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ABSTRACT 

In this chapter, existence of the group inverse for q-k-EP matrices is investigated. Equivalent conditions for various 
generalized inverses of a q-k-EPr matrix to be q-k-EPr are determined. Validity of the reverse order law for the Moore-
Penrose inverse of the product of q-k-EPr matrices is discussed. 
 
Keywords: Moore-Penrose Inverse, Quaternion matrix, Range hermitian k-EP matrices, Generalized inverses of 
matrices. 
 
 
1. INTRODUCTION 
 
The algebra  H of real quaternion, which is a four- dimensional non-commutative algebra over real number field R with 
canonical basis 1, i, j, k satisfying the conditions, 

 i2 = j2 = k2 = ijk = −1 that implies  ij = −ji = k, jk = −kj = i  and ki = −ik = j. 
 
The elements in H can be written in a unique way as, α = a + bi + cj + dk, where a, b, c  and d are real numbers,       
i.e.,  H ={ �α = a + bi + cj + dk | a, b, c , d ∈ R}. 
 
The conjugate of  α is defined as α� =  a − bi − cj − dk, and the norm |α| = √αα� for 0 ≠ α ∈ H, α−1 = α�

|α|2. 
 
We consider K is a permutation matrix associated with the permutation 
k(x) = (Sn ), where S = {1,2,…,n}. Also  K2 = I, K� = KT = K∗ = K−1 = K. 
 
A matrix has an inverse only if it is square, and even then only if it is non-singular, or in other words, if its columns (or 
rows) are linearly independent. By a generalized inverse of a given matrixAwe shall mean a matrix X associated in 
some way with A that (i) exists for a class of matrices larger than the class of non-singular matrices, (ii) has some of the 
properties of the usual inverse, and (iii) reduces to the usual inverse whenA is non-singular.   
 
A generalized inverse of A is any matrix satisfying AXA=A. If A were nonsingular, multiplication by A−1 both on the 
left and on the right would give at once X = A−1. 
 
NOTATIONS AND PRELIMINARIES 
 
In this section, the notations, definitions and Theorems used in the thesis are given. Throughout, it is concerned with 
complex square matrices.                
Hn×n          : The space of nxn quaternion matrices of order n.  
Hn             : The space of quaternion n-tuples.  
In               : Identity matrix of appropriate size. 
V               : Permutation matrix with units in the secondary diagonal.  
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For A∈ Hn×n, 
dim(A)     :  Dimension of A.  
det(A)      :  Determinant of A. 
rk(A)       :  Rank of A is the maximum number of linearly independent rows or columns of A.  
R(A)        :  Range space of A = { y∈ Hn / y= Ax for some x∈Hn }. 
N(A)        :  Null space of A = { x∈Hn / Ax = 0 }. 
AT            :  The transpose of A.  
AS            :  The secondary transpose of A. 
A�              : The conjugate of A. 
A*             : The conjugate transpose of A. 
A�S                  :  The conjugate secondary transpose of A.  
A−            :  1- inverse of A, is a solution of the equations AXA= A.  
A=            : {1, 2} inverse of A, is solution of the equations XA=A and XAX = X. 
A{1}        : The set of all 1-inverses of A.  
A{2}        : The set of all 2-inverses of A. 
A{1, 2}    : The set of all {1,2 } inverses of A. 
A{1, 2, 3}: The set of all {1,2,3} inverses of A, that is the set ofall  solutions of  the equations  
      AXA = A,XAX = X and (AX )* = (AX).  
A{1,2,4} :  The set of all { 1,2,4 } inverses of A, that is the set of  all  solutions of the equations  
                      AXA = A, XAX =Xand( XA )* = ( XA ).  

A          :  Moore-Penrose inverse of A is the unique solution  of the equations  

     AXA = A, XAX = X, (AX)* = (AX)and (XA)* = (XA). A exists is unique  
A#            :  Group inverse of A, satisfyingthe equations AXA = A, XAX = X, XA = AX. If A# exists, then it is unique.  
A≥B        : A is greater than or equal to B. 

A  B     :  Parallel sum of A and B.  
 
