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ABSTRACT 
We study Ricci solitons (𝑔𝑔,𝑉𝑉, 𝜆𝜆) of quaternion space forms when 𝐵𝐵 curvature tensor which is generalization of quasi-
conformal, weyl-conformal, concircular, conharmonic curvature tensors satisfies semi-symmetric conditions like 
𝑅𝑅 · 𝐵𝐵 = 0 and 𝐵𝐵 · 𝑅𝑅 = 0. In these cases it is shown that shrinking of the quaternion space forms depends on the 
solenoidal property of vector. Further it is shown that Ricci solitons in quasi-umbilical and generalized quasi-umbilical 
hypersurfaces of a quaternion space forms are shirking if and only if 𝑉𝑉 is solenoidal. 
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1. INTRODUCTION 

 
 
In Riemannian geometry, one of the basic interests is curvature property and to what extent this determines the 
manifold itself. The important curvature property is symmetry of the manifold among all its geometrical properties. 
Symmetry of the manifold basically depends on curvature tensor and the Ricci tensor of the manifold. As a 
generalization of locally symmetric spaces, the notion of semi symmetric space is defined by 𝑅𝑅(𝑋𝑋,𝑌𝑌)  · 𝑅𝑅 =  0, where 
𝑅𝑅(𝑋𝑋,𝑌𝑌)  acts on 𝑅𝑅  as a derivation. A large number of geometers have studied semisymmetric spaces and their 
generalizations [22, 16, 21, 6, 13]. 
 
A K𝑎̈𝑎hler manifold with constant holomorphic sectional curvature is called a complex space-form, and its curvature 
tensor satisfies the equation 

 𝑅𝑅(𝑋𝑋,𝑌𝑌)𝑍𝑍 =
𝑐𝑐
4

[𝑔𝑔(𝑌𝑌,𝑍𝑍)𝑋𝑋 –𝑔𝑔(𝑋𝑋,𝑍𝑍)𝑌𝑌 + 𝑔𝑔(𝑋𝑋, 𝐽𝐽𝐽𝐽)𝐽𝐽𝐽𝐽 –𝑔𝑔(𝑌𝑌, 𝐽𝐽𝐽𝐽)𝐽𝐽𝐽𝐽 + 2𝑔𝑔(𝑋𝑋, 𝐽𝐽𝐽𝐽)𝐽𝐽𝐽𝐽]. 
 
A similar situation can be found in the study of quaternion K𝑎̈𝑎hler manifold from a Riemannian point of view. Now, let 
𝑋𝑋 be a unit vector tangent to the quaternion K𝑎̈𝑎hlerian manifold 𝑀𝑀�, then 𝑋𝑋; 𝐽𝐽𝐽𝐽;𝐾𝐾𝐾𝐾 and 𝐿𝐿𝐿𝐿 form an orthonormal frame. 
We denote by 𝑄𝑄(𝑋𝑋) the 4-plane spanned by them, and call it the quaternion 4-plane determined by 𝑋𝑋. Every plane in a 
quaternion 4-plane is called a quaternion plane. The sectional curvature for a quaternion plane is called a quaternion 
sectional curvature. 
 
A quaternion K𝑎̈𝑎hlerian manifold 𝑀𝑀� is called a quaternion-space-form 𝑀𝑀�  (𝑐𝑐) if its quaternion sectional curvatures are 
equal to a constant 𝑐𝑐. It is known that a quaternion K𝑎̈𝑎hlerian manifold is a quaternion-space-form if and only if its 
curvature tensor 𝑅𝑅 is of the following form [10]: 

𝑅𝑅(𝑋𝑋,𝑌𝑌)𝑍𝑍 =
𝑐𝑐
4

[𝑔𝑔(𝑌𝑌,𝑍𝑍)𝑋𝑋 − 𝑔𝑔(𝑋𝑋,𝑍𝑍)𝑌𝑌 + 𝑔𝑔(𝐽𝐽𝐽𝐽,𝑍𝑍)𝐽𝐽𝐽𝐽 − 𝑔𝑔(𝐽𝐽𝐽𝐽,𝑍𝑍)𝐽𝐽𝐽𝐽 + 2𝑔𝑔(𝑋𝑋, 𝐽𝐽𝐽𝐽)𝐽𝐽𝐽𝐽 
                                    + 𝑔𝑔(𝐾𝐾𝐾𝐾,𝑍𝑍)𝐾𝐾𝐾𝐾 − 𝑔𝑔(𝐾𝐾𝐾𝐾,𝑍𝑍)𝐾𝐾𝐾𝐾 + 2𝑔𝑔(𝑋𝑋,𝐾𝐾𝐾𝐾 )𝐾𝐾𝐾𝐾 + 𝑔𝑔(𝐿𝐿𝐿𝐿,𝑍𝑍)𝐿𝐿𝐿𝐿 

