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ABSTRACT 
The vertices and edges of a graph G are called its elements, If e = uv is an edge of G, then the vertex u and edge e are 
incident as are v and e. The first multiplicative K hyper-Banhatti index of G is defined as the product of the squares of 
the sum of the degrees of pairs of incident elements and the second multiplicative K hyper-Banhatti index of G is 
defined as the product of the squares of the product of the degrees of pairs of incident elements. In this paper, we 
initiate a study of multiplicative K hyper-Banhatti indices and coindices of graphs. 
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1. INTRODUCTION 
 
By a graph, we mean a finite, undirected, without loops, multiple edges and isolated vertices. Let G be a graph with n 
vertices and m edges with vertex set V(G) and the edge set E(G). Any undefined term in this paper may be found in 
Kulli [1]. 
 
The degree dG(v) of a vertex v is the number of vertices adjacent to v. The edge connecting the vertices u and v is 
denoted by uv. If e = uv is an edge of G then the vertex u and edge e are incident as are v and e. Let dG(e) denote the 
degree of an edge e in G, which is defined by dG(e) = dG(u) + dG(v) – 2 with e = uv. The vertices and edges of a graph 
are called its elements. 
 
The first and second K Banhatti indices are defined as 

( ) ( ) ( )1 G G
ue

B G d u d e= +  ∑   

( ) ( ) ( )2 G G
ue

B G d u d e= ∑  

where ue means that the vertex u and edge e are incident in G. 
 
The first and second K Banhatti coindices are defined as  

( ) ( ) ( )1
*

G G
u e

B G d u d e= +  ∑  

( ) ( ) ( )2
*

G G
u e

B G d u d e= ∑   

where u*e means that the vertex u and edge e are nonincident in G. 
 
The first and second K Banhatti indices and coincides were introduced by Kulli in [2]. Recently many other indices and 
coincides were studied, for example, in [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]. 
 
A molecular graph is a graph such that its vertices correspond to the atoms and the edges to the bonds. Chemical graph 
theory is a branch of mathematical chemistry which has an important effect on the development of the Chemical 
Sciences. 
 
In Chemical Science, the physico-chemical properties of chemical compounds are often modeled by means of 
molecular graph based structure descriptors, which are also referred to as topological indices, see [3]. 
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The first and second K hyper-Banhatti indices of a graph G are defined as  

( ) ( ) ( ) 2
1 G G

ue
HB G d u d e= +  ∑  

( ) ( ) ( )( )2
2 .G G

ue
HB G d u d e= ∑  

 
The first and second K hyper-Banhatti coincides of a graph G are defined as  

( ) ( ) ( ) 2
1

*
G G

u e
HB G d u d e= +  ∑  

( ) ( ) ( )( )2
2

*
.G G

u e
HB G d u d e= ∑  

 
The K hyper-Banhatti indices and coincides were introduced by Kulli in [14]. 
 
The first multiplicative K Banhatti index and first multiplicative K Banhatti coindex of G are defined as  

( ) ( ) ( )1 G G
ue

BII G d u d e= +  ∏  

( ) ( ) ( )1
*

.G G
u e

BII G d u d e= +  ∏  

 
These invariants were introduced by Kulli in [15]. 
 
The second multiplicative K Banhatti index and second multiplicative K Banhati coindex of G are defined as  

( ) ( ) ( )2 = ∏ G G
ue

BII G d u d e  

( ) ( ) ( )2
*

.G G
u e

BII G d u d e= ∏  

 
These invariants were introduced by Kulli in [16]. Recently many other multiplicative indices and coindices of graphs 
were studied, for example, in [17, 18, 19, 20, 21]. 
 
In this paper, we consider the multiplicative variants of K hyper-Banhatti indices and coindices of graphs. 
 
2. FIRST MULTIPLICATIVE K HYPER-BANHATTI INDEX 
 
We introduce the first multiplicative K hyper-Banhatti index of a graph G in terms of incident vertex-edge degrees. 
 
Definition 1: The first multiplicative K hyper-Banhatti index of a graph G is defined as  

( ) ( ) ( ) 2
1 G G

ue

HBII G d u d e= +  ∏  

where ue means that the vertex u and edge e are incident in G. 
 
We compute first multiplicative K hyper-Banhatti index of cycles, complete graphs, complete bipartite graphs, r-regular 
graphs. 
 
