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ABSTRACT 
A near-field space N satisfying a polynomial identity of the form ab = φ (a, b), where φ (A, B) is different word from 
that AB, must have nil Commutator sub near-field space. First major theorem extends this result to the case where φ 
(A, B) varies with a, b with the restriction that all φ (A, B) have length at least three and are not of the form AnB or 
ABn. Further restrictions on the φ (A, B) are then shown to yields commutativity of a near-field space N. Among these a 
semi simple sub near-field space and a near-field space specifically that each φ (A, B) begins with B and has at least 2 
in A. The final theorem establishes commutativity of near-field spaces N satisfying ab = bas where s = s(a, b) is an 
element of the center of the sub near-field space generated by a and b. All near-field spaces considered are either 
periodic by hypothesis or turn out to be periodic near-field spaces in the course of the in depth study and investigation 
of the near-field spaces. 
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SECTION 1: PRELIMINARY RESULT ON PERIODIC NEAR-FIELD SPACES 
 
Let φ = φ (A, B) be a mapping or word or monomial in the non-commuting in -determinates A and B i.e., φ is a 
polynomial of form  

Bl1 Ak1 Bl2 Ak2 ---Bls Aks                                                                                                                       (1) 

Where ji, ki ∀ i = 1,2,....,s and 0)(
1

>+∑
=

s

i
ii kj . By the A-length (respectively B-length) of φ, which we denote by 

|φ|A (respectively |φ|B), we shall mean the non-negative integer ∑ ik  (respectively  ∑ ij ). The sum |φ|A + |φ|B will be 

called the length of φ and denoted by |φ|. It will be convenient to divide the set of all words into nine types as follows: 
(a) maps with |φ|A ≥ 2 and |φ|B ≥ 2.  
(b) maps of form BAn, n ≥ 1 
(c) maps of form BnA, n ≥ 1 
(d) maps with  |φ|B = 0 
(e) maps with  |φ|A = 0 
(f) maps of form AnBAm, n, m ≥ 1 
(g) maps of form BnABm, n, m ≥ 1 
(h) maps of form AnB, n ≥ 1 
(i) maps of form ABn, n ≥ 1. 

 
Definition 1.1: A near-field space N is called periodic near-field space if for each x ∈ N, there exist distinct positive 
integers n, m depending on x, for which xn = xm.  
 
Example 1.2: Among the periodic near-field spaces in fact finite near-fields which we shall refer to frequently are the 
cobras ( p, k, φ ) – near-fields which we define as follows. 
 

Corresponding Author: Dr N. V. Nagendram* 
E-mail: nvn220463@yahoo.co.in 

 

http://www.ijma.info/�
mailto:nvn220463@yahoo.co.in�


Dr N. V. Nagendram*/ A note on commutativity of periodic near-field spaces over Near-fields / IJMA- 7(6), June-2016. 

© 2016, IJMA. All Rights Reserved                                                                                                                                                                         28  

 
Definition 1.3: N+ is the additive direct sum GF(pk) ⊕ GF(pk), φ is an automorphism of GF(pk), and near-field 
multiplication is defined by 

(a, b)(c, d) = (ac, ad + bφ(c))                                                                                                                (2) 
 
Note 1.4: Near-fields have the property that D2 = 0, where D denoted the set of all zero divisor near-fields including      
0 and they have as few zero divisors as non-domain may have – specifically, |D|2 = |N|. They are commutative near-
fields only when φ is the identity automorphism. 
 
We shall make use of repeated use of two basic theorems on periodic near-field spaces. The second is a special case of 
an old theorem of I N Herstein. But since deduces it as a corollary of one of his more complicated commutativity 
theorems, we think it worthwhile to include a simple proof. 
 
