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ABSTRACT 
In this work, we continue our study started in [6] on representations of the matrix lie group SU(2)  resulting by 
conjugation action on the matrix lie algebras su(2) and sl(2). We calculate the tensor and dual representations for the 
obtained adjoint representations 𝐴𝐴𝐴𝐴1 𝑎𝑎𝑎𝑎𝐴𝐴 𝐴𝐴𝐴𝐴2. 
 
 
INTRODUCTION 
 
In 1888, during his work at certain transformation groups, a Norwegian mathematician Sophus Lie initiated Lie theory. 
Later his researches led to a fundamental concept, namely, Lie algebras. Nowadays this theory becomes an 
indispensible for various branches in both mathematics and theoretical physics, for example, see [2] and [5] .One of the 
most fruitful approaches in representation theory is; choosing a group action on a vector space over a specific field; 
such procedure leads to a huge amount of research efforts in representation theory[1]. 
 
In [3] Helmer Aslaksen find certain summands in tensor products of Lie algebra representations. Mahmoud and his 
colleagues [4], constructed new representation of SU(4) in terms of Pauli matrices. 
 
Follow the procedure that we used in [6], that is exploiting the generators of the matrix lie group SU(2) and the basis of 
the matrix lie algebras su(2) and sl(2), we construct tensorAd1⨂Ad2 and dualAd1

^, Ad2
^ representations . 

 
1. TENSOR PRODUCT OF REPRESENTATIONS 
 
Recall that if 𝕌𝕌, 𝕍𝕍are two vector spaces over a field F of dimensions n, m, and basis {ℓ𝑖𝑖}𝑖𝑖=1

𝑎𝑎 , �ℎ𝑗𝑗 �𝑗𝑗=1 
𝑚𝑚

 respectively,  then 

the set �ℓ𝑖𝑖 ⊗ ℎ𝑗𝑗 �1 ≤ 𝑖𝑖 ≤ 𝑎𝑎, 1 ≤ 𝑗𝑗 ≤ 𝑚𝑚� form a basis for the tensor product 𝕌𝕌⊗𝕍𝕍 such that  
dim(𝕌𝕌⊗𝕍𝕍) = dim(𝕌𝕌).dim(𝕍𝕍)=n.m . 
 
Definition 1.1: [2] Let G be a matrix Lie group and Let Π 1 be a representation of G acting on a space 𝕌𝕌 and let Π 2 be a 
representation of G acting on a space 𝕍𝕍. Then the tensor product of Π 1 and Π 2 is a representation Π 1⊗Π 2 of  G acting 
on 𝕌𝕌⨂𝕍𝕍 defined by: Π1⨂Π2(A) = Π1(A)⨂Π2(A), for all A ∈ G. 
 
MAIN THEOREM 
 
Theorem 1.2: Let G be a matrix Lie group and for each i ∈ [1, … , n], Vi are complex vector spaces over a field F, Πi  
are finite dimensional representations of G onVi then the tensor product representation ⊗i=1

n Πi : G ⟶ GL(⊗i=1
n Vi)is 

completely determine by generators of G and basis of Vi. 
 
Proof: Let s1, s2, … , sr be generators of G and �V1j�j=1

t1 , … , �Vnj �j=1

tn  be a basis of Vi where dim(Vi) = ti ,   i ∈ [1, … , n]. 
 
Suppose A ∈ G then A =  s1

n1 ∗ … ∗   sr
nr  for some n1, … , nr ∈  ℤ.   

Πi(A) = Πi�s1
n1 ∗ … ∗   sr

nr �. 
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If   X ∈⊗i=1

n Vi, X can be written as ; 
X = ∑ C1jV1j ⊗ … ⊗t1

j=1 ∑ Cnj Vnj   (Ci,j ∈ F, 1 ≤ i ≤ n, 1 ≤ j ≤ max(ti))tn
j=1 . 

