International Journal of Mathematical Archive-7(7), 2016, 115-123
 IMA Available online through www.ijma.info ISSN 2229-5046

COMPLEMENTARY TREE NIL DOMINATION NUMBER AND CONNECTIVITY OF GRAPHS

S. MUTHAMMAI, G. ANANTHAVALLI*
Government Arts College for Women (Autonomous), Pudukkottai-622001, India.

(Received On: 27-06-16; Revised \& Accepted On: 19-07-16)

Abstract

A set D of a graph $G=(V, E)$ is a dominating set, if every vertex in $V(G)-D$ is adjacent to some vertex in D. The domination number $\gamma(G)$ of G is the minimum cardinality of a dominating set. A dominating set D is called a complementary tree nil dominating set, if the induced subgraph $\langle V(G)-D>$ is a tree and also the set $V(G)-D$ is not a dominating set. The minimum cardinality of a complementary tree nil dominating set is called the complementary tree nil domination number of G and is denoted by $\gamma_{\text {ctnd }}(G)$. The connectivity $\kappa_{(G)}$ of G is the minimum number of vertices whose removal results in a disconnected or trivial graph. In this paper, an upper bound for the sum of the complementary tree nil domination number and connectivity of a graph is found and the corresponding extremal graphs are characterized.

Key words: Domination number, Complementary tree nil domination number, Connectivity.

1. INTRODUCTION

Graphs discussed in this paper are finite, undirected and simple connected graphs. For a graph G, let $V(G)$ and $E(G)$ denote its vertex set and edge set respectively. A graph with p vertices and q edges is denoted by $G(p, q)$. The concept of domination in graphs was introduced by Ore [5]. A set $D \subseteq V(G)$ is said to be a dominating set of G, if every vertex in $\mathrm{V}(\mathrm{G})-\mathrm{D}$ is adjacent to some vertex in D . The cardinality of a minimum dominating set in G is called the domination number of G and is denoted by $\gamma(\mathrm{G})$. Muthammai, Bhanumathi and Vidhya [4] introduced the concept of complementary tree dominating set. A dominating set $\mathrm{D} \subseteq \mathrm{V}(\mathrm{G})$ is said to be a complementary tree dominating set (ctd-set) if the induced subgraph $<\mathrm{V}(\mathrm{G})-\mathrm{D}>$ is a tree. The minimum cardinality of a ctd-set is called the complementary tree domination number of G and is denoted by $\gamma_{\text {ctd }}(G)$. The connectivity $\kappa(\mathrm{G})$ of G is the minimum number of vertices whose removal results in a disconnected or trivial graph. Any undefined terms in this paper may be found in Harary[1].

The concept of complementary tree nil dominating set is introduced in [3]. A dominating set $\mathrm{D} \subseteq \mathrm{V}(\mathrm{G})$ is said to be a complementary tree nil dominating set (ctnd-set) if the induced subgraph $<\mathrm{V}(\mathrm{G})-\mathrm{D}>$ is a tree and the set $\mathrm{V}(\mathrm{G})-\mathrm{D}$ is not a dominating set. The minimum cardinality of a ctnd-set is called the complementary tree nil domination number of G and is denoted by $\gamma_{\text {ctnd }}(G)$.

In this paper, we find an upper bound for the sum of the complementary tree nil domination number and connectivity of a graph is found and the corresponding external graphs are characterized.

2. PRIOR RESULTS

Theorem 2.1: [1] For any connected graph $\mathrm{G}, \kappa(\mathrm{G}) \leq \delta(\mathrm{G})$.

Theorem 2.2: [3] For any connected graph G with p vertices, $2 \leq \gamma_{\text {ctnd }}(G) \leq p$, where $p \geq 2$.

Theorem 2.3: [3] Let G be a connected graph with p vertices. Then $\gamma_{\text {ctnd }}(G)=2$ if and only if G is a graph obtained by attaching a pendant edge at a vertex of degree $p-2$ in $T+K_{1}$, where T is a tree on $(p-2)$ vertices.

Theorem 2.4: [3] For any connected graph G, $\gamma_{\text {ctnd }}(G)=p$ if and only if $G \cong K_{p}$, where $p \geq 2$.

Theorem 2.5: [3] Let G be a connected graph with $p \geq 3$ and $\delta(G)=1$. Then $\gamma_{\text {ctnd }}(G)=p-1$ if and only if the subgraph of G induced by vertices of degree atleast 2 is K_{2} or K_{1}.

That is, G is one of the graphs $K_{1, p-1}$ or $S_{m, n}(m+n=p, m, n \geq 1)$, where $S_{m, n}$ is a bistar which is obtained by attaching $m-1$ pendant edges at one vertex of K_{2} and $n-1$ pendant edges at other vertex of K_{2}.

Theorem 2.6: [3] Let G be a connected noncomplete graph with $\delta(G) \geq 2$. Then $\gamma_{\text {ctnd }}(G)=p-1$ if and only if each edge of G is a dominating edge.

Theorem 2.7: [3] Let T be a tree on p vertices such that $\gamma_{\text {ctnd }}(T) \leq p-2$. Then $\gamma_{\text {ctnd }}(T)=p-2$ if and only if T is one of the following graphs.
(i) T is obtained from a path $\mathrm{P}_{\mathrm{n}}(\mathrm{n} \geq 4$ and $\mathrm{n}<\mathrm{p})$ by attaching pendant edges at atleast one of the end vertices of Pn.
(ii) T is obtained from P_{3} by attaching pendant edges either at both the end vertices or at all the vertices of P_{3}.