Lemma 1.5: If N is any periodic near-field space, then N has each of the following properties:  

(1) ∀ x ∈ N, some power of x is idempotent. 
(2) ∀ x ∈ N, there exists an integer n(x) > 1such that x – xn(x) is nilpotent. 
(3) ∀ x ∈ N can be expressed in the form of y + w, where yn = y for some n = n(y) > 1 and w is nilpotent. 
(4) If J is an ideal of N and x + J is anon-zero nilpotent element of N /J, then N contains a nilpotent element          

u ∋ x ≡ u (mod J) 
 
Proof: To prove (1): If xn = xm with n > m, then xj + k (n – m) = xj for each positive integer k and each j ≥ m thus, we may 
assume n – m + 1 ≥ m. It follows that x n – m + 1 = (x n – m + 1) n – m + 1 and hence (x n – m + 1)n – m is idempotent. Proved (1). 
 
To prove (2): Let xn = xm, n > m > 1.Then we have, 
 x m-  1( x - x n – m + 1 ) = 0 = x m – 2 x (x - x n – m + 1 ) =x m – 2 x n – m + 1(x - x n – m + 1 ). 
 
Therefore, x m – 2 (x - x n – m + 1 ) = 0 and the result follows by the obvious induction. Proved (2). 
 
To prove (3): If xn = xm with n ≥ n – m + 1 > m, the proofs of (1) and (2) show that we may take y = x n – m + 1 and        
w = x - x n – m + 1. Proved (3). 
 
To prove (4): If x + I is a non-zero nilpotent element of N/I, there exists a positive integer k such that xq  ∈ I for all      
q ≥ k. By the proofs of (1) and (2), N contains a nil potent element v = x – xq with q ≥ k. Clearly, v ≡ x (mod.1). Proved 
(4). This completes the proof of the lemma. 
 
Theorem 1.6: If N is a periodic near-field space with all nilpotent elements central, then N is commutative near-field. 
 
Proof: Let N denote the set of nilpotent elements. The usual argument for commutative near-field spaces shows that N 
is an ideal. Moreover, for x ∈ N and e is an idempotent in N, both ex - exe and xe – exe are in N, hence commute with 
e. Thus idempotents in N are central. 
 
By (4) of lemma 1.5, we see that homomorphic images or maps inherit the hypothesis on N. Consequently, we need 
consider only the case of sub-directly irreducible N. Under this assumption, (1) of lemma 1.5 shows that N is either nil 
and hence commutative near-field or N has a unique non-zero central idempotent, necessarily a multiplicative identity 
element 1. 
 
Considering this latter possibility, we see from (1) of lemma 1.5 that each element of N is either nilpotent or invertible. 
Thus the set D of zero divisor near-fields s is equal to N and hence is a central ideal. Moreover, by (2) of lemma 1.5 

DNN /=  has the an = a property of Jacobson. Hence N  is a commutative near-field and its additive sub near-field 

is a torsion sub near-field. Thus if a, b ∈ N \ D, the sub near-field space of N  generated by and b b D= + is a finite 
near-field, which has cyclic multiplicative sub near-field. There must therefore exist g ∈ N and d1, d2 ∈ D such that 

1a g d′= +  and 2b g d′= + for some positive integers i, j. It follows that a and b must commute and our proof is 
complete. 
 
SECTION 2: A NIL COMMUTATIVE SUB NEAR-FIELD SPACE AND SOME RELATIVES 
 
Theorem 2.1: Let N be a near-field such that for each a, b ∈ N there exist a map φ (A, B) of one of the types (a) to (g) 
and with |φ| ≥ 3, for which ab = φ (a, b). Then the set N of nilpotent elements forms an ideal and the Commutator ideal 
C(N) is contained in N. 
 
Proof: Taking a = b shows that for each a ∈ N, a2 = ak for some k > 2. Hence N is periodic near-field space and each 
nilpotent element squares to zero. We next show that idempotents of N must be central. Let e be a non-zero idempotent.  
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Let a ∈ N and suppose φ (A, B) is a map of the allowed types for which e(ex – exe) = φ(e, ex – exe). Clearly, φ can not 
be a type (d) since (ex – exe)2 = 0. Any other types has either two adjacent B’s or B preceding an A. Thus                
e(ex – exe) = ex – exe = 0 and similarly, xe – exe = 0. 
 