⊗i=1
n Πi(A)(X) =⊗i=1

n Πis1
n 1∗…∗  sr

n r (X) =⊗i=1
n Πis1

n 1∗…∗  sr
n r �� C1jV1j ⊗ … ⊗�Cnj Vnj

tn

j=1

t1

j=1

� 

By definition 1.1 above we have: 
= Π1s1

n 1∗…∗  Sr
n r �∑ C1jV1j

t1
j=1 � ⊗ … ⊗Πns1

n 1∗…∗  Sr
n r �∑ Cnj Vnj

tn
j=1 � 

= �∑ C1jΠ1s1
n 1∗…∗  Sr

n r (V1j)
t1
j=1 �⊗ … ⊗ �∑ CnjΠns1

n 1∗…∗  Sr
n r (Vnj ) tn

j=1 � 

= �C11Π1s1
n 1∗…∗  Sr

n r �V1j� + ⋯+ Cn𝑡𝑡1 Π1s1
n 1∗…∗  Sr

n r �V1t1�� ⊗ …⊗ �Cn1Πns1
n 1∗…∗  Sr

n r (Vn1) + ⋯+ Cn𝑡𝑡𝑎𝑎 Πns1
n 1∗…∗  Sr

n r �Vntn��. 

= �C11(Π1s1
n 1�V1j� ∗ … ∗ Π1Sr

n r �V1j�) + ⋯+ Cn𝑡𝑡1 (Π1s1
n 1�V1t1� ∗ … ∗ Π1 Sr

n r �V1t1�)� ⊗ …⊗ �Cn1(Πns1
n 1 (Vn1) ∗ … ∗

Πn SrnrVn1)+…+Cn𝑡𝑡𝑎𝑎(Πns1n1Vntn∗…∗ΠnSrnrVntn),  Since G acts on Vi for each i, we are done. 

 
We knew that the set of matrices𝐹𝐹𝑖𝑖 ,𝐻𝐻𝑖𝑖  𝑎𝑎𝑎𝑎𝐴𝐴 𝑋𝑋𝑖𝑖(1 ≤ 𝑖𝑖 ≤ 3) " 𝑙𝑙𝑖𝑖𝑙𝑙𝑡𝑡𝑙𝑙𝐴𝐴 𝑏𝑏𝑙𝑙𝑙𝑙𝑏𝑏𝑏𝑏",  are generators of matrix Lie group SU(2) 
and basis for the matrix lie algebras su(2)and sl(2) respectively.In [6]we have computed the adjoint representations 
resulting from the conjugation action of this group on those algebraswhere:Ad1: SU(2) → GL(𝐬𝐬𝐬𝐬(𝟐𝟐)),Ad2: SU(2) →
GL(𝐬𝐬𝐬𝐬(𝟐𝟐)) 

F1 = � 0 1 2⁄
1 2⁄ 0 � , F2 = � 0 −i 2⁄

i 2⁄ 0 � , F3 = �1 2⁄ 0
0 −1 2⁄ � 

H1 = �i 2⁄ 0
0 −i 2⁄ � , H2 = � 0 0

−1 0� ,𝐇𝐇𝟑𝟑 = � 𝟎𝟎 𝐢𝐢 𝟐𝟐⁄
𝐢𝐢 𝟐𝟐⁄ 𝟎𝟎 � and 

X1 = �1 0
0 −1� , X2 = �0 1

0 0� , X3 = �0 0
1 0� 

 
Corollary 1.3: Ad1 ⊗ Ad2 can be completely determined by generators of SU(2) and basis of su(2) and sl(2). 
 
According to definition 1.1 and corollary 1.3 we have: 
 
Tensor representation 𝐀𝐀𝐀𝐀𝟏𝟏 ⊗ 𝐀𝐀𝐀𝐀𝟐𝟐 
 
The tensor product of the representations Ad1 and Ad2, with the rule 

 
Π1⨂Π2(A, B) = Π1(A)⨂Π2(B), for all A ∈ SU(2), is given by formula; 
 
Ad1 ⊗ dA2(Fi) = Ad1(Fi) ⊗ dA2(Fi), 1 ≤ i ≤ 3. 
 
i-𝐀𝐀𝐀𝐀𝟏𝟏 ⊗ 𝐀𝐀𝐀𝐀𝟐𝟐(𝐅𝐅𝟏𝟏) = 𝐀𝐀𝐀𝐀𝟏𝟏(𝐅𝐅𝟏𝟏) ⊗𝐀𝐀𝐀𝐀𝟐𝟐(𝐅𝐅𝟏𝟏) 

1- Ad1F1 (H1) ⊗ dA2F1 (X1) = −1
4

H1 ⊗
−1
4

X1. 