Notation 2.8: [3] Let \mathcal{G} be the class of connected graphs G with $\delta(G)=1$ having one of the following properties.
(a) There exist two adjacent vertices u, v in G such that $\operatorname{deg}_{G}(u)=1$ and $<V(G)-\{u, v\}>$ contains P_{3} as an induced subgraph such that end vertices of P_{3} have degree atleast 2 and the central vertex of P_{3} has degree atleast 3.
(b) Let P be the set of all pendant vertices in G and let there exist a vertex $v \in V(G)$ - P having minimum degree in $V(G)$ - P and is not a support of G such that $V(G)-\left(N_{V-P}[v]-P\right)$ contains P_{3} as an induced subgraph such that the end vertices of P_{3} have degree atleast 2 and the central vertex of P_{3} has degree atleast 3 .

Theorem 2.9: [3] Let G be a connected graph with $\delta(G)=1$ and $\gamma_{c t n d}(G) \neq p-1$. Then $\gamma_{c t n d}(G)=p-2$ if and only if G does not belong to the class \mathcal{G} of graphs.

Theorem 2.10: [3] Let G be a connected, noncomplete graph with p vertices ($p \geq 4$) and $\delta(G) \geq 2$. Then $\gamma_{\text {ctnd }}(G)=p-2$ if and only if G is one of the following graphs.
(a) A cycle on atleast five vertices.
(b) A wheel with six vertices.
(c) G is the one point union of complete graphs.
(d) G is obtained by joining two complete graphs by edges.
(e) G is a graph such that there exists a vertex $v \in V(G)$ such that $G-v$ is a complete graph on ($p-1$) vertices.
(f) G is a graph such that there exists a vertex $v \in V(G)$ such that $G-v$ is $K_{p-1}-e$, $\left(e \in E\left(K_{p-1}\right)\right)$ and $N(v)$ contains atleast one vertex of degree $(p-3)$ in $K_{p-1}-e$.

3. MAIN RESULTS

Theorem 3.1: For any connected graph $G, \gamma_{\text {ctnd }}(G)+\kappa(G) \leq 2 p-1$, equality holds if and only if $G \cong K_{p}$.
Proof: $\gamma_{\text {ctnd }}(G)+\kappa(G) \leq p+\delta(G) \leq p+p-1=2 p-1$.

Let $\gamma_{\text {ctnd }}(G)+\kappa(G)=2 p-1$. Then $\gamma_{\text {ctnd }}(G)=p$ and $\kappa(G)=p-1$ and G is a complete graph on p vertices.
Hence $G \cong K_{p}$.
Conversely, if $G \cong K_{p}$, then $\gamma_{\text {ctnd }}(G)+\kappa(G)=2 p-1$.

Theorem 3.2: For any noncomplete graph $\mathrm{G}, \gamma_{\mathrm{ctnd}}(\mathrm{G})+\kappa(\mathrm{G}) \leq 2 \mathrm{p}-3$
Proof: Since G is not complete, by Theorem 3.1 $\gamma_{\text {ctnd }}(G)+\kappa(G) \leq 2 p-2$, by Theorem 3.1.
Assume $\gamma_{\text {ctnd }}(\mathrm{G})+\kappa(\mathrm{G})=2 \mathrm{p}-2$. Then either $\gamma_{\text {ctnd }}(\mathrm{G})=\mathrm{p}$ and $\kappa(\mathrm{G})=\mathrm{p}-2$ or $\gamma_{\text {ctnd }}(\mathrm{G})=\mathrm{p}-1$ and $\kappa(\mathrm{G})=\mathrm{p}-1$.

Case-1:

$\gamma_{\text {ctnd }}(G)=p$ and $\kappa(G)=p-2$.
$\gamma_{\text {ctnd }}(G)=p$ if and only if $G \cong K_{p}$ on p vertices. But $\kappa\left(K_{p}\right)=p-1$. Therefore, no connected graph exists with $\gamma_{\text {ctnd }}(G)=p$ and $\kappa(G)=p-2$.

Case-2: $\gamma_{\text {ctnd }}(G)=p-1$ and $\kappa(G)=p-1$.
$\kappa(\mathrm{G})=\mathrm{p}-1$ if and only if $\mathrm{G} \cong \mathrm{K}_{\mathrm{p}}$ on p vertices. But $\gamma_{\mathrm{ctnd}}\left(\mathrm{K}_{\mathrm{p}}\right)=\mathrm{p}$.
From Case 1 and Case 2, no connected graph G exists with $\gamma_{\text {ctnd }}(G)+\kappa(G)=2 p-2$.
Hence $\gamma_{\text {ctnd }}(G)+\kappa(G) \leq 2 p-3$.

Theorem 3.3: For any connected graph $G, \gamma_{\text {ctnd }}(G)+\kappa(G)=2 p-3$ if and only if G is isomorphic to the graph $K_{p}-Y$, where Y is a matching in $K_{p}(p \geq 3)$.