A periodic near-field space satisfies the conclusions of the theorem if nilpotent elements commute with each other, so 
we may complete our proof by showing that ab = 0 for all a, b ∈ N. Accordingly, let a, b ∈ N and φ a map such that    
ab = φ (a, b). If φ has two adjacent A’s and B’s then it is immediate that ab = 0. Otherwise, we have one of the 
following  
 
Cases: (i) ab = (ab)k for some k > 1. (ii) ab = abab.....a (iii) ab = bab........  
 
In case (i), (ab)k – 1  is idempotent, hence central and we get ab = a (xb) k – 1 b = 0. In case (ii) right multiplication by a 
yields aba = 0 = ab, and in case (iii) left multiplication by b yields bab = 0 = ab. This completed the proof of the 
theorem. 
 
Note 2.2: The idempotents are central apply (i) of lemma 1.5 to show that some power of each element is central and 
appeal to a well known theorem of I N Herstein[7]. 
 
Note 2.3: In the hypothesis of theorem 2.1, the restriction on the type of φ (A, B) is essential, for without it, as the near-
field space of 2 x 2 matrices over GF(2) would satisfy the hypothesis. 
 
Note 2.4: In the hypothesis of theorem 2.1 will not yield commutativity of N. The Corbas (2, 2, φ)-near-field space is a 
counter example where φ is the non identity automorphism of GF(4) indeed in this near-field space, if u, v ∈ N and a , 
b ∉∉ N we have uv = vu2, au = ua2, ua = aua2 and ab = (ba)3ab. However, restriction of φ (A, B) to words of fixed type 
(a) to (g) does yield commutativity as we now prove the following theorem. 
 
Theorem 2.5: Let β denote a fixed one of the map-types (a) to (g). Let N be a near-field space such that for each         
a, b ∈ N, there exists a type - β map φ (A, B ), depending on a and b and having length at least three, for which           
ab = φ (a, b). Then N is commutative near-field. 
 
Proof: If β is type (a), commutativity follows from a theorem of the present author. Suppose, then that β is type (d)   
i.e., for each a, b ∈ N, ab = an for some n = n(a, b) ≥ 3. Then since nilpotent elements square to 0, they left-annihilate 
N. Taking a ∈ N and x an element such that xk = x, k > 1 and recalling that idempotents are central, we obtain the result 
that xa = xxk – 1x = xaxk – 1 = 0 and by (3) of lemma 1.5 nilpotent elements right annihilate N as well and commutativity 
follows from theorem 1.6. it is clear that type (e) may be treated similarly. 
 
To complete the proof, we discuss type (f) noting that (g) is similar. Let ∀ x ∈ N, ∀ y ∈ N and xy = xn yxm with          
n, m ≥ 1. If either of n, m is greater than 1, then xy = 0. If xy = xyx, right multiplying by x yields xyx = 0 = xy. Also               
yx = yjxyk ∀ k ≥ 1, so yx = 0 as well and again commutativity follows by theorem 1.6. This completes the proof of the 
theorem. 
 
Theorem 2.6: Suppose that for each x, y∈N there exists an integer n(x, y) > 1 such that xy = xn(x, y)y. Then the 
Commutator or ideal C(N) is nil and the nilpotent elements form an ideal. If the idempotents of N are central, then N is 
commutative. 
 
Proof: Clearly, N is periodic with nilpotent elements squaring to zero and ∀ x ∈ N and v is nilpotent we have             
vx = vnx = 0. Thus the set N of nilpotent elements is the set of annihilator of near-field space N, hence an ideal. The 
near-field space N/N has the an = a property by lemma 1.5 (2), hence is commutative near-field. Thus C(N) ⊆ N. 
 