                      − 𝑔𝑔(𝐿𝐿𝐿𝐿,𝑍𝑍)𝐿𝐿𝐿𝐿 + 2𝑔𝑔(𝑋𝑋, 𝐿𝐿𝐿𝐿)𝐿𝐿𝐿𝐿] .                                             (1.1) 
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The notion of Ricci solitons is as follows: 
 
It is a natural generalization of an Einstein metric and is defined on a Riemannian manifold 
(𝑀𝑀�  ,𝑔𝑔). A Ricci soliton is a triple (𝑔𝑔,𝑉𝑉, λ) with 𝑔𝑔 a Riemannian metric, 𝑉𝑉 a vector field, and 𝜆𝜆 a real scalar such that 

𝐿𝐿𝑉𝑉  𝑔𝑔 + 2𝑆𝑆 + 2𝜆𝜆𝜆𝜆 = 0,                                                                          (1.2) 
 

where 𝑆𝑆 is Ricci tensor of 𝑀𝑀� and 𝐿𝐿𝑉𝑉  denotes the Lie derivative operator along the vector field 𝑉𝑉. The Ricci soliton is 
said to be shrinking, steady and expanding accordingly as 𝜆𝜆 is negative, zero and positive respectively [23]. 
 
In 1989 the author Z. Olszak [17] has worked on existence of generalized complex space form. The authors Pablo 
Alegre and Alfonso Carriazo studied structures on generalized Sasakian space forms [1]. The authors U.C. De, U.K. 
Kim et.al., [15, 11, 2] have contributed to the study of Sasakian space forms in which they put different symmetric 
conditions on projctive curvature tensor et al., In the context of generalized complex space forms, the authors M.C. 
Bharathi and C.S. Bagewadi [3], C.S. Bagewadi and M. M Praveena [5] extended the study to 𝑊𝑊2  curvature, 𝐻𝐻-
projective and pseudoprojective curvature tensors. Motivated by these idea in this paper we consider quaternion space 
form satisfy semisymmetric conditions like 𝑅𝑅 · 𝐵𝐵 = 0  and 𝐵𝐵 · 𝑅𝑅 = 0 . We also consider quasi-umbilical and 
generalized quasi-umbilical hypersurfaces of quaternion space forms. 
 
2. PRELIMINARIES 
 
Let  𝑀𝑀�  be an 𝑛𝑛(𝑛𝑛 = 4𝑚𝑚,𝑚𝑚 ≥ 1 )-dimensional Riemannian manifold with the Riemannian metric g. 𝑀𝑀�  is called a 
quaternion K𝑎̈𝑎hlerian manifold if there exists a 3 dimensional vector bundle 𝜇𝜇 consisting of tensors of type (1, 1) with 
local basis of almost Hermitian structures 𝐽𝐽,𝐾𝐾 and 𝐿𝐿 such that [14, 24] 

(a) J2 = K2 = L2 = −I,                                                                          (2.1) 
𝐽𝐽𝐽𝐽 = −𝐾𝐾𝐾𝐾 = 𝐿𝐿, 𝐾𝐾𝐾𝐾 = −𝐿𝐿𝐿𝐿 = 𝐽𝐽, 𝐿𝐿𝐿𝐿 = −𝐽𝐽𝐽𝐽 = 𝐾𝐾,                                                          (2.2) 
𝑔𝑔(𝐽𝐽𝐽𝐽, 𝐽𝐽𝐽𝐽) = 𝑔𝑔(𝐾𝐾𝐾𝐾,𝐾𝐾𝐾𝐾) = 𝑔𝑔(𝐿𝐿𝐿𝐿, 𝐿𝐿𝐿𝐿) = 𝑔𝑔(𝑋𝑋,𝑌𝑌),                                                                       (2.3) 

              where 𝐼𝐼 denoting the identity tensor of type (1, 1) in 𝑀𝑀� . 
(b) If 𝜙𝜙 is a cross-section of the bundl 𝜇𝜇, then ∇𝑋𝑋𝜙𝜙 is also a cross-section of the bundle 𝜇𝜇, 𝑋𝑋 being an arbitrary 

vector field on 𝑀𝑀� and ∇ the Riemannian connection on 𝑀𝑀� . The condition (𝑏𝑏) is equivalent to the following 
condition; 

(c) There exist the local 1-forms 𝑝𝑝, 𝑞𝑞 and 𝑟𝑟 such that 
∇𝑋𝑋𝐽𝐽 = 𝑟𝑟(𝑋𝑋)𝐾𝐾 − 𝑞𝑞(𝑋𝑋)𝐿𝐿,∇𝑋𝑋𝐾𝐾 = −𝑟𝑟(𝑋𝑋)𝐽𝐽 + 𝑝𝑝(𝑋𝑋)𝐿𝐿,∇𝑋𝑋𝐿𝐿 = 𝑞𝑞(𝑋𝑋)𝐽𝐽 − 𝑝𝑝(𝑋𝑋)𝐾𝐾. 