Proof: Let $\gamma_{\text {ctnd }}(G)+\kappa(G)=2 p-3$. Then there are three cases to consider
(i) $\quad \gamma_{\text {ctnd }}(G)=\mathrm{p}$ and $\kappa(\mathrm{G})=\mathrm{p}-3$
(ii) $\gamma_{\text {ctnd }}(\mathrm{G})=\mathrm{p}-1$ and $\kappa(\mathrm{G})=\mathrm{p}-2$
(iii) $\gamma_{\text {ctnd }}(G)=p-2$ and $\kappa(G)=p-1$

Case-1:

$\gamma_{\text {ctnd }}(\mathrm{G})=\mathrm{p}$ and $\kappa(\mathrm{G})=\mathrm{p}-3$ or $\gamma_{\text {ctnd }}(\mathrm{G})=\mathrm{p}-2$ and $\kappa(\mathrm{G})=\mathrm{p}-1$.
$\gamma_{\text {ctnd }}(G)=p$ if and only if $G \cong K_{p}$ on p vertices. But $\kappa\left(K_{p}\right)=p-1$. Therefore, no connected graph exists with
$\gamma_{\text {ctnd }}(\mathrm{G})=\mathrm{p}$ and $\kappa(\mathrm{G})=\mathrm{p}-3$.
$\kappa(\mathrm{G})=\mathrm{p}-1$ if and only if $\mathrm{G} \cong \mathrm{K}_{\mathrm{p}}$ on p vertices. But $\gamma_{\text {ctnd }}\left(\mathrm{K}_{\mathrm{p}}\right)=\mathrm{p}$. Therefore, no connected graph exists with $\gamma_{\text {ctnd }}(\mathrm{G})=\mathrm{p}-2$ and $\kappa(\mathrm{G})=\mathrm{p}-1$.

Therefore there exists no connected graph in this case.
Case-2: $\gamma_{\text {ctnd }}(G)=p-1$ and $\kappa(G)=p-2$.
Since $\kappa(\mathrm{G})=\mathrm{p}-2, \delta(\mathrm{G}) \geq \mathrm{p}-2$. If $\delta(\mathrm{G})=\mathrm{p}-1$, then G is a complete graph. Hence $\delta(\mathrm{G})=\mathrm{p}-2$. Then G is isomorphic to $\mathrm{K}_{\mathrm{p}}-\mathrm{Y}$, where Y is a matching in K_{p}. But if $\delta(\mathrm{G})=1$, then $\gamma_{\text {ctnd }}(\mathrm{G})=\mathrm{p}-1$ if and only if G is isomorphic to $\mathrm{K}_{1, \mathrm{p}-1}$ or $\mathrm{S}_{\mathrm{m}, \mathrm{n}}$ and if $\delta(\mathrm{G}) \geq 2$, then $\gamma_{\mathrm{ctnd}}(\mathrm{G})=\mathrm{p}-1$ if and only if G is a graph in which each edge is a dominating edge.

Subcase-2.1: $\delta(\mathrm{G})=1$
Since $\delta(\mathrm{G})=\mathrm{p}-2, \mathrm{p}=3$. G is isomorphic to $\mathrm{K}_{3}-\mathrm{Y}$, where Y is a matching in K_{3}. That is, $\mathrm{G} \cong \mathrm{P}_{3}$. But $\gamma_{\text {ctnd }}(\mathrm{G})=\mathrm{p}$ -1 if and only if G is isomorphic to $K_{1, p-1}$ or $S_{m, n}$. Since $p=3, G \cong K_{1,2} \cong P_{3}$ and $G \nsubseteq S_{m, n}(m, n \geq 2)$. Hence $G \cong P_{3}$.

Subcase-2.2: $\delta(\mathrm{G}) \geq 2$
Then G is isomorphic to $K_{p}-Y$, where Y is a matching in $K_{p}(p \geq 4)$. But $\gamma_{c \text { tnd }}(G)=p-1$ if and only if G is a graph in which each edge is a dominating edge.

Hence G is isomorphic to $K_{p}-Y$ where Y is a matching in $K_{p}(p \geq 3)$.
Conversely, if G is isomorphic to $K_{p}-Y$ where Y is a matching in $K_{p}(p \geq 3)$, then $\gamma_{\text {ctnd }}(G)=p-1$ and $\kappa(G)=p-2$.
Hence $\gamma_{\text {ctnd }}(G)+\kappa(G)=2 p-3$.
Notation 3.4: Following notations are used in this paper.
(i) $\mathrm{K}_{3}(1,0,0)$ is a graph obtained by attaching a pendant edge at one of the vertices of K_{3}.
(ii) G_{1} is a graph obtained from $K_{2,3}$ by joining the vertices of degree 3 by an edge.
(iii) G_{2} is a graph obtained from $\mathrm{K}_{3,3}$ by joining any three independent vertices by atleast two edges.
(iv) G_{3} is a graph with atleast 7 vertices such that $V(G)$ can be partitioned into two sets X and $V-X$ such that $|\mathrm{X}|=\mathrm{p}-3$, each edge of $\langle\mathrm{X}\rangle$ is a dominating edge and $\langle\mathrm{V}-\mathrm{X}\rangle$ is independent.
(v) G_{4} is a graph with atleast 6 vertices such that $V(G)$ can be partitioned into two sets X and $V-X$ such that $|\mathrm{X}|=\mathrm{p}-4$ and each edge of $<\mathrm{X}\rangle$ is a dominating edge and $<\mathrm{V}-\mathrm{X}\rangle$ is independent.
(vi) G_{5} is a graph obtained from $K_{4,4}$ by joining any four independent vertices by atleast five edges.

Theorem 3.5: For any connected graph $G, \gamma_{\text {ctnd }}(G)+\kappa(G)=2 p-4$ if and only if G is one of the following graphs. $K_{1,3}, P_{4}, K_{2,3}, K_{3,3}, G_{1}, G_{2}$ and G_{3}.

