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ABSTRACT 
In this paper, a new class of functions called (𝜇𝜇1,𝑤𝑤µ𝑔𝑔_𝜇𝜇2) continuous functions, (𝑤𝑤𝜇𝜇𝑔𝑔_𝜇𝜇1,𝜇𝜇2,) continuous functions 
and wµg-irresolute functions in generalized topological space are introduced and studied. These functions are defined 
by wµg-open sets. Some of their properties are investigated. 
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1. INTRODUCTION  
 
In 2002, generalized topological space (GTS) introduced and developed by A. Császár [2] and many authors [3, 4] have 
studied various types of continuity functions using generalized open sets in GTS.  
 
A generalized topology or simply GT µ [2] on a nonempty set X is a collection of subsets of X such that φ∈µ and µ is 
closed under arbitrary union. Elements of µ are called µ-open sets. A subset A of X is said to be µ-closed if Ac is        
µ-open. The pair (X,µ) is called a generalized topological space (GTS). If A is a subset of X, then cµ is the smallest       
µ-closed set containing A and iµ(A) is the largest µ-open set contained in A. A space (X, µ) is said to be strong if X∈µ. 
 
In 2013, Chunfang Cao et al. [1] introduced the notions of (𝜇𝜇1,α𝜇𝜇2,) continuous functions, (𝜇𝜇1,, π𝜇𝜇2,) continuous 
functions on GTS. The purpose of the present paper is to introduce (𝜇𝜇1,𝑤𝑤µ𝑔𝑔_𝜇𝜇2) continuous functions, (𝑤𝑤µ𝑔𝑔_𝜇𝜇1,𝜇𝜇2,) 
continuous functions and wµg-irresolute function in GTS and investigate its properties and the relationships among 
existing continuities. 
 
2. PRELIMINARIES 
 
Throughout this paper X and Y mean GTS’s (X,µ1)  and (Y, µ2) and the function f:X→Y denotes a single valued 
function of a space (X,µ1) into a space(Y, µ2). We recall the following definitions and results.  
 
Definition 2.1: Let (X,µ) be a GTS and A⊆X. Then A is said to be  

(1) µ-α-open[2]  if A⊆iµcµiµ(A) 
(2) µ-π-open [2] if A⊆iµcµ(A) 

 
The complement of µ-α-open (resp. µ-π-open, µ-open) is said to be µ-α-closed (resp.µ-π-closed, µ-closed).  
 
Definition 2.2: A subset A of X is said to be weakly µg-closed set (briefly wµg-closed) [5] if cµiµ(A)⊆U whenever 
A⊆U and U is µ-open. The complement of wµg-closed set is called a wµg-open set. 
 
Let us denote µ(X) (resp. αµ(X), πµ(X), Gµ(X), WµG (X)) the class of all µ-open (resp. µ-α-open, µ-π-open, µg-open 
wµg-open) sets on X.  
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Definition 2.3: A function f: X→Y is said to be  

(1) (𝜇𝜇1,𝜇𝜇2) continuous functions [2]  if f-1(U) is µ1-open in X for every µ2-open set U of Y. 
(2) (𝜇𝜇1,α𝜇𝜇2) continuous functions [1] if f-1(U) is µ1-open in X for every µ2-α-open set U of Y. 
(3) (𝜇𝜇1,π𝜇𝜇2) continuous functions [1] if f-1(U) is µ1-open in X for every µ2-π-open set U of Y. 

 
3. ON WEAKLY µg CONTINUITY 
 
Definition 3.1: Let (X,µ1)  and (Y, µ2) be GTS’s. Then a function f: X→Y is said to be  

(1) (𝜇𝜇1,𝑤𝑤µ𝑔𝑔_𝜇𝜇2) continuous if f-1(U) is µ1-open in X for every wµg -open set U of Y. 
(2) (𝑤𝑤µ𝑔𝑔_𝜇𝜇1,𝜇𝜇2,) continuous if f-1(U) is wµg-open in X for every µ2-open set U of Y. 
(3) 𝑤𝑤µ𝑔𝑔-irresolute if f-1(U) is wµg-open in X for every wµg-open set U of Y. 