 
The formulae [24], 

𝑅𝑅(𝑋𝑋,𝑌𝑌) = 𝑅𝑅(𝐽𝐽𝐽𝐽, 𝐽𝐽𝐽𝐽) = 𝑅𝑅(𝐾𝐾𝐾𝐾,𝐾𝐾𝐾𝐾) = 𝑅𝑅(𝐿𝐿𝐿𝐿, 𝐿𝐿𝐿𝐿),                                                                    (2.4) 
𝑆𝑆(𝑋𝑋,𝑌𝑌) = 𝑆𝑆(𝐽𝐽𝐽𝐽, 𝐽𝐽𝐽𝐽) = 𝑆𝑆(𝐾𝐾𝐾𝐾,𝐾𝐾𝐾𝐾) = 𝑆𝑆(𝐿𝐿𝐿𝐿, 𝐿𝐿𝐿𝐿),                                                         (2.5) 
𝑆𝑆(𝑋𝑋, 𝐽𝐽𝐽𝐽) + 𝑆𝑆(𝐽𝐽𝐽𝐽,𝑌𝑌) = 𝑆𝑆(𝑋𝑋,𝐾𝐾𝐾𝐾) + 𝑆𝑆(𝐾𝐾𝐾𝐾,𝑌𝑌) = 𝑆𝑆(𝑋𝑋, 𝐿𝐿𝐿𝐿) + 𝑆𝑆(𝐿𝐿𝐿𝐿,𝑌𝑌) = 0,                           (2.6) 

are well known for a quaternion Kaehler manifold. 
 
Recently A. A. Shaik and H. Kundw introduced generalized curvature tensor 𝐵𝐵 is given by [19] 
𝐵𝐵(𝑋𝑋,𝑌𝑌)𝑍𝑍 = 𝑎𝑎0𝑅𝑅(𝑋𝑋,𝑌𝑌)𝑍𝑍 + 𝑎𝑎1[𝑆𝑆(𝑌𝑌,𝑍𝑍)𝑋𝑋 − 𝑆𝑆(𝑋𝑋,𝑍𝑍)𝑌𝑌 + 𝑔𝑔(𝑌𝑌,𝑍𝑍)𝑄𝑄𝑄𝑄 − 𝑔𝑔(𝑋𝑋,𝑍𝑍)𝑄𝑄𝑄𝑄] + 2𝑎𝑎2𝑟𝑟[𝑔𝑔(𝑌𝑌,𝑍𝑍)𝑋𝑋 − 𝑔𝑔(𝑋𝑋,𝑍𝑍)𝑌𝑌],(2.7) 
where 𝑅𝑅, 𝑆𝑆,𝑄𝑄 and 𝑟𝑟 are the curvature tensor, the Ricci tensor, the Ricci operator and the scalar curvature, respectively. 
 
In particular, the 𝐵𝐵-curvature tensor is reduced to be: 

1. The quasi-conformal curvature tensor 𝐶𝐶∗[12] if 
               𝑎𝑎0 = 𝑎𝑎, 𝑎𝑎1 = 𝑏𝑏 and 𝑎𝑎2 = 1

2𝑛𝑛
[ 𝑎𝑎
𝑛𝑛−1

+ 2𝑏𝑏]. 
2. The weyl-conformal curvature tensor  𝐶̃𝐶 [9] if 

𝑎𝑎0 = 1, 𝑎𝑎1 = − 1
𝑛𝑛−2

  and  𝑎𝑎2 = 1
2(𝑛𝑛−1)(𝑛𝑛−2)

. 
3. The concircular curvature tensor 𝐶𝐶 if 

𝑎𝑎0 = 1, 𝑎𝑎1 = 0  and  𝑎𝑎2 = 1
2𝑛𝑛(𝑛𝑛−1)

. 
4. The conharmonic curvature tensor 𝑃𝑃 [3] if 

𝑎𝑎0  =  1, 𝑎𝑎1 = − 1
𝑛𝑛−2

  and  𝑎𝑎2 = 0. 
 