Proof: Let $\gamma_{\text {ctnd }}(G)+\kappa(G)=2 p-4$. Then there are four cases to consider
(i) $\quad \gamma_{\text {ctnd }}(G)=p$ and $\kappa(G)=p-4$
(ii) $\gamma_{\text {ctnd }}(G)=\mathrm{p}-1$ and $\kappa(\mathrm{G})=\mathrm{p}-3$
(iii) $\gamma_{\text {ctnd }}(\mathrm{G})=\mathrm{p}-2$ and $\kappa(\mathrm{G})=\mathrm{p}-2$
(iv) $\gamma_{\text {ctnd }}(\mathrm{G})=\mathrm{p}-3$ and $\kappa(\mathrm{G})=\mathrm{p}-1$

Case-1:

$\gamma_{\text {ctnd }}(\mathrm{G})=\mathrm{p}$ and $\kappa(\mathrm{G})=\mathrm{p}-4$ or $\gamma_{\text {ctnd }}(\mathrm{G})=\mathrm{p}-3$ and $\kappa(\mathrm{G})=\mathrm{p}-1$.
$\gamma_{\text {ctnd }}(G)=p$ if and only if $G \cong K_{p}$ on p vertices. But $\kappa\left(K_{p}\right)=p-1$. Therefore no connected graph exists with
$\gamma_{\text {ctnd }}(G)=p$ and $\kappa(G)=p-4$.
$\kappa(\mathrm{G})=\mathrm{p}-1$ if and only if $\mathrm{G} \cong \mathrm{K}_{\mathrm{p}}$ on p vertices. But $\gamma_{\text {ctnd }}\left(\mathrm{K}_{\mathrm{p}}\right)=\mathrm{p}$. Therefore, no graph exists with
$\gamma_{\text {ctnd }}(G)=p-3$ and $\kappa(G)=p-1$.
Therefore there exist no connected graphs in this case.
Case-2: $\gamma_{\text {ctnd }}(G)=p-1$ and $\kappa(G)=p-3$.
Since $\kappa(\mathrm{G})=\mathrm{p}-3, \delta(\mathrm{G}) \geq \mathrm{p}-3$. If $\delta(\mathrm{G})=\mathrm{p}-1$, then G is a complete graph. If $\delta(\mathrm{G})=\mathrm{p}-2$, then G is isomorphic to $K_{p}-Y$, where Y is a matching in K_{p} and $\gamma_{c \text { tnd }}(G)=p-1$. But $\kappa(G)=p-2$. Therefore no connected graph exists.

Hence $\delta(G)=p-3$.
Subcase-2.1: $\delta(G)=1$.
Since $\gamma_{\text {ctnd }}(G)=p-1, G \cong K_{1, p-1}$ or $S_{m, n}$.
If $\mathrm{G} \cong \mathrm{K}_{1, \mathrm{p}-1}$, then $\kappa\left(\mathrm{K}_{1, \mathrm{p}-1}\right)=1$ and $\kappa(\mathrm{G})=\mathrm{p}-3$ implies $\mathrm{p}=4$ and hence $\mathrm{G} \cong \mathrm{K}_{1,3}$ and $\mathrm{G} \cong \mathrm{S}_{\mathrm{m}, \mathrm{n}}, \kappa\left(\mathrm{S}_{\mathrm{m}, \mathrm{n}}\right)=1$ and $\boldsymbol{\kappa}(\mathrm{G})=\mathrm{p}-3$ implies $\mathrm{p}=4$ and hence $\mathrm{G} \cong \mathrm{S}_{2,2}$. But $\quad \mathrm{S}_{2,2} \cong \mathrm{P}_{4}$.

Subcase-2.2: $\delta(\mathrm{G}) \geq 2$.
Then G is a connected graph in which each edge is a dominating edge.
Let $X=\left\{v_{1}, v_{2}, \ldots, v_{p-3}\right\}$ be a vertex cut of G and let $V-X=\left\{x_{1}, x_{2}, x_{3}\right\}$. Then $<V-X>\cong \bar{K}_{3}, K_{1} \cup K_{2}$ or K_{3}. If $<\mathrm{V}-\mathrm{X}\rangle \cong \mathrm{K}_{1} \cup \mathrm{~K}_{2}$, then the edge in K_{2} is not a dominating edge.

S. Muthammai, G. Ananthavalli*/

Subcase-2.2.1: < V - X > $\cong \overline{\mathrm{K}}_{3}$
Since each edge of G is a dominating edge, every vertex of $V-X$ is adjacent to all the vertices in X. If $|X|=2$, then $G \cong K_{2,3}$ or G is a graph obtained from $K_{2,3}$ by joining the vertices of degree 3 by an edge. Therefore $G \cong K_{2,3}$ or G_{1}

If $|X|=3$, then $G \cong K_{3,3}$ or G is a graph obtained from $K_{3,3}$ by joining the vertices of degree 3 by edges.
If G is isomorphic to a graph obtained from $\mathrm{K}_{3,3}$ by joining any three independent vertices by exactly one edge, then $\gamma_{\text {ctnd }}(G)=p-2$.

Therefore G is a graph $K_{3,3}$ or to the graph obtained from $K_{3,3}$ by joining any three independent vertices by atleast two edges and hence $\mathrm{G} \cong \mathrm{K}_{3,3}$ or G_{2}.

If $|X| \geq 4$, then $p-3 \geq 4$ implies $p \geq 7$. If X is independent, then $\kappa(G)=3 \neq p-3$.
If X is not independent and if there exists at least one edge in $<\mathrm{X}>$ which is not a dominating edge, then either $\gamma_{\text {ctnd }}(G)=p-2$ or $\kappa(G)=3 \neq p-3$.