 
Example 3.2: Let X=Y= {a, b, c} and µ1=µ2={φ,{b},{a, b}}. Then WµG (Y) ={φ,{a},{b},{a, b}}. A function f:X→Y 
defined by f(a) = b = f(b), f(c) = c. Then f is (𝜇𝜇1,𝑤𝑤µ𝑔𝑔_𝜇𝜇2) continuous. 
 
Example 3.3: Let X=Y={a, b, c} and µ1=µ2={φ,{b},{a, b}}. Then WµG(X)= ={φ,{a},{b},{a, b}}. A function f:X→Y 
defined by f(a)=a, f(b)=b, f(c)=c. Then f is (𝑤𝑤µ𝑔𝑔_𝜇𝜇1,𝜇𝜇2,) continuous. 
 
Example 3.4: Let X={a, b, c}, Y={1, 2, 3} and µ1={φ, {a, b}} and µ2={φ, {2}, {1,2}}. Then WµG(X) ={φ,{a}, {b}, 
{a, b}} and WµG (Y) ={φ,{1},{2},{1,2}}.A function f:X→Y defined by f(a)=1,f(b)=2, f(c)=3. Then f is                 
𝑤𝑤µ𝑔𝑔 – irresolute. 
 
Remark 3.5:  µ(X)⊂αµ(X)⊂πµ(X)⊂WµG(X) 
 
Theorem 3.6: Every (𝜇𝜇1,𝑤𝑤µ𝑔𝑔_𝜇𝜇2) continuous is (𝜇𝜇1,π𝜇𝜇2) continuous but not conversely. 
 
Proof: Let f: X→Y be a  (𝜇𝜇1,𝑤𝑤µ𝑔𝑔_𝜇𝜇2) continuous. Then for every wµg-open set U in Y, f-1(U) is µ1-open in X. Since 
every µ-π-open set is wµg-open, for every µ2-π-open set U in Y, f-1(U) is µ1-open in X. Hence f is (𝜇𝜇1,π𝜇𝜇2) continuous.  
 
The converse of the above theorem is not necessarily true as seen from the following example. 

 
Example 3.7: Let X=Y={a, b, c} and µ1=µ2={φ, {b},{a, b}}. Then WµG(Y)= ={φ,{a},{b},{a, b}}and 
πµ(Y)={φ,{b},{a, b}}. A function f: X→Y defined by f(a) = a, f(b) = b, f(c) = c. Then f is (𝜇𝜇1,π𝜇𝜇2) continuous but not 
(𝜇𝜇1,𝑤𝑤µ𝑔𝑔_𝜇𝜇2,) continuous.  
 
Corollary 3.8: Every (𝜇𝜇1,𝑤𝑤µ𝑔𝑔_𝜇𝜇2) continuous is (𝜇𝜇1,𝛼𝛼𝜇𝜇2,) continuous but not conversely. 
 
Proof: Follows from theorem.3.6.  and the fact that every (𝜇𝜇1,π𝜇𝜇2,) continuous map is (𝜇𝜇1,𝛼𝛼𝜇𝜇2) continuous. 
 
Corollary 3.9: Every (𝜇𝜇1,𝑤𝑤µ𝑔𝑔_𝜇𝜇2) continuous is (𝜇𝜇1,𝜇𝜇2,) continuous but not conversely. 
 
Proof: Follows from corollary 3.8.  and the fact that every (𝜇𝜇1,𝛼𝛼𝜇𝜇2) continuous map is (𝜇𝜇1,𝜇𝜇2) continuous. 
 
Theorem 3.10: Every (𝜇𝜇1,𝜇𝜇2,) continuous is (𝑤𝑤µ𝑔𝑔_𝜇𝜇1,𝜇𝜇2) continuous but not conversely. 
 
