 
Example 4.4: Let X = {a, b, c} be the set with the topology τ = {φ, X, {a}, {b}, {a, b}}. Then (X, τ) is wsp-R0 but not 
weakly R0. 
 
Theorem 4.1: A topological space X is wsp-R0 iff sp-Ker ({x}) ≠ X for any x ∈ X. 
 
Proof: Necessity: Suppose the theorem is false.  Then there exists a x0 ∈ X such that sp-Ker ({x0}) = X. This yields sp-
Ker ({x0}) = ∩ {G: G ∈SPO (X, x0)} = X, which indicates that X is the only s.p.o. set containing x0.This reveals that 
every semi-preclosed subset of  X contains x0.  Thus x0 ∈ spcl ({x}) for any x ∈ X. Therefore ∩{spcl ({x}): x ∈ X} ≠ 
φ ⇒ a contradiction to the hypothesis that X is wsp-R0.  Hence sp-Ker ({x}) ≠ X for any x ∈ X. 
 
Sufficiency: Suppose sp-Ker ({x}) ≠  X for every x ∈ X.  If possible suppose X is not wsp-R0 which means               
∩ {spcl ({x}): x ∈ X} ≠ φ.Then there exists a x0 ∈ X such that x0 ∈  ∩ {spcl ({x}): x ∈ X}.This implies that x0 ∈ 
spcl ({x}) for every x ∈ X. Let U ∈ SPO (X, x0).  Then from above U ∩ {x} ≠ φ for every x ∈ X   ⇒ x ∈ U for every 
x ∈ X  ⇒ X ⊂ U ⇒ U = X.This then ensures sp-Ker ({x0}) = X   ⇒ a contradiction to the assumption  ⇒ X is wsp-R0. 
 
We need the following definition and the lemma to establish the invariance of wsp-R0-ness. 
 
Definition 4.2: A mapping f: X → Y is called sp-closed iff f [A] ∈ SPF (Y) for all A ∈ SPF (X). 
 
Lemma 4.1: If f: X → Y is a sp-closed function then spclY ({f (x)}) ⊂ f [spclY ({x})] for every x ∈ X. 
 
Proof:  For any x ∈ X,{x} ⊂ spclY ({x}) f [{x}] ⊂ f [spclX ({x})].This gives  
{f (x)} ⊂ f [spclX ({x})]⇒ spclY ({f (x)}) ⊂ spclY (f [spclX ({x})].Since f is sp-closed  spclY (f [spclX ({x})]) = f [spclX 
({x})]. From above spclY({f (x)}) ⊂ f [spclX ({x})]. 
 
Theorem 4.2:  If f: X → Y is an injective sp-closed mapping where X is wsp-R0, then Y is so. 
 
Proof: The injectivity of f yields∩{spclY ({y}): y ∈Y} ⊂∩{spclY ({f (x)}): x ∈ X}.The sp-closedness of f gives, by 
Lemma 4.1, spclY ({f (x)}) ⊂ f [spclX ({x})]. So from above ∩{spclY ({y}): y ∈ Y} ⊂  ∩{f [spclX ({x})]: x ∈ X}. 
Again the injectivity of f yields ∩{f [spclX ({x})]: x ∈ X} ⊂ f [∩{ spclX ({x}): x ∈ X }]. Now wsp-R0-ness of X gives 
∩ {spclX ({x}): x ∈ X} = φ.  From the foregoing ∩ {spclY ({y}): y ∈ Y} ⊂ f [ ∩{spclX ({x}): x ∈ X}] = f [φ] = φ. 
Hence Y is wsp-R0. 
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PRODUCTIVITY OF wsp-R0 SPACES 
 
Lemma 4.2: Let X = Π Xi be the product spaces of Xi’s, i = 1, 2. …, n.  Then for any point <xi> ∈ X 

spclX ({<xi> }) ⊂  Π  spcl  Xi ({xi}), i=1,2,…,n. 
                                                            
Proof: Let <αi> ∈ spclX ({<xi>}). Also let  Ui ∈ SPO (Xi, αi) and U =Π  Ui. Lemma 2.1 gives U∈ SPO(X). Obviously 
<αi>∈ U.  
 
Now <αi>∈  spclX ({<xi>})⇒ {<xi>}∩U ≠ φ  
⇒ {xi}∩Ui ≠ φ, i = 1, 2, …, n ⇒ αi ∈ spcl Xi ({xi}), i = 1, 2, …, n  ⇒ <αi>∈  Π spcl Xi({xi}) i=1,2,…,n.    
 
So, spclX ({<xi>}) ⊂  Π   spcl  Xi ({xi}) i=1,2,…,n. 
 
Lemma 4.3: Let X = Π  Xi be the product space of Xi’s, i = 1, 2, …, n. Then for any point <xi> ∈ X 
   ∩    [  Π  spcl    ({xi})] =  Π    [    ∩   spcl   ({xi})]. 
 
 
Proof: Let <αi> ∈    ∩    [ Π   spcl  Xi ({xi})] 
 
Then <αi> ∈  Π   spcl  Xi ({xi}) ∀ <xi> ∈ X. 
 
 ⇒  αi ∈ spcl  Xi ({xi}) ∀ xi ∈ Xi, i = 1, 2, …, n. 
 
 ⇒ αi ∈    ∩   spcl  Xi ({xi}), i=1,2,…,n. 
 
 ⇒ <αi> ∈  Π   [    ∩ spcl  Xi ({xi})] 
 
 
This gives  
    ∩    [  Π   spcl  Xi ({xi})] ⊂  Π   [   ∩  spcl  Xi ({xi})]. 
 
 
Theorem 4.3: A space X = Π Xi  (i=1, 2,…, n) is wsp-R0, if one of the Xi is wsp-R0. 
 
Proof: Let XK be wsp-R0, for some fixed index K, where 1 ≤ K ≤ n.  The Lemma 4.2 yields 
   ∩    spcl ({<xi>}) ⊆    ∩    [  Π   spcl Xi({xi})]. 
 
 
An application of Lemma 4.3 gives 
   ∩     spclX ({<xi>}) ⊂  Π   [    ∩    spcl ({xi})]. 
 
 
Now wsp-R0-ness of XK ensures that  
    ∩    spcl ({xK}) = φ. Therefore, from above  
 
       ∩    spcl ({<xi>}) ⊂ X1 × … × XK-1 × φ × XK+1 × … × Xn = φ. 
 
 
Hence X is wsp-R0. 
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