Therefore each edge of $<\mathrm{X}>$ is a dominating edge and $\mathrm{G} \cong \mathrm{G}_{3}$.
Subcase-2.2.2: $<\mathrm{V}-\mathrm{X}>\cong \mathrm{K}_{3}$
Since each edge of G is a dominating edge, every vertex of $\mathrm{V}-\mathrm{X}$ is adjacent to all the vertices in X .
If $|X|=2$, then $G \cong K_{5}$, if $<X>\cong K_{2,}$ or $G \cong K_{5}-$ e, if $<X>\cong \bar{K}_{2}$. If $G \cong K_{5}$, then $\gamma_{\text {ctnd }}(G)=p$.
If $G \cong K_{5}-\mathrm{e}, \mathrm{K}(\mathrm{G})=3 \neq \mathrm{p}-3$. Therefore, no connected graph exists in this case.
If $|X| \geq 3$, then $p-3 \geq 3$ implies $p \geq 6$. Let X can be partitioned into two sets S and $V-S$. Assume $S=\left\{v_{1}, v_{2}, v_{3}\right\}$ be a set of three independent vertices in X and $\mathrm{V}-\mathrm{S}=(\mathrm{X}-\mathrm{S}) \cup(\mathrm{V}-\mathrm{X})$. As in the Subcase 2.2.1, each edge in $\mathrm{V}-\mathrm{S}$ is a dominating edge and $G \cong K_{2,3}, K_{3,3}, G_{1}, G_{2}$ or G_{3}.

Case-3: $\gamma_{\text {ctnd }}(G)=p-2$ and $\kappa(G)=p-2$.
Since $\kappa(\mathrm{G})=\mathrm{p}-2, \delta(\mathrm{G}) \geq \mathrm{p}-2$. If $\delta(\mathrm{G})=\mathrm{p}-1$, then G is a complete graph. Hence $\delta(\mathrm{G})=\mathrm{p}-2$. Then G is isomorphic to $K_{p}-Y$, where Y is a matching in $K_{p}(p \geq 3)$. But in this case $\gamma_{\text {ctnd }}(G)=p-1$. Therefore, no connected graph exists in this case.

Hence $G \cong K_{1,3}, P_{4}, K_{2,3}, K_{3,3}, G_{1}, G_{2}$ or G_{3}.
Conversely, if $G \cong K_{1,3}, P_{4}, K_{2,3}, K_{3,3}, G_{1}, G_{2}$ or G_{3}, then $\gamma_{\text {ctnd }}(G)=p-1$ and $\kappa(G)=p-3$ and hence
$\gamma_{\text {ctnd }}(\mathrm{G})+\kappa(\mathrm{G})=2 \mathrm{p}-4$.
Theorem 3.6: For any connected graph $G, \gamma_{\text {ctnd }}(G)+\boldsymbol{\kappa}(G)=2 p-5$ if and only if G is isomorphic to one of the following graphs
(a) $\mathrm{K}_{1,4,}, \mathrm{~S}_{2,3}, \mathrm{~K}_{2,4}, \mathrm{~K}_{3,4}, \mathrm{~K}_{4,4}, \mathrm{G}_{4}, \mathrm{G}_{5}, \mathrm{G}_{6}, \mathrm{~K}_{3}(1,0,0), \mathrm{C}_{5}, \mathrm{~W}_{6}$.
(b) G is a graph obtained from K_{p-1} by joining a vertex $v \notin V\left(K_{p-1}\right)$ to exactly ($p-3$) vertices of K_{p-1}.
(c) G is a graph obtained from K_{p-1} - e by joining a vertex $v \notin V\left(K_{p-1}-e\right)$ to exactly ($p-3$) vertices of $K_{p-1}-e$.

Proof: Let $\gamma_{\text {ctnd }}(G)+\kappa(G)=2 p-5$. Then there are four cases to consider
(i) $\gamma_{\text {ctnd }}(\mathrm{G})=\mathrm{p}$ and $\kappa(\mathrm{G})=\mathrm{p}-5$
(ii) $\gamma_{\text {ctnd }}(G)=p-1$ and $\kappa(G)=p-4$
(iii) $\gamma_{\text {ctnd }}(G)=p-2$ and $\kappa(G)=p-3$
(iv) $\gamma_{\text {ctnd }}(\mathrm{G})=\mathrm{p}-3$ and $\kappa(\mathrm{G})=\mathrm{p}-2$
(v) $\gamma_{\text {ctnd }}(\mathrm{G})=\mathrm{p}-4$ and $\kappa(\mathrm{G})=\mathrm{p}-1$

Case-1:

$\gamma_{\text {ctnd }}(\mathrm{G})=\mathrm{p}$ and $\kappa(\mathrm{G})=\mathrm{p}-5$ or $\gamma_{\text {ctnd }}(\mathrm{G})=\mathrm{p}-4$ and $\kappa(\mathrm{G})=\mathrm{p}-1$.
$\gamma_{\text {ctnd }}(G)=p$ if and only if $G \cong K_{p}$ on p vertices. But $\kappa\left(K_{p}\right)=p-1$. Therefore, no connected graph exists with $\gamma_{\text {ctnd }}(\mathrm{G})=\mathrm{p}$ and $\kappa(\mathrm{G})=\mathrm{p}-5$.
$\boldsymbol{\kappa}(\mathrm{G})=\mathrm{p}-1$ if and only if $\mathrm{G} \cong \mathrm{K}_{\mathrm{p}}$ on p vertices. But $\gamma_{\mathrm{ctnd}}\left(\mathrm{K}_{\mathrm{p}}\right)=\mathrm{p}$. Therefore, no graph exists with $\gamma_{\text {ctnd }}(G)=\mathrm{p}-4$ and $\kappa(\mathrm{G})=\mathrm{p}-1$.