Proposition 2: Let Cn be a cycle with n ≥ 3 vertices. Then 

( ) 4
1 4 .n

nHBII C =  
 
Proof: Let Cn be a cycle with n ≥ 3 vertices. Then Cn has n edges. Every edge of Cn is incident with exactly two 
vertices. Consider 

( ) ( ) ( )
2

1 n nn C C
ue

HBII C d u d e = + ∏  

 ( ) ( ) ( ) ( )
( )

2 2

n n n n

n

C C C C
e uv E C

d u d e d v d e
= ∈

   = + × +   ∏  

 ( ) ( )2 22 2 2 2
n n

   = + × +     

  = 44n. 
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Proposition 3: Let Kn be a complete graph with n vertices. Then 

( ) ( ) ( )2 1
1 3 5 .n n

nHBII K n −= −  

Proof: Let Kn be a complete graph with n vertices. Then Kn has 
( )1

2
n n −

 edges. Every edge of Kn is incident with 

exactly two vertices. Consider 

( ) ( ) ( )
2

1 n nn K K
ue

HBII K d u d e = + ∏  

  ( ) ( ) ( ) ( )
( )

2 2

n n n n

n

K K K K
e uv E K

d u d e d v d e
= ∈

   = + × +   ∏  

  ( ) ( ){ }
( )

( ) ( ){ }
( )1 1

2 22 21 2 4 1 2 4
n n n n

n n n n
− −

   = − + − × − + −   
 

  ( ) ( )2 13 5 .n nn −= −  
 
Proposition 4: Let Km,n be a complete bipartite graph with 1 ≤ m ≤ n. Then  

( ) ( ) ( )2 2
1 , 2 2 2 2 .mn mn

m nHBII K m n m n= + − × + −  
 
Proof: Let Km,n be a complete bipartite graph with m + n vertices, mn edges and |V1 | = m, |V2| = n, V(Km,n) = V1 U V2.  
 
Every edge of Km,n is incident with exactly two vertices. Every vertex of V1 is incident with n vertices and every vertex 
of V2 is incident with m vertices. Consider  

( ) ( ) ( )
, ,

2

1 , m n m nm n K K
ue

HBII K d u d e = + ∏  

 ( ) ( ) ( ) ( )
( )

, , , ,

,1 2

2 2

m n m n m n m n

n
u V v V

K K K K
e uv E K

d u d e d v d e
∈ ∈

= ∈

   = + × +   ∏  

 ( ){ } ( ){ }2 2
2 2

mn mn
n m n m m n   = + + − × + + −

   
 

 ( ) ( )2 22 2 2 2 .mn mnm n m n= + − × + −  
 
The following results are immediate from Proposition 4. 
 
Corollary 5: Let Kn,n be a complete bipartite graph. Then  

( ) ( )
24

1 , 3 2 .n
n nHBII K n= −  

 
Corollary 6: Let K1,n be a star. Then  

( ) ( )22
1 1, 2 1 .nn

nHBII K n n= −  
 

Theorem 7: Let G be an r-regular graph with n vertices. Then 
( ) ( )2

1 3 2 .nrHBII G r= −  
 

Proof: Let G be an r-regular graph with n vertices. Then G has 
2
nr  edges. Every edge of G is incident with exactly two 

vertices. Every vertex of G is adjacent with r vertices. Consider  

( ) ( ) ( ) 2
1 G G

ue

HBII G d u d e= +  ∏  

( ) ( ) ( ) ( )
( )

2 2
G G G G

e uv E G

d u d e d v d e
= ∈

= + × +      ∏  

( ){ } ( ){ }2 22 22 2 2 2
nr nr

r r r r   = + − × + −   
 

( )23 2 .nrr= −  
 

3. SECOND MULTIPLICATIVE K HYPER-BANHATTI INDEX 
 
We define the second multiplicative K hyper-Banhatti index of a graph in terms of incident vertex-edge degrees. 
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Definition 8: The second multiplicative K hyper-Banhatti index of a graph G is defined as  

( ) ( ) ( ) 2
2 G G

ue

HBII G d u d e=   ∏  

where ue means that the vertex u and edge e are incident in G. 
 
We determine second multiplicative K hyper-Banhatti index of cycles, complete graphs, complete bipartite graphs,  
r-regular graphs. 
 