TYPES OF MATRIX A         DEFINITIONS  
 
Symmetric matrix                     aij = aji(or) A = AT 
Skew-Symmetric                      aij = -aji(or) A = - AT 
Hermitian                                 āij = aji(or) A = A* 
Skew –Hermitian                     āij = -aji(or) A = - A* 
Secondary Hermitian                A = A�S 
Secondary Skew –Hermitian   A = -A�S 
Idempotent                                   A2 = A 
EP or range hermitian              N(A) = N(A*)  (or)   R(A) = R(A*) 
EPr                                                                   N(A) = N(A*) and rk(A) = r  (or) R(A) = R(A*) and rk(A) = r                                                    
 
Throughout ‘V’ refers as a permutation matrix with units in the secondary diagonal and the following results. 
 
Theorem 1.1: [1] For A, B∈Hn×n the following statements hold: 

(i)  R(A ) = R(A*) and N(A ) = N(A*). 

(ii) R(A) = R(B) ⇔AA = BB . 
 
Theorem 1.2: [p.162, [1]] Let A∈Hn×n.Then group inverse A#exists ⇔ rk(A) = rk(A2 ).  
 

Theorem 1.3: [p.164, [1]] Let A∈Hn×n. Then A is EP ⇔A# = A when A# exists.  
 
2. q-k-EP GENERALIZED INVERSES 
 
In this section, equivalent conditions for various generalized inverses of a q-k-EPr matrix to be q-k-EPr are determined. 
Generalized inverses belonging to the sets A{1,2}, A{1, 2, 3} and A{1, 2, 4} of a q-k-EPr matrix A are characterized. 
 
In (1), it is shown that A is  q-k-EPr  and only  if  A  is q-k-EPr. Thus, the q-k-EPr property of complex matrices is 
preserved for its Moore -Penrose inverses. However, all other generalized inverses of a q-k-EPr matrix need not be q-k-
EPr. For instance,   
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2 1
4 2

A  
=  
 

 with  
0 1
1 0

V  
=  
 

. Here A is q-k-EP1. 

But 
2 1
4 2

A− − 
=  − 

 is 1- inverse of A, which is not q-k-EP1.                        

 
A generalized inverse A=∈A{1, 2} is shown to be q-k-EPr whenever Ais q-k-EPr under certain conditions in the 
following way.  
 
Theorem 2.1: Let A∈Hnxn, X∈A{1, 2} and XA, AX are q-k-EPr matrices. Then A is q-k-EPr⇔ X is q-k-EPr. 
 
Proof: Since AX and XAare q-k-EPr,             (By[6]) 
 
We have   R(AX) = R(V(AX)*) and R(XA) = R(V(XA)*).  
 
Since X∈A{1, 2}, we have AXA = A, XAX = X. 
 
Now,   R(A) = R(AX)  
                    = R(V(AX )*)  
                    = R(VX*A*)  
                    = R(VX*).  
    
            R(VA*) = R(VA*X*)  
                         = R(V(XA)*)  
                         = R(XA)  
                         = R(X).   
 
Now,    A is q-k-EPr ⇔ R(A) = R( VA*) and rk(A) = r  
                                ⇔ R( VX* ) = R(X) and rk(A) = rk(X) = r  
                                ⇔ X is q-k-EPr.  
 
Hence the Theorem.            
 
Remark 2.2:  In the above theorem, the conditions that both AX and XA to be q-k-EPr are essential.  

For instance, let 
1 1
1 1

A  
=  
 

 with 
0 1
1 0

V  
=  
 

 

A is q-k-EP1.     { }
1 0

1,2
0 0

X A A=  
= = ∈ 

 
                                                                              

                         

1 0
0 0

AX  
=  
 

 and 
1 1
0 0

XA  
=  
 

  

AX and XA are not q-k-EP1 .Also X is not q-k-EP1.  
 
Now, we show that generalized inverses belonging to the sets A{1, 2, 3} and A{1, 2, 4} of a q-k-EPr matrix A is alsoq-
k-EPr under certain conditions in the following Theorems.  
 
Theorem 2.3: Let A∈Hn×n, X∈A{1, 2, 3}, R(X) = R(A*). Then A is q-k-EPr⇔X is q-k-EPr. 
 
Proof: Since X∈A{1, 2, 3}, we have AXA = A, XAX = X, (AX)* = AA. Therefore, 
R(A) = R(AX) = R((AX)*) = R(A*A*) = R(X*). 
 