Therefore there exist no connected graphs in this case.
Case-2: $\gamma_{\text {ctnd }}(\mathrm{G})=\mathrm{p}-1$ and $\kappa(\mathrm{G})=\mathrm{p}-4$.
Since $\kappa(\mathrm{G})=\mathrm{p}-4, \delta(\mathrm{G}) \geq \mathrm{p}-4$. If $\delta(\mathrm{G})=\mathrm{p}-1$, then G is a complete graph. If $\delta(\mathrm{G})=\mathrm{p}-2$, then G is isomorphic to $\mathrm{K}_{\mathrm{p}}-\mathrm{Y}$, where Y is a matching in K_{p}. But $\kappa(\mathrm{G})=\mathrm{p}-2$. Therefore no connected graph exists.

Suppose $\delta(G)=\mathrm{p}-3$. Let $\mathrm{X}=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{p}-4}\right\}$ be a vertex cut of G and let $\mathrm{V}-\mathrm{X}=\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \mathrm{x}_{4}\right\}$.
If $<\mathrm{V}-\mathrm{X}>$ contains an isolated vertex, then $\delta(\mathrm{G}) \leq \mathrm{p}-4$.
If $<\mathrm{V}-\mathrm{X}\rangle \cong 2 \mathrm{~K}_{2}$, then $\gamma_{\text {ctnd }}(\mathrm{G}) \leq \mathrm{p}-2$. Therefore no connected graph exists.
Hence $\delta(G)=p-4$.
Subcase-2.1: $\delta(G)=1$.
Since $\gamma_{\text {ctnd }}(G)=p-1, G \cong K_{1, p-1}$ or $S_{m, n}$.
If $\mathrm{G} \cong \mathrm{K}_{1, \mathrm{p}-1}$ or $\mathrm{S}_{\mathrm{m}, \mathrm{n}}$, then $\kappa\left(\mathrm{K}_{1, \mathrm{p}-1}\right)=\kappa\left(\mathrm{S}_{\mathrm{m}, \mathrm{n}}\right)=1$ and $\kappa(\mathrm{G})=\mathrm{p}-4$ implies $\mathrm{p}=5$ and hence $\mathrm{G} \cong \mathrm{K}_{1,4}$ or $\mathrm{S}_{2,3}$.
Subcase-2.2: $\delta(\mathrm{G}) \geq 2$.
Then G is a graph in which each edge is a dominating edge. Let $X=\left\{v_{1}, v_{2}, \ldots, v_{p-4}\right\}$ be a vertex cut of G and let $V-X=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$. Then $<V-X>\cong \bar{K}_{4}, K_{2} \cup \bar{K}_{2} P_{3} \cup K_{1}, 2 K_{2}, K_{3} \cup K_{1}, P_{4}, K_{1,3}, K_{3}(1,0,0), C_{4}, K_{4}-e, K_{4}$.

If $\langle V-X\rangle \cong K_{2} \cup \bar{K}_{2}, P_{3} \cup K_{1}, 2 K_{2}, K_{3} \cup K_{1}, P_{4}, K_{3}(1,0,0)$, then $\gamma_{\text {ctnd }}(G) \leq p-2$, since in these graphs each edge is not a dominating edge. Therefore no connected graph exists in this case.

Subcase-2.2.1: $<\mathrm{V}-\mathrm{X}>\cong \overline{\mathrm{K}}_{4}$
Since each edge of G is a dominating edge, every vertex of $V-X$ is adjacent to all the vertices in X. If $|X|=2$, then $G \cong K_{2,4}$ or G is a graph obtained from $K_{2,4}$ by joining the vertices of degree 4 by an edge. Therefore $G \cong K_{2,4}$ or G_{4}.

If $|X|=3$, then $G \cong K_{3,4}$ or G is a graph obtained from $K_{3,4}$ by joining the vertices of degree 4 by edges.
If G is isomorphic to the graph obtained from $\mathrm{K}_{3,4}$ by joining any three independent vertices by exactly one edge, then $\gamma_{\text {ctnd }}(G)=p-2$.

Therefore G is isomorphic to the graph $K_{3,4}$ or a graph obtained from $K_{3,4}$ by joining any three independent vertices by atleast two edges. Therefore $\mathrm{G} \cong \mathrm{K}_{3,4}$ or G_{4}.

If $|X|=4$, then $G \cong K_{4,4}$ or G is a graph obtained from $K_{4,4}$ by joining the independent vertices by edges.
If G is isomorphic to a graph obtained from $\mathrm{K}_{4,4}$ by joining any four independent vertices by atmost four edges then $\gamma_{\text {ctnd }}(G) \leq p-2$.

Therefore G is isomorphic to $K_{4,4}$ or the graph obtained from $K_{4,4}$ by joining any four independent vertices by atleast five edges. Therefore $\mathrm{G} \cong \mathrm{K}_{4,4}$ or G_{4}.

