
International Journal of Mathematical Archive-7(6), 2016, 18-26 
 Available online through www.ijma.info ISSN 2229 – 5046 

International Journal of Mathematical Archive- 7(6), June – 2016                                                                                                                 18 

 
COMPARISON OF DIFFERENT WAVELET-BASED STATISTICAL METHODS 

 IN BANKING SECTOR 
 

JATINDER KUMAR, AMANDEEP KAUR* 
 

Department of Mathematics, Guru Nanak Dev University, Amritsar-143005, India. 
 

(Received On: 28-05-16; Revised & Accepted On: 17-06-16) 
 
 

ABSTRACT 
The paper proposes different wavelet-based forecasting techniques for time series. We investigate the stock forecast of 
two leading banks from the Indian banking sector through these wavelet-based approaches and make a comparison of 
the techniques for the data.  The proposed prediction approach consists of the combination of the wavelet transform 
and various statistical methods. This approach is applied on the two types of real banking data series: SBI and ICICI 
 
Keywords: stock prices, wavelet transform, Exponential smoothing, SMA, trigonometric fit. 
 
MSC 2010 NO.: 91B84, 91G70. 
 
 
1. INTRODUCTION 
 
Banking sector plays a dynamic role in the economic development of a country. Banks are considered not merely as 
dealers in money but also the leaders in economic development. A well-developed banking sector provides a firm and 
durable foundation for the development of the country. For a developing country like India, banking sector is 
considered to be the backbone of the economy. It contributes to a country’s development in the following ways: 

• Banks promote the capital formation by encouraging the habit of saving among people. Economic 
development depends upon the diversion of the economic resources from consumption to capital formation. 
Banks help in this direction by encouraging saving and mobilising them for productive uses. 

• Banks are very important source of finance and credit for industry and trade. They are the instruments for 
developing internal as well as external trade. 

• Facilities of bank loans enable the entrepreneurs to step up their investment on innovational activities, adopt 
new methods of production and increase productive capital of the economy. 

• Banks influence the nature and volume of industrial production by providing financial resources to the 
industries. Economic development of the developing countries like India, where most of the population live in 
the rural areas, requires the development of agriculture and small scale industries. Banks play an important 
role by providing loans for the growth and modernisation of agriculture.  

 
In recent years, banking sector has experienced the extent of competition. Volatile markets, government intervention 
and changing customer habits have created a truly dynamic environment. As this environment transforms, banking 
sector needs to formulate and implement strategic and operational changes to meet the market’s demand while 
simultaneously updating forecasts. Forecasting, the process to predict future situations based on past and present data, 
is helpful in planning and future growth. Being the key to smart business, it is an important prelude to effective and 
efficient planning. 
 
Stock market forecasting is required for the investors as it is an important issue in investment decision making. Mostly, 
the financial time series data is non stationary as it contains extreme variations and these fluctuations occur with high 
frequency.  Standard time series econometric tools such as Fourier transform usually consider only time or frequency 
component separately. Whereas, wavelets allow us to study the frequency components of the time series with time 
information simultaneously. So the wavelet transform is very useful tool in time series analysis. Many eminent 
scientists and mathematicians e.g. I. Daubechies, A. Grossmann, S. Mallat, Y. Meyer, J. Morlet, Coifman, V. 
Wickerhauser made a remarkable contribution to the wavelet theory. The power of wavelets has been proven in many 
applications such as wave propagation, data compression, signal processing, image processing, pattern recognition, self 
similarity or discontinuity detection. Siddiqi [11] discusses the wavelet methods to solve partial differential equation 
and integral equations. As the trends can be classified with wavelets so they also offer a strong tool for time series 
analysis. 
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Applications of wavelet analysis in financial market analysis have been discussed by various researchers. Ramsey [10] 
discusses the role of wavelet in various economics fields such as forecasting, business cycles, interest rates etc.           
R. Gencey [4] investigates the foreign exchange rate scaling properties by wavelet techniques. He has shown that 
foreign exchange rate volatilities follow different scaling levels at different horizons. In [6] M. Gallegati studies the 
relationship between stock market returns and economic activity by applying the Maximum Overlap Discrete wavelet 
transform to the Dow Jone Industrial Average and the USA Industrial production Indices. With the help of wavelet 
method and Fisher hypothesis S. Kim [7] discusses that there is positive relationship between stock returns and 
inflation.  The result shown by R. Deora [3] reveals the existence of time-scale-dependent comovement between Indian 
and world stock markets with wavelet-based GARCH approach. In [9] Pablo M. examines the linkage between interest 
rate fluctuations and Spanish stock market by using wavelet-based tools namely wavelet variance, correlation and 
cross-correlation. Abiyev R. [1] uses Fuzzy Wavelet Neural Networks (FWNN) for modelling and prediction of stock 
prices.  In [2] A. J. Conejo discusses the applications of wavelet with ARIMA in electricity market forecasting. Gencey 
[5] provides some important properties of the wavelets and discusses its applications in both economics and finance. 
Kumar, J. [8] discusses the concept of neuro-fuzzy with wavelet decomposition for stock market. Some statistical 
methods based on wavelet for prediction are discussed by Weinreich [12]. Our proposed methods are also partially 
motivated by Weinreich’s wavelet-based methods. 
 