Definition 2.1: A non-flat quaternion K𝑎𝑎hler manifold 𝑀𝑀� is said to be 
   (1). quasi-Einstein manifold if its Ricci tensor 𝑆𝑆 is non zero and satisfies the condition 

𝑆𝑆(𝑋𝑋,𝑌𝑌) = 𝑎𝑎𝑎𝑎(𝑋𝑋,𝑌𝑌) + 𝑏𝑏𝑏𝑏(𝑋𝑋)𝐴𝐴(𝑌𝑌), 
   (2). generalized quasi-Einstein manifold if 

𝑆𝑆(𝑋𝑋,𝑌𝑌) = 𝑎𝑎𝑎𝑎(𝑋𝑋,𝑌𝑌) + 𝑏𝑏𝑏𝑏(𝑋𝑋)𝐴𝐴(𝑌𝑌) + 𝑐𝑐𝑐𝑐(𝑋𝑋)𝐵𝐵(𝑌𝑌), 
   (3). a mixed generalized quasi-Einstein manifold if 

𝑆𝑆(𝑋𝑋,𝑌𝑌) = 𝑎𝑎𝑎𝑎(𝑋𝑋,𝑌𝑌) + 𝑏𝑏𝑏𝑏(𝑋𝑋)𝐴𝐴(𝑌𝑌) + 𝑐𝑐𝑐𝑐(𝑋𝑋)𝐵𝐵(𝑌𝑌) + 𝑑𝑑[𝐴𝐴(𝑋𝑋)𝐵𝐵(𝑌𝑌) + 𝐵𝐵(𝑋𝑋)𝐴𝐴(𝑌𝑌)], 
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         where 𝑎𝑎, 𝑏𝑏, 𝑐𝑐 and 𝑑𝑑 are non zero scalars, 𝐴𝐴 and 𝐵𝐵 are two non zero 1-forms such that 

𝑔𝑔(𝑋𝑋, 𝜏𝜏) = 𝐴𝐴(𝑋𝑋)  and   𝑔𝑔(𝑋𝑋, 𝛾𝛾) = 𝐵𝐵(𝑋𝑋)  ∀𝑋𝑋 ∈ 𝑇𝑇𝑇𝑇, 𝜏𝜏 and  𝛾𝛾 being unit vectors which are orthogonal that is, 
𝑔𝑔(𝜏𝜏, 𝛾𝛾) = 0. 

    
3. QUATERNION SPACE FORMS SATISFYING 𝑹𝑹 · 𝑩𝑩 = 𝟎𝟎 

 
Let 𝑀𝑀�  (𝑐𝑐) be a quaternion space form satisfying 𝑅𝑅(𝑋𝑋,𝑌𝑌) · 𝐵𝐵 = 0. 
 
This equation turns into 

𝑅𝑅(𝑋𝑋,𝑌𝑌)𝐵𝐵(𝑈𝑈,𝑉𝑉)𝑊𝑊 –𝐵𝐵(𝑅𝑅(𝑋𝑋,𝑌𝑌)𝑈𝑈,𝑉𝑉)𝑊𝑊 –𝐵𝐵(𝑈𝑈,𝑅𝑅(𝑋𝑋,𝑌𝑌)𝑉𝑉)𝑊𝑊 − 𝐵𝐵(𝑈𝑈,𝑉𝑉)𝑅𝑅(𝑋𝑋,𝑌𝑌)𝑊𝑊 = 0. 
 
Taking inner product with 𝑍𝑍, we have 

𝑔𝑔(𝑅𝑅(𝑋𝑋,𝑌𝑌)𝐵𝐵(𝑈𝑈,𝑉𝑉)𝑊𝑊,𝑍𝑍) − 𝑔𝑔(𝐵𝐵(𝑅𝑅(𝑋𝑋,𝑌𝑌)𝑈𝑈,𝑉𝑉)𝑊𝑊,𝑍𝑍) − 𝑔𝑔(𝐵𝐵(𝑈𝑈,𝑅𝑅(𝑋𝑋,𝑌𝑌)𝑉𝑉 )𝑊𝑊,𝑍𝑍) 
      −𝑔𝑔(𝐵𝐵(𝑈𝑈,𝑉𝑉)𝑅𝑅(𝑋𝑋,𝑌𝑌)𝑊𝑊,𝑍𝑍) =  0.                                                                        (3.1) 