If $|X| \geq 5$, then $p-4 \geq 5$ implies $p \geq 9$.
If X is independent then $\kappa(\mathrm{G})=4 \neq \mathrm{p}-4$. If X is not independent and if there exists atleast one edge in $<\mathrm{X}>$ which is not a dominating edge, then $\gamma_{\text {ctnd }}(G)=p-2$.

Therefore each edge of $<\mathrm{X}>$ is a dominating edge. Therefore $\mathrm{G} \cong \mathrm{G}_{4}$.
Subcase-2.2.2: $<V-X>\cong C_{4}, K_{1,3}, K_{4}-e$.
Since each edge of G is a dominating edge, every vertex of $\mathrm{V}-\mathrm{X}$ is adjacent to all the vertices in X .
If each edge of $<X>$ is a dominating edge, then $\kappa(G) \neq p-4$.
If X is independent and $|X| \neq 4$, then $\kappa(G)=4 \neq p-4$.
If X is independent and $|X|=4$, then $G \cong G_{5}$.
If X is not independent and if there exists atleast one edge in $<\mathrm{X}>$ which is not a dominating edge, then
$\gamma_{\text {ctnd }}(G) \leq p-2$.
If $|X| \geq 4$, then $p-4 \geq 4$ implies $p \geq 8$. Let G is a graph such that X can be partitioned into two sets S and $V-S$. Let S $=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{4}\right\}$ be a set of four independent vertices in X and $\mathrm{V}-\mathrm{S}=(\mathrm{X}-\mathrm{S}) \cup(\mathrm{V}-\mathrm{X})$. As in the subcase 2.2.1, if each edge in $\mathrm{V}-\mathrm{S}$ is a dominating edge, then $\mathrm{G} \cong \mathrm{G}_{4}$.

Subcase-2.2.3: $\langle\mathrm{V}-\mathrm{X}\rangle \cong \mathrm{K}_{4}$.
Since each edge of G is a dominating edge, every vertex of $V-X$ is adjacent to all the vertices in X. If $<\mathrm{X}>$ is complete, then $\mathrm{G} \cong \mathrm{K}_{\mathrm{p}}$. But $\gamma_{\text {ctnd }}\left(\mathrm{K}_{\mathrm{p}}\right)=\mathrm{p}$.

As in the subcase 2.2.2, if X is independent and $|X|=4$, then $G \cong G_{5}$.
As in the subcase 2.2.1, if each edge in $V-S$ is a dominating edge, then $G \cong G_{4}$.
Hence G is isomorphic to the graph $K_{1,4}, S_{2,3}, K_{2,4}, K_{3,4}, K_{4,4}, G_{4}, G_{5}$.
Case-3: $\gamma_{\text {ctnd }}(\mathrm{G})=\mathrm{p}-2$ and $\kappa(\mathrm{G})=\mathrm{p}-3$.
Since $\kappa(\mathrm{G})=\mathrm{p}-3, \delta \mathrm{G}) \geq \mathrm{p}-3$. If $\delta(\mathrm{G})=\mathrm{p}-1$, then G is a complete graph. If $\delta(\mathrm{G})=\mathrm{p}-2$, then G is isomorphic to $K_{p}-Y$, where Y is a matching in K_{p} and $\kappa(G)=p-2$. But $\gamma_{\text {ctnd }}(G)=p-1$. Therefore no connected graph exists.

By Theorem 2.7. Notation 2.8. Theorem 2.9. and Theorem 2.10. $\gamma_{\mathrm{ctnd}}(\mathrm{G})=p-2$ if and only if

1. $\mathrm{G} \cong T$, where T is a tree either obtained from a path $P_{n}(\mathrm{n} \geq 4$ and $\mathrm{n}<\mathrm{p})$ by attaching pendant edges at atleast one of the end vertices of P_{n}.

Or
obtained from P_{3} by attaching pendant edges at either both the end vertices or all the vertices of P_{3}.
2. $\mathrm{G} \notin \mathcal{G}$, if $\delta(\mathrm{G})=1$
3. If $\delta(\mathrm{G}) \geq 2$, then G is one of the following graphs.
(i) A cycle on atleast five vertices.
(ii) A wheel with six vertices.
(iii) G is the one point union of complete graphs.
(iv) G is obtained by joining two complete graphs by an edge.
(v) G is a graph such that there exists a vertex $v \in V(G)$ such that $G-v$ is a complete graph on ($p-1$) vertices.
(vi) G is a graph such that there exists a vertex $v \in V(G)$ such that $G-v$ is $K_{p-1}-e,\left(e \in E\left(K_{p-1}\right)\right)$ and $N(v)$ contains atleast one vertex of degree $(p-3)$ in $K_{p-1}-e$.

S. Muthammai, G. Ananthavalli*/

Case-3.1: $\mathrm{G} \cong \mathrm{T}$, $\boldsymbol{\kappa}(\mathrm{T})=1$ and $\boldsymbol{\kappa}(\mathrm{G})=\mathrm{p}-3$ implies $\mathrm{p}=4$. But this case is not possible, since $\mathrm{p} \geq 5$.