The object of this paper is to conduct the stock market analysis of some financial institutions from Indian banking 
sector based on the decomposition of time series of stock prices in order to forecast stock prices by using the wavelet 
decompositions and some statistical methods and then make comparison of the results. The data used in the study are 
the daily closing prices of the two banks namely SBI and ICICI. State bank of India (SBI) is one of the biggest Indian 
multinational public sectors bank whereas ICICI is one of the largest private sector bank.  SBI has nearly 16000 
branches, 14 regional hubs and 57 Zonal offices that are located in important cities throughout India. Having a market 
capital of Rs. 181,804.24 Cr., it is large capital company operating in the banking sector. On the other side ICICI has a 
network of 4,050 branches. It offers a wide range of banking products and financial services for corporate and retail 
customers. 
 
The rest of the paper structures as follows: the next section describes the wavelet methodology. The forecasting 
framework is presented in the third section. The fourth section discusses the empirical results and is followed by the 
conclusion in the last section. 
 
2. WAVELET METHODOLOGY 
 
Wavelet analysis is a powerful mathematical tool for analyzing time series. It uses a similar strategy like Fourier 
analysis as it employs some basic functions (wavelets instead of sinusoidal) and uses them to decompose the series. 
The main difference between two tools is that in the contrast to Fourier analysis, wavelet analysis does not need any 
stationary assumption in order to decompose the series. Also Fourier methods perform a global analysis whereas the 
Wavelet methods act locally in time and frequency. This feature makes wavelets ideal tool for analysing non-stationary 
signals and those with transients or singularities. In this section we first describe a short overview of the Fourier 
transform and its revised version i.e. the short–term Fourier transform and then provide a brief discussion on the 
discrete wavelet transform. 
 
2.1 Fourier Transform vs. Wavelet Transform 
 
The Fourier transform breaks a signal into a sum of harmonic components of different frequencies as a linear 
combination of Fourier basic functions (sines and cosines). It is a frequency domain representation of a signal, 
containing the same information of the original signal but summarized as a function of frequency. The main drawback 
of the Fourier transform is that it allows analysis of signals under the main assumption that the observed signal is 
stationary over the time period of the analysis. This assumption is not valid for many practical signals as mostly 
economic and financial time series data (financial indices, census data, and spatially distributed econometrics 
measures) are non stationary, exhibit high complexity and involve both random processes and intermittent deterministic 
processes. Also Fourier transform gives only frequency information of the signal, not regarding time. To overcome 
these drawbacks, Dennis Gabor in 1946, first introduced a modified time dependent version of it, namely, Short-Time 
Fourier Transform (STFT) known later as Gabor transform. The short- time Fourier transform uses a fixed window 
function with respect to frequency and applies the Fourier transform to the windowed signal. The original signal is 
partitioned into small enough segments such that these portions of the non stationary signal can be assumed to be 
stationary over the duration of the window function. Once the window function is chosen both the time as well as 
frequency resolutions become fixed for all frequencies and times respectively. As a consequence, the short- time 
Fourier transform does not allow any change in time or frequency resolutions. 
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Wavelet transform is an alternative approach to the short-time Fourier transform to overcome the resolution problem. 
The Wavelet transform combines the information from time and frequency domains and therefore, preserves time 
information. Moreover, it does not require the stationarity of the signal. In contrast to the fixed time frequency partition 
of the short-time Fourier transform, the Wavelet transform analyzes the signal at different resolutions using 
multiresloution analysis. The multiresolution analysis  approach may overcome the resolution problem as it adaptively 
partitions the time frequency plane, using short windows at high frequencies and long windows at low frequencies and 
thus letting both time and frequency resolutions to vary in the time –frequency plane. 
 