 
Using equations (1.1) and (2.7) in (3.1) and putting  𝑋𝑋 = 𝑉𝑉 = 𝑒𝑒𝑖𝑖  after simplification and again putting 𝑌𝑌 = 𝑍𝑍 = 𝑒𝑒𝑖𝑖  
and taking summation over 𝑖𝑖 (1 ≤ 𝑖𝑖 ≤ 𝑛𝑛) we infer, 

𝑆𝑆(𝑈𝑈,𝑊𝑊) = 𝛼𝛼
𝛽𝛽
𝑔𝑔(𝑈𝑈,𝑊𝑊),                                                                                       (3.2) 

where 𝛼𝛼 = c(3n − 36)a0 + (2n − 9)4a1r + (2n2 + 6n − 17)8a2 and  𝛽𝛽 = 4((3 − 2n)a0 − n(2n + 7)a1). 
 
That is 𝑀𝑀�  (𝑐𝑐) is an Einstein manifold. 
 
Hence we have the following result; 
 
Theorem 3.1: A quaternion space form satisfies 𝑅𝑅 · 𝐵𝐵 = 0 is an Einstein manifold. 
 
Using equation (3.2) in (1.2) we get 

(𝐿𝐿𝑉𝑉𝑔𝑔)(𝑈𝑈,𝑊𝑊) + 2 �𝛼𝛼
𝛽𝛽
� 𝑔𝑔(𝑈𝑈,𝑊𝑊) + 2𝜆𝜆𝜆𝜆(𝑈𝑈,𝑊𝑊) = 0,                                                                                    (3.3) 

 
setting 𝑈𝑈 =  𝑊𝑊 = 𝑒𝑒𝑖𝑖 in (3.3) and then taking summation 𝑖𝑖 (1 ≤ 𝑖𝑖 ≤ 𝑛𝑛), we obtain 

𝑑𝑑𝑑𝑑𝑑𝑑 𝑉𝑉 + �𝛼𝛼
𝛽𝛽
� 𝑛𝑛 + 𝜆𝜆𝜆𝜆 = 0                                                                          (3.4) 

 
If V is solenoid then 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 0. Therefore the equation (3.4) can be reduced to 

𝜆𝜆 = −𝛼𝛼
𝛽𝛽

. 
 
Thus, we have state the following 
 
Corollary 3.1: Let (𝑔𝑔,𝑉𝑉, 𝜆𝜆) be a Ricci soliton in a quaternion space form satisfying 𝑅𝑅 ⋅ 𝐵𝐵 = 0. If 𝑉𝑉 is solenoidal then it 
is shrinking. 
 
The particular cases of Theorem (3.1) and Corollary (3.1) for different curvature tensors is as follows 
 

Curvature tensors Einstein Ricci tensor 𝑆𝑆 = 𝛼𝛼
𝛽𝛽

 Ricci solitons 

quasi-conformal 
curvature tensor 𝐶𝐶∗ 

Einstein 𝛼𝛼 = 3(n3 –  13n2 +  12n)a 
+4br(2n3 − 11n2 + 9n) + 8𝑟𝑟 

(2n2 + 6n − 17)(a + 2b(n −  1)) 
𝛽𝛽 = 4n(n − 1)((3 − 2n)a −  n(2n +  7)b) 

shrinking 

weyl-conformal curvature 
tensor 𝐶̃𝐶 

Einstein 𝛼𝛼 = c(3n3– 45n2 + 114n − 72) 
+4𝑟𝑟(17𝑛𝑛 − 26), 

𝛽𝛽 = 4(14n − 6)(n − 1) 

shrinking 

Concircular curvature 
tensor 𝐶𝐶 

Einstein α = 2nc(3n2 − 39n + 36) 
+ 8r(2n2 +  6n −  17) 
𝛽𝛽 = 8(3 − 2n)n(n − 1) 

shrinking 

Conharmonic curvature 
tensor 𝑃𝑃 

Einstein α =  c(3n2 − 42n + 72) − 4r(2n − 9), 
β =  4(14n − 16) 

shrinking 
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4. QUATERNION SPACE FORMS SATISFYING 𝑩𝑩 ⋅  𝑹𝑹 = 𝟎𝟎 
 
Let 𝐵𝐵  and 𝑅𝑅  be satisfy the equation 𝐵𝐵 ⋅  𝑅𝑅 = 0 in 𝑀𝑀�  (𝑐𝑐). Then for any tangent vectors 𝑋𝑋,𝑌𝑌,𝑈𝑈,𝑍𝑍  and 𝑊𝑊 , the above 
implies 

(𝐵𝐵(𝑋𝑋,𝑌𝑌) · 𝑅𝑅)(𝑈𝑈,𝑉𝑉,𝑊𝑊) = 0.                                                                         (4.1) 
 