R(X) = R(A*) ⇒XX = A*(A*)                                      [By Theorem (1.1)] 
                      ⇒ XX = A*(A )* 
                      ⇒ XX =(A A)* 
                      ⇒ XX  = A A 
                      ⇒VXX V = V A AV 
                      ⇒ (VX)(VX) = (AV) (AV) 
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                      ⇒ (VX)(VX) = (AV)*((AV)*)  
                      ⇒ (VX) = R((AV)*) 
                      ⇒ R(VX) = R(VA*). 
 
A is q-k-EPr ⇔  R(A) = R(VA*)  and  rk(A) = r. 
                    ⇔R(X*) = R(VX)    and   rk(A) = rk(X) = r. 
                    ⇔X is q-k-EPr.           (By[6]) 
 
Hence the Theorem.                         
 
Theorem 2.4: Let A∈Hn×n, X∈A{1, 2, 4}, R(A) = R(X*). Then A is q-k-EPr⇔X is q-k-EPr. 
 
Proof: Since X∈A{1, 2, 4}, we have AXA = A, XAX = X, (X A)* = XA. 
 
Also   R(A) = R(X*).   
 
Now, R(VA*) = R(VA*X*)  
                       = R(V(XA)*)  
                       = R(V(XA))  
                       = R(VX).  
 
A is q-k-EPr ⇔R(A) = R(VA*)   and   rk(A) = r  
                    ⇔ R(X*) = R(VX)    and   rk(A) = rk(X) = r 
                    ⇔X is q-k-EPr         (By[6]) 
 
Hence the Theorem.    
 
Remark 2.5: In particular, if X = A  then R(A ) = R(A*) holds, Hence A is q-k-EPr is equivalent to A  is q-k-EPr.  
 
3. GROUP INVERSE OF q-k-EPMATRICES 
 
In this section, the existence of the group inverse for q-k-EP matrices under certain condition is derived. 
 
It is well kwon that, for an EP matrix, group inverse exists and coincides with its Moore-Penrose inverse. However, this 
is not the case for a q-k-EP matrix. For example, 
 

Consider  
0 1
0 0

A  
=  
 

 with 
0 1
1 0

V  
=  
 

 

A is q-k-EP1 matrix, 2 0 0
0 0

A  
=  
 

,  rk(A ) = rk(A2).  

 
Therefore, [By Theorem 1.2], group inverse A≠ does not exists for A.  
 
Here, it is proved that for a q-k-EP matrix A, if the group inverse exists, it is also a q-k-EP matrix. 
 
Theorem 3.1: Let A∈Hn×n be q-k-EPr and rk(A) = rk(A2). Then A# exists and is q-k-EPr. 
 
Proof: Since rk(A) = rk(A2 ), [By Theorem 1.2], A# exists for A. To show that A# is q-k-EPr, it is enough to show that 
R(A#) = R( V(A# )*).    
 
Since,  AA# = A#A, we have , R(A) = R(AA#)  
                                                        = R(A# A)  
                                                        = R(A#). 
AA# A = A ⇒ A*= A*(A#)* A* 
                 ⇒ V A* = V A*(A#)* A* 
 
Therefore, R( V A* ) = R(V A*(A#)* A*)  
                                 = R(V A*(A#)*)  
                                 = R(V(A# A)*)  
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                                 = R(V(AA# )*) 
                                 = R(V(A#)* A*)  
                                 = R(V(A#)*). 
 
 Now,   A is q-k-EPr  ⇒ R(A) = R(V A*)  and   rk(A) = r 
                                 ⇒ R(A#) = R(V(A#)) and   rk(A) = rk(A) = r 
                                 ⇒A# is q-k-EPr.  
 
Hence the Theorem. 
 
Remark 3.2: In the above Theorem the condition that rk(A) = rk(A2) is essential. 
 
Example 3.3: 

Let 
0 1
0 0

A  
=  
 

 with 
0 1
1 0

V  
=  
 

 

      
0 1
0 1

VA  
=  
 

 is EP1   ⇒  A is q-k-EP1.   

      2 0 0
0 0

A  
=  
 

 rk(A2) = 0 ⇒  rk(A) ≠ rk(A2).                                      

 
Therefore, A# does not exist for a q-k-EP matrix A.  
 