As having finite length and oscillatory behaviour, wavelets literally mean small waves. Basic wavelets are 
characterized into two special functions: the father wavelet (or scaling function) 𝜙𝜙(𝑡𝑡) and the mother wavelet 𝜓𝜓(𝑡𝑡). 
Based on the mother wavelet, a family of wavelets 𝜓𝜓𝑎𝑎 ,𝑏𝑏(𝑡𝑡) can be obtained by simply scaling and translating ψ: 

𝜓𝜓𝑎𝑎 ,𝑏𝑏(𝑡𝑡) =
1

�|𝑎𝑎|
𝜓𝜓 �

𝑡𝑡 − 𝑏𝑏
𝑎𝑎

� ; 𝑎𝑎 ∈ ℝ \{0}, 𝑏𝑏 ∈ ℝ 

where 𝑎𝑎 is a scaling or dilation parameter that controls the length of the wavelet (window), while location parameter 
𝑏𝑏 determines its position in the time domain. The father wavelet integrates to one and is good at representing the 
smooth and low frequency part of a signal, whereas the mother wavelet integrates to zero and is good in capturing the 
detail and high frequency components. To capture the volatile behaviour in time series wavelet analysis has become an 
increasing popular tool in many fields.  
 
2.2 Discrete Wavelet Transform 
 
There are two types of wavelet transform- the continuous wavelet transform (CWT) and its discretized version, discrete 
wavelet transform (DWT). The CWT is popular among physicists, whereas the DWT is more common in numerical 
analysis, signal and image processing. For a long time, wavelet applications in economics have concentrated on the 
DWT due to its greater simplicity and more parsimonious nature. The DWT produces only the minimal number of 
coefficients necessary to reconstruct the original signal. The reduction is achieved by discretizing the parameters          
𝑎𝑎  and  𝑏𝑏, so that 𝑎𝑎 = 2−𝑗𝑗  and  𝑏𝑏 = 𝑘𝑘2−𝑗𝑗  where 𝑗𝑗 and  𝑘𝑘  are integers. In the DWT the number of observations has to be 
dyadic i.e. an integer power of 2.  
 
The aim of the DWT is to decompose the discrete time signal to basic functions, wavelets which provides us to a good 
analytic view of the analyzed signal When the DWT is applied, the time series signal can be built up as a sequence of 
projections onto father and mother wavelet generated from 𝜙𝜙 and 𝜓𝜓 through scaling and translating as follows: 

𝜙𝜙𝑗𝑗 ,𝑘𝑘 = 2
𝑗𝑗
2𝜙𝜙(2𝑗𝑗 𝑡𝑡 − 𝑘𝑘) 

𝜓𝜓𝑗𝑗 ,𝑘𝑘 = 2
𝑗𝑗
2𝜓𝜓(2𝑗𝑗 𝑡𝑡 − 𝑘𝑘) 

 
They form a basis for  𝐿𝐿2(ℝ). The wavelet representation of the signal 𝑦𝑦(𝑡𝑡) ∈ 𝐿𝐿2(ℝ) can be written as: 

y(𝑡𝑡) = ∑ 𝑠𝑠𝐽𝐽 ,𝑘𝑘𝑘𝑘 𝜙𝜙𝐽𝐽 ,𝑘𝑘(𝑡𝑡) + ∑ 𝑑𝑑𝐽𝐽 ,𝑘𝑘𝜓𝜓𝐽𝐽 ,𝑘𝑘(𝑡𝑡)𝑘𝑘 + ⋯+ ∑ 𝑑𝑑1,𝑘𝑘𝜓𝜓1,𝑘𝑘(𝑡𝑡)𝑘𝑘  
Where 𝐽𝐽  is the number of multiresolution levels and 𝑘𝑘  ranges from 1 to the number of coefficients in each level. Here 
𝑠𝑠𝐽𝐽 ,𝑘𝑘   are scaling or smooth coefficients that represent the smooth behaviour of the series and  𝑑𝑑𝐽𝐽 ,𝑘𝑘  , wavelet coefficients 
capture the high frequency content of the time series. They are defined as: 