2- Ad1F1 (H1) ⊗ dA2F1 (X2) = −1
4

H1 ⊗
1
4

X3. 

3- 3-Ad1F1 (H1) ⊗ dA2F1(X3) = −1
4

H1 ⊗
1
4

X2. 

4- Ad1F1 (H2) ⊗ dA2F1 (X1) = −1
4

H2 ⊗
1
4

X1. 

5- Ad1F1 (H2) ⊗ dA2F1 (X2) = −1
4

H2 ⊗
1
4

X3. 

6- Ad1F1 (H2) ⊗ dA2F1 (X3) = −1
4

H2 ⊗
1
4

X2. 

7- Ad1F1 (H3) ⊗ dA2F1 (X1) = 1
4

H3 ⊗
−1
4

X1. 

8- Ad1F1 (H3) ⊗ dA2F1 (X2) = 1
4

H3 ⊗
1
4

X3 . 

9- Ad1F1 (H3) ⊗ dA2F1 (X3) = 1
4

H3 ⊗
1
4

X2 . 
 
ii-𝐀𝐀𝐀𝐀𝟏𝟏 ⊗ 𝐀𝐀𝐀𝐀𝟐𝟐(𝐅𝐅𝟐𝟐) = 𝐀𝐀𝐀𝐀𝟏𝟏(𝐅𝐅𝟐𝟐) ⊗𝐀𝐀𝐀𝐀𝟐𝟐(𝐅𝐅𝟐𝟐) 

1- Ad1F2 (H1) ⊗ dA2F2 (X1) = −1
4

H1 ⊗
−1
4

X1. 

2- Ad1F2 (H1) ⊗ dA2F2 (X2) = −1
4

H1 ⊗
−1
4

X3. 

3- 3-Ad1F2 (H1) ⊗ dA2F2(X3) = −1
4

H1 ⊗
1
4

X2. 

4- Ad1F2 (H2) ⊗ dA2F2 (X1) = 1
4

H2 ⊗
−1
4

X1. 

5- Ad1F2 (H2) ⊗ dA2F2 (X2) = 1
4

H2 ⊗
−1
4

X3. 
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6- Ad1F2 (H2) ⊗ dA2F2 (X3) = 1

4
H2 ⊗

1
4

X3 . 

7- Ad1F2 (H3) ⊗ dA2F2 (X1) = −1
4

H3 ⊗
−1
4

X1. 

8- Ad1F2 (H3) ⊗ dA2F2 (X2) = −1
4

H3 ⊗
1
4

X3. 

9- Ad1F2 (H3) ⊗ dA2F2 (X3) = −1
4

H3 ⊗
1
4

X3. 
 
iii-𝐀𝐀𝐀𝐀𝟏𝟏 ⊗ 𝐀𝐀𝐀𝐀𝟐𝟐(𝐅𝐅𝟑𝟑) = 𝐀𝐀𝐀𝐀𝟏𝟏(𝐅𝐅𝟑𝟑) ⊗𝐀𝐀𝐀𝐀𝟐𝟐(𝐅𝐅𝟑𝟑) 

1- Ad1F3 (H1) ⊗ dA2F3 (X1) = 1
4

H1 ⊗
1
4

X1. 

2- Ad1F3 (H1) ⊗ dA2F3 (X2) = 1
4

H1 ⊗
1
4

X2. 

3- 3-Ad1F3 (H1) ⊗ dA2F3(X3) = 1
4

H1 ⊗
1
4

X3. 

4- Ad1F3 (H2) ⊗ dA2F3 (X1) = −1
4

H2 ⊗
1
4

X1. 

5- Ad1F3 (H2) ⊗ dA2F3 (X2) = −1
4

H2 ⊗
1
4

X2. 

6- Ad1F3 (H2) ⊗ dA2F3 (X3) = −1
4

H2 ⊗
1
4

X3. 