This implies 

𝐵𝐵 (𝑋𝑋,𝑌𝑌)𝑅𝑅(𝑈𝑈,𝑉𝑉)𝑊𝑊 − 𝑅𝑅(𝐵𝐵(𝑋𝑋,𝑌𝑌)𝑈𝑈,𝑉𝑉)𝑊𝑊 − 𝑅𝑅(𝑈𝑈,𝐵𝐵(𝑋𝑋,𝑌𝑌)𝑉𝑉)𝑊𝑊  −𝑅𝑅(𝑈𝑈,𝑉𝑉)𝐵𝐵(𝑋𝑋,𝑌𝑌)𝑊𝑊 =  0.             (4.2) 
 
Taking inner product T we have 
𝑔𝑔(𝐵𝐵(𝑋𝑋,𝑌𝑌)𝑅𝑅(𝑈𝑈,𝑉𝑉)𝑊𝑊,𝑍𝑍) − 𝑔𝑔(𝑅𝑅(𝐵𝐵(𝑋𝑋,𝑌𝑌)𝑈𝑈,𝑉𝑉)𝑊𝑊,𝑍𝑍) − 𝑔𝑔(𝑅𝑅(𝑈𝑈,𝐵𝐵(𝑋𝑋,𝑌𝑌 )𝑉𝑉)𝑊𝑊,𝑍𝑍) − 𝑔𝑔((𝑅𝑅(𝑈𝑈,𝑉𝑉)𝐵𝐵(𝑋𝑋,𝑌𝑌)𝑊𝑊,𝑍𝑍) = 0  (4.3) 
 
Using equations (1.1) and (2.7) in (4.3) and putting  𝑋𝑋 = 𝑉𝑉 = 𝑒𝑒𝑖𝑖   after simplification and again putting 𝑌𝑌 = 𝑍𝑍 = 𝑒𝑒𝑖𝑖  and 
taking summation over 𝑖𝑖 (1 ≤ 𝑖𝑖 ≤ 𝑛𝑛),  then we obtain, 

𝑆𝑆(𝑈𝑈,𝑊𝑊) = 𝛼𝛼2
𝛽𝛽2
𝑔𝑔(𝑈𝑈,𝑊𝑊),                                                                                                    (4.4) 

 
where 𝛼𝛼2 = [−3𝑎𝑎0c(n +  8) + 16a1𝑟𝑟 + 16𝑛𝑛(1 − 𝑛𝑛)𝑎𝑎2𝑟𝑟] and 𝛽𝛽2 = 4(−2𝑎𝑎0 + 3(2 − n)𝑎𝑎1.).𝑀𝑀�(𝑐𝑐)  is an Einstein 
manifold. 
 
Hence we have the following result: 
 
Theorem 4.2: A quaternion space form satisfies 𝐵𝐵 · 𝑅𝑅 = 0 is an Einstein manifold. 
 
Using equation (4.4) in (1.2), we get 

(𝐿𝐿𝑉𝑉𝑔𝑔)(𝑈𝑈,𝑊𝑊) + 2 𝛼𝛼2
𝛽𝛽2
𝑔𝑔(𝑈𝑈,𝑊𝑊) + 2𝜆𝜆𝜆𝜆(𝑈𝑈,𝑊𝑊) = 0.                                                                       (4.5) 

 
Taking 𝑈𝑈 = 𝑊𝑊 = 𝑒𝑒𝑖𝑖  and taking summation over 𝑖𝑖 in the above equation, we get 

𝑑𝑑𝑑𝑑𝑑𝑑 𝑉𝑉 + 𝛼𝛼2
𝛽𝛽2
𝑛𝑛 + 𝜆𝜆𝜆𝜆 = 0.                                                                                       (4.6) 

 
If V is solenoid then divV = 0. Therefore the equation (4.6) can be reduced to 

𝜆𝜆 = −𝛼𝛼2
𝛽𝛽2

. 
 
Thus, we have state the following 
 
Corollary 4.2: Let (𝑔𝑔,𝑉𝑉, 𝜆𝜆) be a Ricci soliton in a quaternion space form satisfying 𝐵𝐵 · 𝑅𝑅 = 0. If 𝑉𝑉 is solenoidal then it 
is shrinking. 
 
