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ABSTRACT 
In this paper we study the Oscillatory and Non Oscillatory Solutions of Linear Homogeneous Difference equations of 
Existence and Uniqueness theorem. 
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INTRODUCTION 
 
Difference calculus forms the basis of difference equations. These equations arise in all situations in which sequential 
relation exists at various discrete values of the Independent variable. In this article we will explain the oscillatory 
properties of solution of difference equations by using graphical representation.  
 
Definition: 1 An equation which expresses a value of a sequence as a function of the other terms in the sequence is 
called a difference equation. In particular, an equation which expresses the value na  of a sequence { }na  as a function 

of the term 1−na  is called a first order difference equation.  
 
Definition: 2 The difference between the largest and smallest arguments appearing in the difference equation is called 
its order. 
 
Definition: 3 A solution of a difference equation is a relation between the independent variable and the dependent 
variable satisfying the equation. 
 
Definition: 4 The sequence y is said to be oscillatory around ( )a a R∈  if there exists an increasing sequence of 

integers { }∞=1kkn  such that  

1
( ) ( ) 0

k kn ny a y a
+

− − ≤ .for all k N∈  
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Theorem: 1 The linear difference equation of order n      

0 1 1 1( ) ....... ( ) ( ) ( )x n n x n xf x y f x y f x y g x+ − − ++ + + =                                                                                        (1) 
 
Over a set T of consecutive integral values of x has one, and only one, solution of y for which values at n consecutive 
x- values are arbitrarily prescribed. 
 
Proof: By hypothesis, T is a set of one of types a x or a x b≤ ≤ ≤ , a, b non negative integers. Suppose first that 

1.......,1, −++ naaa yyy   are n prescribed values of y. we shall now prove with the help of mathematical induction that the 
value of y at each point of T is uniquely determined. 
 
The given values conclude the values nay + uniquely as from the equation (1) when x = a, we have  

[ ]
0

1
1 1 1 1 0 0( ) ( ) ( ) ..... ( ) ( ) , ( ) 0.a n a n n a nf ay g a f a y f a y f a y f a+ + − − += − − ≠  

 
Which determines nay +  uniquely. 
 
We now set up the hypothesis that y is known for all x values in T up to and including jay + Where j≥ n. 
 
Substituting njaxx −++== 11  in (1), we obtain 

11112111110 )(.......)()()()( +−+−++−+ −+−−= njanjajaja yxfyxfyxfxgyxf    
 
Since 11,......, +−+−++ njajaja yyy  are known and 0)( 10 ≠xf  since 0f is never zero in T, we conclude that 1++ jay  is 
uniquely determined.  Thus we have proved by induction that y is uniquely determined for all x in T provided that the 
values 11,...., −++ naaa yyy  are known or prescribed. 
 
Now if )0( >mym  is the first of the n consecutive prescribed values of y instead of y then we can successively 

determine unique values for aamm yyyy ,,....., 121 +++ and then show that all other values of y are uniquely determined. 

Substituting 1−= mx in (1) we obtain nnnmmn ymfymfmgymf )1(.......)1()1()1( 1101 −+−−−=− −+−− . Since 

1,1 ........, −++ nmmm yyy are supposed to be the prescribed values of y, the right hand side and therefore 1−my  is 

determined as nf  is never zero. 
 
In any case whether T is the finite set bxa ≤≤  or infinite set ax ≥ and no matter n consecutive values of y is 
prescribed. We have a unique value of y determined for every x values in T. and, therefore have a unique function 
which satisfies the difference equation and assumes the prescribed value.  
 
Example: 1 The difference equation ,......2,1,0,012 ==−− ++ nynyy nnn has no solution when 0 1y = and 1 1y =  

but there are infinitely many solutions if 110 == yy . 

{ }1)1(,1)0(),2()1()( ==+=++ yynynnyny  
 

Graph of the above equation is  
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The values are 

 
 
CONCLUSION  
 
Based on some theorems and by definition of Oscillation the solution of the given equation is non oscillatory. 
 
Theorem: 2 Let ( ) ( )21 yandy  be two solutions of the homogeneous difference equation.  

2 1 1 2 0n n ny a y a y+ ++ + =                                                                                                                                (2) 

and let   ( ) ( )2
2

1
1 ycycy +=  where 1c and 2c are arbitrary constants. 

 

If                0)2(
1

)1(
1

)2(
0

)1(
0 ≠

yy
yy

                                                                                                                                            (3)   

then y is the general solution of equation (2). 
 
Proof: Since (1)y and (2)y are the solutions of (2), it can be proved that  
 
If )2(

2
)1(

1 ycyc + is also a solution. Hence Y is a solution of (2). 
 
Next we shall prove that if y is any solution of (2), then 1c and 2c may be determined and hence Y and y are identical. 
 
By the uniqueness theorem, it is clear that we should prove that Y and y are equal at n=0 and n=1. Thus we should 
determine 1c and 2c so that 00 yY = and 11 yY =  for any choice of 0y  and 1y . But )2(

02
)1(

010 ycycY +=  and  
)2(

12
)1(

111 ycycY +=  so 1c and 2c  must satisfy the equations. 

02
)2(

01
)1(

0 ycycy =+   ; 12
)2(

11
)1(

1 ycycy =+  
 

Since 0)2(
1

)1(
1

)2(
0

)1(
0 ≠

yy
yy

, we find  first a finite unique pair values of 1c and 2c for each choice of 0y  and 1y .  

 
Definition: 5 Two solutions (1)y  and (2)y of the above theorem satisfying conditions (2) are said to form a 
fundamental set or system of solution of (2). 
 

Example: 2   let (1) 1
2

n

y  =  
 

 and ( )(2) 2 ny = − are the solutions of the following homogeneous equation and that 

they form fundamental set of solutions. 
0232 12 =−+ ++ nnn yyy                                                                                                                                 (4) 

(1) 1
2

n

y  =  
 

is solution of (4) since we have on substituting 
n

ny 





=

2
1)1(  

[ ] 00
2
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2
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2
12

2
1
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2
13

2
12

212

=





=












−






+














=






−






+








++ nnnnn

  

Also ( )ny 2)2( −=  is a solution of (4). 

For then LHS of (4) = ( ) ( ) ( ) ( ) ( ) ( )[ ] 0223222222322 212 =−−+−−=−−−+− ++ nnnn  thus
n

y 





=

2
1)1(  

and ( )ny 2)2( −=  are solutions of (4). 
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Further ( ) 0
2
5

2
122

2
1

11
)2(

1
)1(

1

)2(
0

)1(
0 ≠

−
=






−−=−=

yy
yy

 

 
Hence (1)y  and (2)y  form a fundamental set of (4).  
 
Now we have to check the solutions of the equation (4) is oscillatory or not. 
 
The given equation is 0232 12 =−+ ++ nnn yyy , y(0)=0, y(1)=1 
 
The graph of the equation is 

 
 
The values are 

 
 
Conclusion: Based on some theorems and by definition of Oscillation the solution of the above equation is oscillatory. 
 
Real time examples for Oscillation: 
 
Example: i An undamped spring–mass system is an oscillatory system: 

 
Example: ii   Coupled oscillations  
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Two pendulums with the same period fixed on a string act as pair of coupled oscillators. The oscillation alternates 
between the two. 

( )ny 2)2( −=  
 
Example: iii 
 
Mathematics of oscillation 

 
 
Oscillation of a sequence (shown in blue) is the difference between the limit superior and limit inferior of the sequence. 
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