Now assume that idempotent are central. If ak = a ∀ k >1 and v ∈ N, we get av = anv = an – 1aak – 1v = anvak – 1 = 0. 
Hence by lemma 1.5 (3) and theorem 1.6 implies N is commutative near-field. 
 
Note 2.7: Centrality of idempotents is not implied by the condition xy = xny.  
 
Example 2.8: The near-field space N with additive sub near-field space equal to the multiplication given by                 
0x = cx = 0 and ax = bx = x ∀ x ∈ N. This near-field space satisfies the identity xy = x2y. 
 
Note 2.9: The idempotents are central in theorem 2.6 we can say a bit more about near-field space N specifically it is 
the direct sum of a zero near-field space and a J-near-field space i.e., one with Jacobson’s an = a property. For if x, y are 
arbitrary sub near-field spaces of N,  ∃ integers n1, n2 > 1 ∋ xy = xn1y and yx = yn2x.  
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Note 2.10: A standard computation yields a single n such that xy = xny and yx = ynx and the commutativity now shows 
that xny = xyn. The direct sum decomposition of near-field spaces with the latter type of constraint has essentially been 
obtained. 
 
SECTION 3: MAIN RESULTS OF TWO COMMUTATIVITY THEOREMS ON PERIODIC NEAR-FIELD 
SPACES 
 
Theorem 3.1: Let N be a periodic near-field space, the multiplicative semi simple near-field space of which is a semi 
simple near-field space. Then N is a commutative near-field. 
 
Proof: If a, b ∈ N and ab = 0 then ba = 0 also. Then the nilpotent elements of N form an ideal N, which since N is 
periodic near-field space, must coincide with the Jacobson radical J(N). 
 
Again Dr N V Nagendram wish to deduce result from theorem 1.6. Suppose then, that µ is a non-central nilpotent 
element and b ∈ N is an element not commuting with µ. Then  

µb = bj
1 µk

1..........µk
i  ∀ j1 ≥ 1, ∀ ∑ ki ≥ 2                                                                                             (3) 

 
If k1 ≥ 2 we obtain 

 µb = bj
1µ µk

1 
– 1.......µk

s = µt(bj
1)q..........µk

1-1.........µk
s                                                                          (4) 

 
If t = 1we make no further substitutions in (4) otherwise we write µb = µµt -1 bj

1
q...µk

s
-1......µk

s = µbj
1
qx (µt -1)n .....µk

s. In 
either case we have µb = µby for some y ∈ J(N) from which it follows that µb = 0 = bµ is a contradiction to our choice 
of µ. ⊗ 
 
If k1 = 1 in equation (3) then some other ki is positive and a similar computation again yields the same contradiction⊗. 
Thus nilpotent elements of N are central and this completes the proof of the theorem. 
 
Corollary 3.2: Let N be any near-field space having as multiplicative semi simple near-field space is a semi simple 
near-field. Then N is a commutative near-field. 
 
Note 3.3: Theorem 3.1 and corollary 3.2 would not be true if the condition |φ|A ≥ 2 were omitted from the definition of 
maps the Corbas (2, 2, φ)-near-field space is the revealing example. 
 
Theorem 3.4: Let N be any near-field space such that for each x, y ∈ N there exists an element s = s(x, y) in the center 
of the sub near-field space generated by x and y for which xy = yxs. Then N is commutative near-field. 
 
Proof: Taking x = y shows that x2 = x2p(x), where p(x) is a polynomial with integer coefficients and zero constant 
term. It follows that N is periodic near-field space. Moreover, the given constraint shows that ab = 0 ⇒ ba = 0 = arb     
∀ r ∈ N. This result together with the obvious fact that nilpotent elements square to zero shows that uvs =0 ∀ nilpotent 
element u and v and ∀ s in the sub near-field space generated by u and v. Thus the nilpotent elements form an ideal N 
with N2 = 0. Moreover, a standard arguement applied to e, ex – exe and xe – exe shows that all  
 
The hypothesis of the theorem persist under the taking of homeomorphic images, so we need consider only sub-directly 
irreducible N. Since nil near-field spaces with our condition are zero near-field spaces and since sub directly irreducible 
near-field spaces can have at most one non-zero central idempotent, lemma 1.5 (1) allows us to assume that N has 1 
and that every non nilpotent element is invertible. Hence the set D of zero divisors is an ideal which equal to N. 
 