7- Ad1F3 (H3) ⊗ dA2F3 (X1) = −1
4

H3 ⊗
1
4

X1. 

8- Ad1F3 (H3) ⊗ dA2F3 (X2) = −1
4

H3 ⊗
1
4

X2. 

9- Ad1F3 (H3) ⊗ dA2F3 (X3) = −1
4

H3 ⊗
1
4

X3. 
    
We can display the resulting calculations by the following table (1) 

 
          Generators     

            Basis of 
SU(2)   

 
Basis Of 
su(2) ⊗ sl(2) 

 
 

F1 

 
 

F2 

 
 

F3 

(H1, X1) 
−1
4

H1 ⊗
−1
4

X1 
−1
4

H1 ⊗
−1
4

X1  
1
4

H1 ⊗
1
4

X1 

(H1, X2) 
−1
4

H1 ⊗
1
4

X3 
−1
4

H1 ⊗
−1
4

X3 
1
4

H1 ⊗
1
4

X2 

(H1, X3) 
−1
4

H1 ⊗
1
4

X2 
−1
4

H1 ⊗
1
4

X2 
1
4

H1 ⊗
1
4

X3 

(H2, X1) 
−1
4

H2 ⊗
1
4

X1 
1
4

H2 ⊗
−1
4

X1 
−1
4

H2 ⊗
1
4

X1 

(H2, X2) 
−1
4

H2 ⊗
1
4

X3  
1
4

H2 ⊗
−1
4

X3 
−1
4

H2 ⊗
1
4

X2 

(H2, X3) 
−1
4

H2 ⊗
1
4

X2  
1
4

H2 ⊗
1
4

X3 
−1
4

H2 ⊗
1
4

X3 

(H3, X1) 
1
4

H3 ⊗
−1
4

X1 
−1
4

H3 ⊗
−1
4

X1 
−1
4

H3 ⊗
1
4

X1 

(H3, X2) 
1
4

H3 ⊗
1
4

X3  
−1
4

H3 ⊗
1
4

X3 
−1
4

H3 ⊗
1
4

X2 

(H3, X3) 
1
4

H3 ⊗
1
4

X2  
−1
4

H3 ⊗
1
4

X3 
−1
4

H3 ⊗
1
4

X3 

Table-1: (Ad1 ⊗ Ad2) 
 
2. DUAL REPRESENTATIONS  
 
Definition 2.1: [2] Suppose G is a Lie group and Π is representation of G acting on a finite dimensional vector space V. 
Then the dual representationΠ^  to Π is the representation of G acting on 𝑉𝑉^ given by Π^(A) = [Π (A−1)]tr, ∀A ∈ G. The 
dual representation is also called contragredient representation. 
 
Remark 2.2: We can extend our result of theorem 1.2 above to include dual representations which proved in similar 
procedure, and have the following result: 
 
Proposition 2.2: Let G be a matrix Lie group, V complex vector space over a field F, Π: G ⟶ GL(V) be a 
representation of G on V, then the dual representation Π^ can be completely determined by generators of G and basis of 
V.  
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In particular, proposition 2.2 applies to the dual representations Ad1

^ and  Ad2  
^ which we compute separately as follows: 

 
Dual representation𝐀𝐀𝐀𝐀𝟏𝟏^  
 
Combining definition 2.1 and proposition 2.2 we have: 
1-𝐴𝐴𝐴𝐴1

^(F1) = [Ad1(F1)−1]tr = [Ad1(F1)∗]tr = 
i-�Ad1F1

∗(H1)�tr = [F1
∗H1(F1

∗)∗]tr = [F1
∗H1F1]tr = −1

4
H1. 

ii-�Ad1F1
∗(H2)�tr = [F1

∗H2(F1
∗)∗]tr = [F1

∗H2F1]tr = 1
4

H2. 

iii-�Ad1F1
∗(H3)�tr = [F1

∗H3(F1
∗)∗]tr = [F1

∗H3F1]tr = 1
4

H3. 
 