𝑠𝑠𝐽𝐽 ,𝑘𝑘 = � 𝜙𝜙𝐽𝐽 ,𝑘𝑘(𝑡𝑡) 𝑦𝑦(𝑡𝑡)
∞

−∞
𝑑𝑑𝑡𝑡 

𝑑𝑑𝑗𝑗 ,𝑘𝑘 = � 𝜓𝜓𝑗𝑗 ,𝑘𝑘(𝑡𝑡) 𝑦𝑦(𝑡𝑡)𝑑𝑑𝑡𝑡     𝑗𝑗 = 1,2, … 𝐽𝐽
∞

−∞
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Figure 1 

  
Forecasting Framework  
 
The main idea of the prediction technique using wavelet approach is to decompose the original time series into a range 
of frequency scales and then apply the forecasting methods on these individual parts. Here for the prediction of one 
month values in the time series, the following steps are performed. At first, we shorten the given time series to the size 
of 974 values and neglect the data from the one month for prediction. Secondly, a three level daubechies wavelet of 
order two (db2) is performed on the time series which results the following decomposition 

𝑠𝑠 = 𝑎𝑎3 + 𝑑𝑑3 + 𝑑𝑑2 + 𝑑𝑑1 
 
This is shown in figure 1 and 2. The third step is the extension of the time series s, that is extension of each scale of     
s, namely 𝑎𝑎3, 𝑑𝑑3, 𝑑𝑑2, 𝑑𝑑1. The various techniques how thes scales are extended yield various methods. Ten prediction 
methods are introduced and denoted as M1, M2, M3 ... M10. These approaches are based on some statistical procedures 
which are explained below: 
 
SMA(simple moving average)

 

  
 
Moving average provides a simple method for smoothing the past values to estimate trend-cycle component. Taking an 
average of the points near observation provide a reasonable estimate of the trend-cycle at that observation. The average 
eliminates some randomness in the data. It is needed to decide how many data points to include in each average. In our 
application we take a moving average of order 3 centered at time t. 
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Figure 2 

 
Exponential Smoothing(ES) 
 
In moving averages the past observations are weighted equally but exponential smoothing assigns exponentially 
decreasing weights as the observation get older. So exponential smoothing method gives relatively more weights to 
recent observations in forecasting than the older observations. This framework generates reliable forecasts quickly for a 
wide spectrum of time series which is of great importance and added advantage to applications in industry.       
 

 

Trigonometric fitting  
 
With this approach we approximate a function by series of trigonometric functions. The approximation (𝑎𝑎3) or detail 
(𝑑𝑑𝑖𝑖  , 𝑖𝑖 = 1,2,3),  components of the given series are interpolated with trigonometric functions which results in a low 
frequency function fitting the data for approximation and a higher frequency for the detail levels. 
 

Table: 1 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 𝑎𝑎3 𝑑𝑑3 𝑑𝑑2 𝑑𝑑1 

𝑀𝑀1 SMA SMA SMA SMA 
𝑀𝑀2 SMA SINFIT SINFIT 0 
𝑀𝑀3 SMA SINFIT SINFIT SINFIT 
𝑀𝑀4 SMA SMA 0 0 
𝑀𝑀5 SMA SMA SINFIT SINFIT 

𝑀𝑀6 ES ES ES ES 
𝑀𝑀7 ES SINFT SINFIT 0 
𝑀𝑀8 ES SINFIT SINFIT SINFIT 
𝑀𝑀9 ES ES 0 0 
𝑀𝑀10  ES ES SINFIT SINFIT 
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We also consider the case when the finest detail levels are neglected, i.e. either only 𝑑𝑑1 or the two finest details levels 
𝑑𝑑1 and 𝑑𝑑2 are treated by hard threshold which means putting the corresponding wavelet coefficients to zero. These ten 
different prediction methods are described in the table 1. 
 
We consider the prediction in method 1 (𝑀𝑀1) by Simple Moving Average (SMA) and method 6 (𝑀𝑀6) by Exponential 
smoothing (ES) on each level. Methods  𝑀𝑀2 -𝑀𝑀5 extend approximation level by SMA and 𝑀𝑀7 -𝑀𝑀10  apply ES. The 
methods differ mainly with respect to their analysis of the detail levels. In 𝑀𝑀2, 𝑀𝑀3, 𝑀𝑀5, 𝑀𝑀7, 𝑀𝑀8  and 𝑀𝑀10   trigonometric 
fit  extend the different detail levels. 
 