Thus, for a q-k-EP matrix A, if A# exists then it is also q-k-EPr.    
 

Theorem 3.4: For A∈Hn×n, if A# exists then, A is q-k-EP ⇔ (VA)# = A V. 
 
Proof:  
A is q-k-EP ⇔  V A is EP                                          (By[6])
      ⇔  (V A)# = (V A)                                                                                                         [By Theorem (1.3)] 
                   ⇔  (V A)# = A V                                                  (By [6]) 
 
Hence the Theorem.   
 

Theorem 3.5: For A∈Hn×n, A is q-k-EPr ⇔ A = V(Polynomial in AV) ⇔ A = (Polynomial in VA)V . 
 
Proof: It is clear that if (VA)  = f(VA) for some polynomial f(X), then VA commutes with (VA)  
⇒  (V A )(V A) = (V A) (V A)  
⇒  (V A)(A V) = (A V)(V A)  
⇒  V AA V = A  A 
⇒  V AA = A  AV  
⇒  A is q-k-EPr .    
 
Conversely, Let A be q-k-EPr, then V AA = A AV andV A A = AA V.  
 
Now, we will prove: A can be expressed as V(Polynomial in AV) and (Polynomial in VA)V 
 
Let,   (VA)s + λ1(VA)s+1 + λ2 (VA)s+2 + . . . + λq(VA)s+q = 0, be the minimum polynomial of VA.  Then  s=0  or  s = 1.   
 
For suppose that s ≥ 2, then   
(VA) [ ( VA )s + λ1(VA)s+1 + . . .+ λq(VA )s+q ] = 0;  
 
Hence 
[(VA)(VA) (VA)](VA)s-2+λ1[(VA)(VA) (VA)](VA)s-1+...+λq[(VA)(VA) (VA)](VA)s+q-2 = 0.  
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Thus, (VA)s-1 + λ1(VA)s + . . . + λq(VA)s+q-1 = 0  
 
which is a contradiction.  
 
If s = 0 then (VA) = (VA)-1 = - λ1I- λ2(VA) - . . .- λq(VA)q-1 
A = A-1 = - λ1V – λ2V(AV) - . . . – λqV(AV)q-1 
                = V[ -λ1I – λ2(AV) - . . . – λq(AV)q-1 ] 
                = V(Polynomial in AV). 
 
Thus,   A = V(Polynomial in AV).  
 
If s = 1, then  (VA) [ (VA) + λ1(VA)2 + . . . + λq(VA)q+1 ] = 0 and it follows that  
 (VA) (VA) = -λ1(VA) – λ2(VA)2 - . . . – λq(VA)q is a Polynomial in A.  
 
However, (V A) = [(V A) (V A)] (V A)  = - λ1(V A) (V A) – λ2(V A) - ... – λq(V A)q-1 
A V = - λ1 A VV A – λ2(V A) - . . . λq(V A)q-1 
A  = - λ1A  AV – λ2(V A)V - . . . – λq(V A)q-1V = [ -λ1I – λ2(V A ) - . . . λq(V A )q-1 ]V  
 
Thus, A = (Polynomial in V A)V.  
 
Hence the Theorem.     
 
4.  REVERSE ORDER LAW FOR q-k-EP MATRICES 
 
For any two non singular matricesA, B∈Cn×n, (AB)-1 = B-1 A-1 holds. However, it is not true for generalized inverses of 
matrices [ 2 ]. In general, (AB)  ≠ B A , for any two matrices A and B. For example, 

[ ]0 1A =  ,  
1
1

B  
=  
 

,  [ ]1AB = , (AB) = [ ]1  . 

(AB) ≠ B A .  We say that reverse order law holds for Moore-Penrose inverse of the product of A and B, if (AB)
= B A . 

 
It is well known that [p.181 [1]], (AB)= BA if and only if R(BB* A*) =R(A*) and R(A*AB) =R(B). 
 
In this section, for a pair of q-k-EPr matrices A and B, necessary and sufficient condition for (AB) = B A  is given. 
 