Proof: Let f: X→Y be a  (𝜇𝜇1,𝜇𝜇2) continuous. Then for every µ2-open set U in Y, f-1(U) is µ1-open in X. Since every µ-
open set is wµg-open, for every µ2-open set U in Y, f-1(U) is wµg-open in X. Hence f is (𝑤𝑤µ𝑔𝑔_𝜇𝜇1,𝜇𝜇2) continuous.  
 
The converse of the above theorem is not necessarily true as seen from the following example. 

 
Example 3.11: Let X={a, b, c}, Y={1, 2, 3} and µ1={φ, {a},{a, b},{b, c}, X} and µ2={φ,{1},{2,.3},{1,3}, Y}. Then 
WµG (X) ={φ,{a},{b},{a, b}, {b, c}, {a, c}, X}.A function f:X→Y defined by f(a)=1, f(b)=2, f(c)=3. Then f is 
(𝑤𝑤µ𝑔𝑔_𝜇𝜇1,𝜇𝜇2) continuous. But f is not (𝜇𝜇1,𝜇𝜇2,) continuous. 
 
Corollary 3.12: Every (𝜇𝜇1,𝑤𝑤µ𝑔𝑔_𝜇𝜇2) continuous (resp. (𝜇𝜇1,𝛼𝛼𝜇𝜇2) − 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, �𝜇𝜇1,𝜋𝜋𝜇𝜇2� − 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)is 
(𝑤𝑤µ𝑔𝑔_𝜇𝜇1,𝜇𝜇2,) continuous but not conversely. 
 
Proof: Follows from theorem.3.10. and the fact that every  (𝜇𝜇1,𝑤𝑤µ𝑔𝑔_𝜇𝜇2) continuous (resp. 
(𝜇𝜇1,𝛼𝛼𝜇𝜇2) − 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, �𝜇𝜇1,𝜋𝜋𝜇𝜇2� − 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)  is (𝜇𝜇1,𝜇𝜇2) continuous. 
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Remark 3.13: From the above discussions, we get the relationship (𝜇𝜇1,𝑤𝑤µ𝑔𝑔_𝜇𝜇2) continuous → (𝜇𝜇1,π𝜇𝜇2,)continuous→ 
(𝜇𝜇1,𝛼𝛼𝜇𝜇2,)continuous→(𝜇𝜇1,𝜇𝜇2,) continuous→(𝑤𝑤µ𝑔𝑔_𝜇𝜇1,𝜇𝜇2,) continuous 
 
Theorem 3.14: Let f :(X, µ1)→(Y, µ2) be a function. Then the following are equivalent. 

(1) f is  (𝜇𝜇1,𝑤𝑤µ𝑔𝑔_𝜇𝜇2) -continuous; 
(2) The inverse image of each wµg-open set in Y is µ1-open in X; 
(3) The inverse image of each wµg-closed set in Y is µ1-closed in X; 

 
Proof:  
(1)⇒ (2): It is obviously by definition. 
 
(2)⇒(3): Let U be any wµg-closed set in Y. Then Y\U is wµg-open set in Y. By (2) f-1(Y\U) is µ1-open. But                 
f-1(Y\ U) = X\f-1(U) which is µ1-open. Therefore f-1(U) is µ1-closed. This proves (2)⇒(3). 
 
(3)⇒(1): Let G be wµg-open in Y. Then Gc is wµg-closed in Y. By (3) f-1 (Gc) is µ1-closed in X. But f-1(Gc) = (f-1(G))c 
which is µ1-closed in X. Therefore f-1(G) is µ1-open in X. This proves (3)⇒(1). 
 
Theorem 3.15: Let X be a strong GTS. Let f:X→Y be a function and h:X→X×Y be the graph function defined by 
h(x)=(x, f(x)) for each x∈X. If h is (𝜇𝜇1,𝑤𝑤µ𝑔𝑔_𝜇𝜇2) – continuous then f is (𝑤𝑤𝜇𝜇𝑔𝑔 − 𝜇𝜇1,𝜇𝜇2) –continuous. 
 