4. EMPIRICAL RESULTS 
 
For the application with the proposed methodology, we take a large amount of data of SBI and ICICI daily closing 
prices. The data is collected from BSE site over a period of 1 January 2009 to 31 December 2012. Both data series are 
divided in two phase: training phase and testing phase. In the training phase, we design predictive models for each of 
the decomposed component of the original series. The developed forecasting models are used to predict future values 
and then we compare forecasted values with exact values in the testing phase.  
 

Figure 3: Error comparisons of SBI data for 1 month prediction 

 
 

For the comparison of the proposed methods we consider the two standard error measures: Root Mean Square Error 
(RMSE) and Mean Absolute Percentage Error (MAPE). Let 𝑦𝑦(𝑡𝑡) be the actual value and 𝑓𝑓(𝑡𝑡) the forecasted value. 
Then these measures are defined as  

𝑅𝑅𝑀𝑀𝑅𝑅𝑅𝑅 = ��
(𝑦𝑦(𝑡𝑡) − 𝑓𝑓(𝑡𝑡))2

𝑛𝑛

𝑛𝑛

𝑡𝑡=1

 

𝑀𝑀𝑀𝑀𝑀𝑀𝑅𝑅 =
1
𝑛𝑛
�

|𝑦𝑦(𝑡𝑡) − 𝑓𝑓(𝑡𝑡)|
𝑛𝑛

× 100
𝑛𝑛

𝑡𝑡=1

 

 
These error measures are applied to the time series data. Based on these measures we compare the all proposed wavelet 
based methods.  First we predict one month values using proposed methods. Then it is extended to three month and one 
year. For one month we calculate RMSE and MAPE which are shown in figures 3 and figure 4.         
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Figure 4:  Error comparisons of ICICI data for 1 month prediction 

 
  

Figure 5:  comparisons of exact and forecasted values for one month SBI data 

 
  
We compare all these wavelet-based prediction results. From both graphs (Figure3 and Figure 4) it is clear that the 
methods where SMA is considered are superior to those with variants Exponential smoothing. All methods except 𝑀𝑀1 
and 𝑀𝑀6 are based on different extensions of different approximations and details levels. The detail parts 𝑑𝑑1 and 𝑑𝑑2 are 
neglected in  𝑀𝑀2, 𝑀𝑀4, 𝑀𝑀7 and 𝑀𝑀9 respectively. These scales could be noise as they have no great impact on the quality. 
Figures 3 and 4 show that with respect to the root mean square error 𝑀𝑀1 and 𝑀𝑀4 are the best methods and to mean 
absolute percentage error 𝑀𝑀1 and 𝑀𝑀5 performs best. Also methods 𝑀𝑀2 -𝑀𝑀5 are better than 𝑀𝑀6 -𝑀𝑀9 . It means that for the 
analysis of the approximation level 𝑎𝑎3  moving average is better than for the exponential smoothing. As a summary we 
find that 𝑀𝑀1 shows best performance with respect to both measures. Figure 6 and 7 presents the comparisons of exact 
values and forecasted values of SBI and ICICI respectively by method by 𝑀𝑀1. It can be seen that in both type of data 
predicted values are close to exact values.       

 
Figure 6: comparisons of exact and forecasted values for one month ICICI data  

 
Also we apply same ten methods for three months and one year stock price prediction. Figure 7 and 8 show RMSE and 
MAPE for three month prediction and figure 9 and 10 for one year. It is clear that same result hold for three months and 
one year as for one month i.e.  𝑀𝑀1 is superior to all other methods. 
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Figure 7: Error comparisons of SBI data for 3 months prediction 

 
    

Figure 8: Error comparisons of ICIC data for 3 months prediction 

 
 

Figure 9: Error comparisons of SBI data for 1 year prediction 

 
 

Figure 10: Error comparisons of ICICI data for 1 year prediction 
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5. CONCLUSION 
 
In the present work, different prediction methods based on wavelet have been discussed. Wavelet transform 
decomposes the original time series data in a hierarchy of new time series that behave better than the original time 
series. The decomposed time series can be predicted more accurately. Here we have used the Indian banking stock 
prices as an example to show the benefits of using wavelet transform in time series analysis. In this paper we use ten 
various statistical methods (shown in table 1) on the decomposed parts to extend the data for required period. The 
computational results show that method 𝑀𝑀1 which is based on moving average gives best result as compared to other 
methods.  
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