Proposition 9: Let Cn be a cycle with n ≥ 3 vertices. Then 

( ) 4
2 4 .n

nHBII C =  
 
Proof: Let Cn be a cycle with n ≥ 3 vertices. Then Cn has n edges. Every edge of Cn is incident with exactly two 
vertices. Consider  

( ) ( ) ( ) 2
2 n G G

ue

HBII C d u d e=   ∏  

  ( ) ( ) ( ) ( )
( )

2 2

n n n n

n

C C C C
e uv E C

d u d e d v d e
= ∈

   = × +   ∏  

  ( ) ( )2 22 2 2 2
n n

   = × × ×     

  = 44n. 
 

Proposition 10: Let Kn be a complete graph with n vertices. Then  

( ) ( )( ) ( )2 1
2 2 1 2 .

n n
nHBII K n n

−
= − −    

 

Proof: Let Kn be a complete graph with n vertices. Then Kn has 
( )1

2
n n −

 edges. Every edge of Kn is incident with 

exactly two vertices. Consider 

( ) ( ) ( )
2

2 n nn K K
ue

HBII K d u d e =  ∏  

( ) ( ) ( ) ( )
( )

2 2

n n n n

n

K K K K
e uv E K

d u d e d v d e
= ∈

   = ×   ∏  

( )( ){ }
( )

( )( ){ }
( )1 1

2 22 21 2 4 1 2 4
n n n n

n n n n
− −

   = − − × − −   
 

( )( ) ( )2 1
2 1 2 .

n n
n n

−
= − −    

  
Proposition 11: Let Km,n be a complete bipartite graph with 1 ≤ m ≤ n. Then  

( ) ( ) ( )2 4
2 , 2 .mn mn

m nHBII K mn m n= × + −  
 
Proof: Let Km, n be a complete bipartite graph with m + n vertices, mn edges, and |V1|= m, |V2|=n, V(Km, n) = V1 ∪ V2. 
 
Every edge of Km, n is incident with exactly two vertices. Every vertex of V1 is incident with n vertices and every vertex 
of V2 is incident with m vertices. Consider  

( ) ( ) ( )
, ,

2

2 , m n m nm n K K
ue

HBII K d u d e =  ∏  

  ( ) ( ) ( ) ( )
( )

, , , ,

,
,1 2

2 2

m n m n m n m n

m n
u V v V

K K K K
e uv E K

d u d e d v d e

∈ ∈

= ∈

   = ×   ∏  

  ( ){ } ( ){ }2 2
2 2

mn mn
n m n m m n   = + − × + −   

 

  ( ) ( )2 42 .mn mnmn m n= × + −  
  

The following results are immediate from Proposition 11. 
 
Corollary 12: Let Kn,n be a complete bipartite graph. Then  

( ) ( ) ( ) ( )
2 2 24 4 4

2 , 2 1 .n n n
n nHBII K n n= × × −  
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Corollary 13: Let K1, n be a star. Then  

( ) ( )42
2 1, 1 .nn

nHBII K n n= −  
 
Theorem 14: Let G be an r-regular graph with n vertices. Then  

( ) ( ) 2
2 2 2 .

nr
HBII G r r= −    

Proof: Let G be an r-regular graph with n vertices. Then G has 
2
nr  edges. Every edge of G is incident with exactly two 

vertices. Every vertex of G is adjacent with r vertices. Consider  

( ) ( ) ( ) 2
2 G G

ue

HBII G d u d e=   ∏  

   ( ) ( ) ( ) ( )
( )

2 2
G G G G

e uv E G

d u d e d v d e
= ∈

= ×      ∏  

   ( ) ( )2 22 22 2 2 2
nr nr

r r r r   = × − × × −     

   ( ) 2
2 2 .

nr
r r= −    

 
4. FIRST AND SECOND MULTIPLICATIVE K HYPER-BANHATTI COINDICES 
 
We define the first and second multiplicative K hyper-Banhatti coindices of a graph in terms of nonincident vertex-edge 
degrees. 
 
Definition 15: The first and second multiplicative K hyper-Banhatti coindices of a graph G are defined as 

( ) ( ) ( ) 2
1

*

= +  ∏ G G
u e

HBII G d u d e  

( ) ( ) ( ) 2
2

*

=   ∏ G G
u e

HBII G d u d e  

where u*e means that the vertex u  and edge e are nonincident in G. 
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