Theorem 4.1: If A and B are q-k-EPr matrices with R(A) = R(B*) then(AB)  = B A .                                        
 
Proof: Since A is q-k-EPr, R(A) = R(V A*)  
⇒R(B*)  = R(V A*)                            [By hypothesis] 
⇒R(VB) = R(V A*)                      [Since B is q-k-EPr] 
⇒R(B) = R(A*)                                 [Since R(VA) = R(VB)⇒R(A)=R(B)]   
⇒R(B) = R(A )                                          [By Theorem (1.1)] 
 
That is, given x ∈Cn, there exists a y ∈Cn such that Bx = Ay. 
 
Now,    Bx = A y ⇒ (B  A  A)Bx = (B  A  A ) A y 
⇒ B  A  ABx = B  A  AA y 
⇒ B  A  ABx = B  A y 
⇒ B  A ABx = B Bx  
 
Since B B is hermitian , it follows that B A AB is hermitian.  
 
Similarly, A y = Bx ⇒ (ABB ) A y = (ABB B)x 
⇒ABB  A y = A(BB B)x  

†
†

†

†
†

† † † †
† †
† †

†

† † †

†

† † †
† † †

† † †

† † †

†

† † † † † †
† † † † †
† † † †
† † †

† † †

† † † †
† † †



Dr. K. Gunasekaran, Mrs. K. Gnanabala* / On Generalized inverses Of q-k-EP Matrices / IJMA- 7(5), May-2016. 

© 2016, IJMA. All Rights Reserved                                                                                                                                                       37   

 
⇒ABB  A y = A(Bx)  
⇒ABB  A y = A(A y) 
⇒ABB A y = AA y. 
 
Since AA  is hermitian, it follows that  ABB  A  is hermitian.   
 
Further, [By Theorem (1.1)], 
R(A)  =  R(B)    ⇒AA = BB  
R(A ) = R(B) ⇒A ( A ) = BB  
                          ⇒A A = BB  . 
 
Hence,    (AB)(B A )(AB) = ABB (A  A)B 
                                                 = ABB (BB )B 
                                                 = (AB)( B BB )B 
                                                 = (AB)( B )(B) 
                                                 = A(BB B) 
                                                 = A(B) 
                                                 = AB. 
 
(B A  )( AB)( B A ) = B (A A) (BB ) A  
                                            = B (BB ) (BB ) A  
                                            = (B B) ( B BB ) A  
                                            = (B B) (B ) (A )  
                                            = (B BB ) A  
                                            = B A .  
Thus, B A  satisfies the definition of the Moore-Penrose inverse, 
 
Thus, (AB) = B  A .  
 
Hence the Theorem.      
 
Remark 4.2: In the above Theorem, the condition that R(A) = R(B*)  is essential.                                                   
 
Example 4.3:                                                     

Let   
0 0
1 0

A  
=  
 

,  
0 1
0 0

B  
=  
 

 and  
0 1
1 0

V  
=  
 

 A and B are q-k-EP1 matrices.    

0 0
0 1

AB  
=  
 

,  A =
0 1
0 0
 
 
 

, B =
0 0
1 0
 
 
 

 

(AB) = 
0 0
0 1
 
 
 

, B A =
0 0
0 1
 
 
 

 

 
Here, R(A) = R(B*).  
 
Thus, (AB) = B A . 
 
Example 4.4:  

Let   
1 1
1 1

A  
=  
 

, 
0 0
1 0

B  
=  
 

,   
0 1
1 0

V  
=  
   

A and B are q-k-EP1 matrices.   

1 0
1 0

AB  
=  
 

, rk(AB) = 1,   R(A) ≠ R(B*). 
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A = (1/4)
1 1
1 1
 
 
 

, B =
0 1
0 0
 
 
 

, 

B A = (1/4)
1 1
1 1
 
 
 

 

(AB) = (1/2)
1 1
0 0
 
 
 

. 

Thus     (AB) ≠ B A . 
 
Remark 4.5: The converse of the Theorem (4.1) need not be true in general. For let    

0 0
1 0

A  
=  
 

,
0 1
0 0

B  
=  
 

 and  
0 1
1 0

V  
=  
 

 A and B are q-k-EP1 matrices. 

AB =
0 0
0 1
 
 
 

,  A =
0 1
0 0
 
 
 

, B =
0 0
1 0
 
 
 

, 

(AB) = 
0 0
1 0
 
 
 

, B  A  =
0 0
0 1
 
 
 

, (AB) = B  A . 

But  R(A) ≠ R(B*). 
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