2- 𝐴𝐴𝐴𝐴1

^(F2) = [Ad1(F2)−1]tr = [Ad1(F2)∗]tr = 
i-�Ad1F2

∗(H1)�tr = [F2
∗H1(F2

∗)∗]tr = [F2
∗H1F2]tr = −1

4
H1. 

ii-�Ad1F2
∗(H2)�tr = [F2

∗H2(F2
∗)∗]tr = [F2

∗H2F2]tr = −1
4

H2. 

iii-�Ad1F2
∗(H3)�tr = [F2

∗H3(F2
∗)∗]tr = [F2

∗H3F2]tr = −1
4

H3. 
 

3- 𝐴𝐴𝐴𝐴1
^(F3) = [Ad1(F3)−1]tr = [Ad1(F3)∗]tr = 

i-�Ad1F3
∗(H1)�tr = [F3

∗H1(F3
∗)∗]tr = [F3

∗H1F3]tr = 1
4

H1. 

  ii-�Ad1F3
∗(H2)�tr = [F3

∗H2(F3
∗)∗]tr = [F3

∗H2F3]tr = 1
4

H2. 

iii-�Ad1F3
∗(H3)�tr = [F3

∗H3(F3
∗)∗]tr = [F3

∗H3F3]tr = −1
4

H3. 
 

We can display the resulting calculations as table 2 below.  
 

3H 
 

2H 
 

1H 
 

     Basis of su(2) 
 

enerators 
Basis of SU(2) 

3
1
4

H 2
1
4

H 1
1
4

H− 1F 

3
1
4

H− 2
1
4

H− 1
1
4

H− 2F 

3
1
4

H− 2
1
4

H 1
1
4

H 3F 

Table-2: The dual representation Ad1
^ 

Dual representation Ad2
^ 

 
Using the same manner in the case of 𝐀𝐀𝐀𝐀𝟏𝟏^ above we have: 
1- Ad2

^(F1) = [Ad2(F1)−1]tr = [Ad2(F1)∗]tr = 
i-�Ad2F1

∗(X1)�tr = [F1
∗X1(F1

∗)∗]tr = [F1
∗X1F1]tr = −1

4
X1. 

ii-�Ad2F1
∗(X2)�tr = [F1

∗X2(F1
∗)∗]tr = [F1

∗X2F1]tr = 1
4

X2. 

iii-�Ad2F1
∗(X3)�tr = [F1

∗X3(F1
∗)∗]tr = [F1

∗X3F1]tr = 1
4

X3. 
 
2- Ad2

^(F2) = [Ad2(F2)−1]tr = [Ad2(F2)∗]tr = 
i-�Ad2F2

∗(X1)�tr = [F2
∗X1(F2

∗)∗]tr = [F2
∗X1F2]tr = −1

4
X1. 

ii-�Ad2F2
∗(X2)�tr = [F2

∗X2(F2
∗)∗]tr = [F2

∗X2F2]tr = −1
4

X2. 

iii-�Ad2F2
∗(X3)�tr = [F2

∗X3(F2
∗)∗]tr = [F2

∗X3F2]tr = 1
4

X2. 
 
3-Ad2

^(F3) = [Ad2(F3)−1]tr = [Ad2(F3)∗]tr = 
i- �Ad2F3

∗(X1)�tr = [F3
∗X1(F3

∗)∗]tr = [F3
∗X1F3]tr = 1

4
X1. 

ii-�Ad2F3
∗(X2)�tr = [F3

∗X2(F3
∗)∗]tr = [F3

∗X2F3]tr = 1
4

X3. 

iii-�Ad2F3
∗(X3)�tr = [F3

∗X3(F3
∗)∗]tr = [F3

∗X3F3]tr = 1
4

X2. 
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We can display the resulting calculations as in table 3 below. 
 

 
X3 

 
X2 

 
X1 

Basis of sl(2) 
 
 

Generators 
Basis of SU(2) 

1
4

X3 
1
4

X2 
−1
4

X1 F1 

1
4

X2 
−1
4

X2  
−1
4

X1 F2 

1
4

X2 
1
4

X3 
1
4

X1 F3 

 
Table-3: The dual representation 𝐴𝐴𝐴𝐴2

^ 
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