Corollary 4.3: Let (𝑔𝑔,𝑉𝑉, 𝜆𝜆)  be a Ricci soliton in a quaternion space form satisfying 𝐶𝐶∗ · 𝑅𝑅 =  0, 𝐶̃𝐶 · 𝑅𝑅 =  0, 𝐶𝐶 · 𝑅𝑅 = 0 
and 𝑃𝑃 · 𝑅𝑅 = 0. If 𝑉𝑉 is solenoidal then in all these conditions the space form is shrinking. 
 
5. HYPERSURFACE OF A QUATERNION SPACE FORMS 
 
The notion of quasi-Einstein manifold was studied in [7, 8] by M. C. Chaki and R. K. Maity. S. Sular and C.𝑂̈𝑂zgur [20] 
have proved that a quasi-umbilical hypersurface of Kenmotsu space forms is generalized quasi-Einstein hypersurface. 
Also the authors C.S. Bagewadi and M. C. Bharathi [4] was studied hypersurface of complex space form. 
 
Let 𝑀𝑀 be a hypersurface of a quaternion K𝑎̈𝑎hler manifold 𝑀𝑀�. If 𝑇𝑇 𝑀𝑀� and 𝑇𝑇𝑇𝑇 denote the Lie algebra of vector fields on 
𝑀𝑀� and 𝑀𝑀 respectively and 𝑇𝑇⊥𝑀𝑀, is the set of all vector fields normal to 𝑀𝑀, then Gauss and weingarten formulae are 
respectively given by 

∇�𝑋𝑋𝑌𝑌 = ∇𝑋𝑋𝑌𝑌 + 𝜎𝜎(𝑋𝑋,𝑌𝑌), 
∇�𝑋𝑋𝑁𝑁 = −𝐴𝐴𝑁𝑁𝑋𝑋 + ∇𝑋𝑋⊥𝑁𝑁, 

 
for all 𝑋𝑋,𝑌𝑌 ∈ 𝑇𝑇𝑇𝑇  and 𝑁𝑁 ∈ 𝑇𝑇⊥𝑀𝑀,  where ∇⊥  denotes the connection on the normal bundle 𝑇𝑇⊥𝑀𝑀 . 𝐻𝐻  and 𝐴𝐴𝑁𝑁  are the 
second fundamental forms and shape operator of immersion of 𝑀𝑀 into 𝑀𝑀� corresponding to normal vector field 𝑁𝑁 and 
they are related as 

𝑔𝑔(𝐴𝐴𝑁𝑁𝑋𝑋,𝑌𝑌) = 𝑔𝑔(𝐻𝐻(𝑋𝑋,𝑌𝑌),𝑁𝑁). 
 
The Gauss equation is given by 

𝑅𝑅�(X, Y, Z, W) = R(X, Y, Z, W) − g�H(X, W), H(Y, Z)� + g(H(Y, W), H(X, Z)),              (5.1) 
 

where 𝑍𝑍,𝑊𝑊 are vector fields tangent to 𝑀𝑀. 
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Definition 5.2: A hypersurface of a quaternion K𝑎̈𝑎hler manifold 𝑀𝑀� is said to be 

1) quasi umbilical if its second fundamental tensor has the form 
H(X, Y) = α1g(X, Y) + β1ω(X)ω(Y ),                                                                        (5.2) 

2) generalised quasi-umbilical if its second fundamental tensor has the form 
H(X, Y) = α1g(X, Y) + β1ω(X)ω(Y) + 𝛾𝛾1𝛿𝛿(𝑋𝑋)𝛿𝛿(𝑌𝑌),                                                                       (5.3) 

               where α1, β1and 𝛾𝛾1are scalars and the vector field corresponding to 1-form ω and 𝛿𝛿 are unit vector field. 
 
Theorem 5.3: Let 𝑀𝑀�  (𝑐𝑐) be a quaternion space form. 

1) Let (𝑔𝑔,𝑉𝑉, 𝜆𝜆)  be a Ricci soliton in Quasi-umbilical hypersurface of 𝑀𝑀�  (𝑐𝑐)is shrinking if and only if 𝑉𝑉  is 
solenoidal. 

2) Let (𝑔𝑔,𝑉𝑉, 𝜆𝜆) be a Ricci soliton in generalized Quasi-umbilical hypersurface of 𝑀𝑀�  (𝑐𝑐)is shrinking if and only if 
𝑉𝑉 is solenoidal. 