Proof: Since every (𝜇𝜇1,𝑤𝑤µ𝑔𝑔_𝜇𝜇2) – continuous is(𝜇𝜇1,𝛼𝛼𝜇𝜇2,)continuous, f is (𝜇𝜇1,𝛼𝛼𝜇𝜇2,)continuous. by theorem 3.3[1]. 
Hence f is  (𝑤𝑤𝜇𝜇𝑔𝑔 − 𝜇𝜇1,𝜇𝜇2) –continuous.  
 
Theorem 3.16: If f : (X,µ1) → (Y,µ2)  is (µ1, wµg-µ2) continuous and g: (Y,µ2)→ (Z,µ3) is  (µ2, wµg-µ3) continuous the 
gοf: (X,µ1) → (Z,µ3) is (µ1, wµg-µ3) continuous. 
 
Proof: Let U be wµg-open set in Z. Since g is (µ2, wµg-µ3) continuous, g-1(U) is µ2-open in Y. Hence g-1(U) is wµg-
open in Y. Since f is (µ1, wµg-µ2) continuous, f -1 (g-1(U)) is µ1-open in X. Hence gοf: (X,µ1) → (Z,µ3) is (µ1, wµg-µ3) 
continuous. 
 
Theorem 3.17: Every wµg-irresolute function is (wµg_µ1,µ2)-continuous but converse is not necessarily true. 
 
Proof: Suppose f:X→Y is wµg -irresolute. Let V be any µ2- open set of Y; Then V is wµg-open set in Y. Since f is 
#wµg-irresolute, f-1(V) is wµg-open in X. Hence f is (wµg_µ1,µ2)-continuous. 
 
The converse of the theorem need not be true as seen from the following example. 
 
Example 3.18: Let X={a, b, c}=Y and µ1={φ,{a},{a, b},{b, c},X} and µ2={φ,{a},{a, c},{b, c}}. Then                
WµG(X) = {φ,{a},{b},{a, b},{b, c},{a, c},X}and WµG(Y)={φ,{a},{c},{a, b},{b, c},{a, c},Y}.A function f:X→Y 
defined by   f(a) = a, f(b) = b, f(c) = c. Then clearly f is (wgµ-µ1, µ2) continuous but not 𝑤𝑤µ𝑔𝑔 – irresolute. 
 
Theorem 3.19: Let f: (X, µ1) → (Y, µ2) and g: (Y, µ2)→ (Z,µ3) be any two functions. Let h = gοf. Then 

(i) h is (wµg_µ1,µ3)-continuous if f is wµg-irresolute and g is (wµg_µ2, µ3)--continuous. 
(ii) h is wµg-irresolute if both f and g are wµg-irresolute and 
(iii) h is (wµg_µ1,µ3) continuous if g is (µ2,µ3 )continuous and f is (wµg_µ1,µ2)-continuous. 

 
Proof: Let V be µ3 -open in Z.  

(i) Suppose f is wµg-irresolute and g is (wµg_µ2 ,µ3)-continuous. Since g is (wµg_µ2 ,µ3) -continuous, g-1(V) is 
wµg-open in Y. Since f is wµg-irresolute, f -1(g-1(V)) is wµg-open in X. This proves (i).  

(ii) Let f and g be wµg-irresolute. Then g-1(V) is wµg-open in Y. Since f is wµg-irresolute, using f-1(g-1(V)) is 
wµg-open in X. This proves (ii).  

(iii) (iii)Let g be (µ2,µ3 )continuous and f be (wµg_µ1,µ2)-continuous. Then g-1(V) is µ2 -open in Y. Since f is 
(wµg_µ1,µ2)--continuous, f -1(g-1(V)) is wµg-open in X. This proves (iii). 
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