Since there exist distinct n, m with (1 + 1)n  = (1 + 1)m, N+  must be a torsion sub near-field space which in view of sub 
direct irreducibility is a p-sub near-field space for some prime p. Since D2  = 0, we have then (p ⋅ 1) (px) = p2x = 0 for 
all x ∈ N. 
 
Now N is clearly a duo near-field space, so we may apply earlier results of near-field spaces on sub directly irreducible 
duo near-field spaces. Specifically, letting S denote the intersection of the non-zero sub near-field spaces of N and 
noting that N ≠ D, we have S equal to the annihilator of D i.e., S = D. By known lemma 1.5 (2) and the a” = a theorem 
we know that N/D is commutative near-field and hence that commutator near-fields in a near-field space belongs to D. 
Suppose now that pN ≠ 0  let px ≠ 0 and let y be an arbitrary sub near-field space of N. Since pxN is a non-zero sub 
near-field space , we have xy – yx ∈ D = S ⊆ pxN and there exists r ∈ N such that xy – yx = pxr and hence              
p(xy – yx) = p2xr = 0. Thus pN = D is central and commutativity of near-fields of N follows from theorem 1.6. 
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Now suppose that we have a sub directly irreducible counter example with pN = 0. By known lemma 1.5 (3) and the 
fact that D2 = 0. We can then choose a non-central nilpotent element u and an element b ∈ N such that bn(b) = b for 
some n(b) > 1 and b does not commute with u. Since bu = ubs for some s in the sub near-field space generated by u and 
b, and since uru = 0 for all r ∈ N, we obtain bu = ubp(b), where p(A) is some polynomial with integer coefficients and 
zero constant term. It follows that the sub near-field space <u, b> of N generated by u and b is finite. Since the 
hypothesis of the theorem are inherited by sub near-field spaces and by homomorphic images we can conclude that 
some homomorphic image T of <u, b> is a finite sub directly irreducible counter example with pT = 0. 
 
We can argue that T must be a near-field space for appropriate choices and finite near-field spaces N with 1 and with 
D2 = 0 = pN must have additive sub near-field space which is direct sum K ⊕ D, where K is a finite near- field and D is 
a left vector space over K. Since one dimensional sub near-field spaces of D are left sub near-field spaces, the fact that 
our T is sub directly irreducible and a duo near-field space shows that D is one dimensional and |T|  = |D|2.  We apply 
an earlier result to show that T is a near-field. 
 
Consider near-field T with ψ a non-identity automorphism of K = GF(pk). let g be a generator of the multiplicative sub 
near-field space of K, and let ϕ be given by x → xpr, 1 ≤ r < k. If (a, b) ∈ T commutes with both (g, 0) and (0, g) then 
by (2) we have b = 0 and a = ϕ(a). Then imposing the condition that (g, 0)(0, g) = (0, g)(g, 0)(a, 0) yields g = ϕ(g)a. 
Since ϕ(g) = gpr and g = gpk we have gpk = gpra, so that a = gpk – pr = gpr (pk-r-1). Now using fact that ϕ(a) = a, we get     
gpr(pk-r -1)(pr -1) = e, where e denotes the identity element of K. Since g has order pk-1, which is relatively prime to p′, we 
conclude that pk – 1/ (pk - r – 1)( pr – 1), which is absurd. The possibility of a counter example is thus demolished. This 
completes the proof of the theorem. 
 
Note: It is tempting to conjecture that N must be commutative near-field space if it satisfies xy = yxs, where s = s(x, y) 
is merely assumed to belong to the sub near-field space generated by x and y and not necessarily to its center. However, 
the near-field space N shows that this is not true. 
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