 
Proof: 

(1) Putting equation (5.2) in (5.1) and using (1.1), we have 
𝑐𝑐
4

[𝑔𝑔(𝑌𝑌,𝑍𝑍)𝑋𝑋 − 𝑔𝑔(𝑋𝑋,𝑍𝑍)𝑌𝑌 + 𝑔𝑔(𝐽𝐽𝐽𝐽,𝑍𝑍)𝐽𝐽𝐽𝐽 − 𝑔𝑔(𝐽𝐽𝐽𝐽,𝑍𝑍)𝐽𝐽𝐽𝐽 + 2𝑔𝑔(𝑋𝑋, 𝐽𝐽𝐽𝐽)𝐽𝐽𝐽𝐽 
    + 𝑔𝑔(𝐾𝐾𝐾𝐾,𝑍𝑍)𝐾𝐾𝐾𝐾 − 𝑔𝑔(𝐾𝐾𝐾𝐾,𝑍𝑍)𝐾𝐾𝐾𝐾 + 2𝑔𝑔(𝑋𝑋,𝐾𝐾𝐾𝐾)𝐾𝐾𝐾𝐾 + 𝑔𝑔(𝐿𝐿𝐿𝐿,𝑍𝑍)𝐿𝐿 − 𝑔𝑔(𝐿𝐿𝐿𝐿,𝑍𝑍)𝐿𝐿𝐿𝐿 
    + 2𝑔𝑔(𝑋𝑋, 𝐿𝐿𝐿𝐿)𝐿𝐿𝐿𝐿] = R(X, Y, Z, W) + a2[g(X, Z)g(Y, W) − g(Y, Z)g(X, W)] 
    +ab[g(X, Z)A(Y)A(W) + g(Y, W)A(X)A(Z) − g(Y, Z)A(X)(5.4) A(W) − g(X, W)A(Y)A(Z)].             (5.4) 

 
Setting 𝑋𝑋 = 𝑊𝑊 = 𝑒𝑒𝑖𝑖  and taking sum over 𝑖𝑖 (1 ≤ 𝑖𝑖 ≤ 𝑛𝑛) in equation (5.4) where {𝑒𝑒𝑖𝑖} is an orthonormal basis of the 
given space form we have 

S(Y, Z) = 𝜅𝜅g(Y, Z) + μA(Y)A(Z),                                                                                      (5.5) 
where 𝜅𝜅 = �(𝑛𝑛 − 1)𝑎𝑎2 + 𝑐𝑐

4
 (𝑛𝑛 + 8) + 𝑎𝑎𝑎𝑎� 𝑎𝑎𝑎𝑎𝑎𝑎 𝜇𝜇 = (𝑛𝑛 − 2)𝑎𝑎𝑎𝑎. Equation (5.5) in (1.2), we get 

(𝐿𝐿𝑉𝑉𝑔𝑔)(𝑌𝑌,𝑍𝑍) + 2[𝜅𝜅g(Y, Z) + μA(Y)A(Z)] + 2𝜆𝜆𝜆𝜆(𝑌𝑌,𝑍𝑍) = 0,                                                                      (5.6) 
 
Putting 𝑌𝑌 = 𝑍𝑍 = 𝑒𝑒𝑖𝑖  where {𝑒𝑒𝑖𝑖} is an orthonormal basis of the tangent space at each point of the manifold and taking 
summation over 𝑖𝑖 (1 ≤ 𝑖𝑖 ≤ 𝑛𝑛), we get 

(𝐿𝐿𝑉𝑉𝑔𝑔)(𝑒𝑒𝑖𝑖 , 𝑒𝑒𝑖𝑖) + 2[𝜅𝜅g(𝑒𝑒𝑖𝑖 , 𝑒𝑒𝑖𝑖) + μA(𝑒𝑒𝑖𝑖  )A(𝑒𝑒𝑖𝑖)] + 2𝜆𝜆𝜆𝜆(𝑒𝑒𝑖𝑖 , 𝑒𝑒𝑖𝑖) = 0,                                                                   (5.7) 
the above equation become 

2divV + 2nκ +  2μ + 2λn =  0,                                                           (5.8) 
 
If 𝑉𝑉 is solenoidal then 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 0. Therefore the equation (5.8) can be reduced to 

nκ + μ + λn =  0,                                                                                       (5.9) 
 
This implies  

𝜆𝜆 = − nκ+μ
n

.                                                                                       (5.10) 
 
Thus we can state Ricci soliton is shrinking in Quasi-umbilical hypersurface of 𝑀𝑀�  (𝑐𝑐). 
 
2)  Similar proofs of statement (2) is obtained by using equations (5.3) and (1.1) in (5.1) and putting 𝑌𝑌 = 𝑍𝑍 = 𝑒𝑒𝑖𝑖  we get 
mixed generalized quasi-Einstein manifold. After this resultant equation will be substitute in equation (1.2), contraction 
and using solenoidal property we get 𝜆𝜆 is negative. 
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