Therefore no connected graph exists in this case.
Case-3.2: $\mathrm{G} \notin \mathcal{G}$ and $\delta(\mathrm{G})=1$

$$
\kappa(G)=p-3 \text { implies } p=4 . \text { Therefore } G \cong K_{3}(1,0,0)
$$

Case-3.3: $\delta(\mathrm{G}) \geq 2$.
Subcase-3.3.1: A cycle on atleast five vertices.

$$
\kappa\left(\mathrm{C}_{\mathrm{p}}\right)=2 \text { and } \kappa(\mathrm{G})=\mathrm{p}-3 \text { implies } \mathrm{p}=5 . \text { Hence } \mathrm{G} \cong \mathrm{C}_{5} .
$$

Subcase-3.3.2: A wheel with six vertices.
In this case, $\boldsymbol{\kappa}(\mathrm{G})=\mathrm{p}-3$. Hence $\mathrm{G} \cong \mathrm{W}_{6}$.
Subcase-3.3.3: G is the one point union of complete graphs.
In this case, $\kappa(G)=1=p-3$ implies $p=4$. Therefore no connected graph exists in this case, since $p \geq 5$.
Subcase-3.3.4: G is obtained by joining two complete graphs by an edge.
In this case, $\kappa(G)=2=p-3$ implies $p=5$. Therefore no connected graph exists in this case, since $p \geq 6$.
Subcase-3.3.5: G is a graph such that there exists a vertex $v \in V(G)$ such that $G-v$ is a complete graph on ($p-1$) vertices.

In this case, $\boldsymbol{\kappa}(G)=\operatorname{deg}(v)=p-3$. Therefore G is a graph obtained from K_{p-1} by joining a vertex $v \notin V\left(K_{p-1}\right)$ to exactly $(p-3)$ vertices of K_{p-1}.

Subcase-3.3.6: G is a graph such that there exists a vertex $v \in V(G)$ such that $G-v$ is $K_{p-1}-e$, $\left(e \in E\left(K_{p-1}\right)\right)$ and $N(v)$ contains atleast one vertex of degree $(p-3)$ in $K_{p-1}-e$.

Since $\mathcal{K}(G)=p-3$, G is a graph obtained from $K_{p-1}-e$ by joining a vertex $v \notin V\left(K_{p-1}-e\right)$ to exactly ($p-3$) vertices of $K_{p-1}-e$.

Case-4: $\gamma_{\text {ctnd }}(G)=p-3$ and $\kappa(G)=p-2$.

Since $\kappa(\mathrm{G})=\mathrm{p}-2, \delta(\mathrm{G}) \geq \mathrm{p}-2$. If $\delta(\mathrm{G})=\mathrm{p}-1$, then G is a complete graph. If $\delta(\mathrm{G})=\mathrm{p}-2$, then G is isomorphic to $\mathrm{K}_{\mathrm{p}}-\mathrm{Y}$, where Y is a matching in K_{p} and $\kappa(\mathrm{G})=\mathrm{p}-2$. But $\gamma_{\text {ctnd }}(G)=\mathrm{p}-1$.

Therefore no connected graph exists in this case.
Hence G is isomorphic to one of the following graphs
(a) $\mathrm{K}_{1,4,} \mathrm{~S}_{2,3}, \mathrm{~K}_{2,4}, \mathrm{~K}_{3,4}, \mathrm{~K}_{4,4}, \mathrm{G}_{4}, \mathrm{G}_{5}, \mathrm{~K}_{3}(1,0,0), \mathrm{C}_{5}, \mathrm{~W}_{6}$.
(b) G is a graph obtained from $\mathrm{K}_{\mathrm{p}-1}$ by joining a vertex $\mathrm{v} \notin \mathrm{V}\left(\mathrm{K}_{\mathrm{p}-1}\right)$ to exactly ($\mathrm{p}-3$) vertices of $\mathrm{K}_{\mathrm{p}-1}$.
(c) G is a graph obtained from K_{p-1} - eby joining a vertex $v \notin V\left(K_{p-1}-e\right)$ to exactly $(p-3)$ vertices of $K_{p-1}-e$

Conversely, if $G \cong K_{1,4}, S_{2,3}, K_{2,4}, K_{3,4}, K_{4,4}, G_{4}, G_{5}$, then $\gamma_{\text {ctnd }}(G)=p-1$ and $\kappa(G)=p-4$.

If $G \cong K_{3}(1,0,0), C_{5}, W_{6}, G$ is a graph obtained from K_{p-1} by joining a vertex $v \notin V\left(K_{p-1}\right)$ to exactly ($p-3$) vertices of $\mathrm{K}_{\mathrm{p}-1}$, or G is a graph obtained from $\mathrm{K}_{\mathrm{p}-1}-\mathrm{e}$ by joining a vertex $\mathrm{v} \notin \mathrm{V}\left(\mathrm{K}_{\mathrm{p}-1}-\mathrm{e}\right.$) to exactly ($\mathrm{p}-3$) vertices of $\mathrm{K}_{\mathrm{p}-1}-\mathrm{e}$, then $\gamma_{\text {ctnd }}(G)=p-2$ and $\kappa(G)=p-3$.

Hence $\gamma_{\text {ctnd }}(G)+\kappa(G)=2 p-5$.

REFERENCES

1. F. Harary, Graph Theory, Addison-Wesley, Reading Mass, 1972.
2. T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamental of domination in graphs, Marcel Dekker Inc., New York, 1998.
3. S. Muthammai and G. Ananthavalli, Complementary tree nil domination number of a graph. (Submitted).
4. S. Muthammai, M. Bhanumathi and P. Vidhya, Complementary tree domination in graphs, International Mathematical Forum, Vol. 6, 2011, 26, 1273-1283.
5. O. Ore, Theory of graphs, Amer. Math. Soc. Colloq. Publ., 38, (1962).

Source of support: Nil, Conflict of interest: None Declared

[Copy right © 2016. This is an Open Access article distributed under the terms of the International Journal of Mathematical Archive (IJMA), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.]

