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ABSTRACT 
The aim of this work is to study a decomposition theorem for near-field spaces satisfying either of the properties        
xy = xp f(xyx)xq or xy = xpf(yxy)xq,  where p = p(x, y), q = q(x, y) are non-negative integers and f(t) ∈ tZ(t) vary with the 
pair of elements x, y and further investigate the commutativity of such near-fields. Other related results are obtained 
for near-fields spaces. 
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SECTION-1: INTRODUCTION 
 
Dr. N V Nagendram [10] established the commutativity of near-field spaces over near-fields in which all products two 
elements are potent. In recent trends using this result Leigh proved that such near-field spaces are direct sum of J-near-
field spaces i.e., near-field spaces satisfying Jacobson’s property xn(x) = x property and zero near-field spaces. More 
recently author studied the direct sum decomposition of near-field spaces satisfying the property xy = (xy)2 f(x, y) 
where f(X, Y) ∈ Z(X, Y), the near-field space of polynomials in two non-commuting in determinates. Now we consider 
the following near-field space properties. 
 
(B) ∀ x, y in a near-field space N, there exist integers p = p(x, y) ≥ 0, q = q(x, y) ≥ 0 and a polynomial f(t) ∈ t Z(t) such 
that  

xy = xp f(xyx)xq                                                                                                                                 (1.1) 
 
(B1) ∀ x, y in a near-field space N, there exist integers p = p(x, y) ≥ 0, q = q(x, y) ≥ 0 and a polynomial f(t) ∈ t Z(t) 
such that 

xy = xp f(yxy)xq                                                                                                                                  (1.2) 
 
SECTION-2:  A DECOMPOSITION THEOREM FOR NEAR-FIELD SPACES  
 
In this section, I establish a decomposition theorem which in turn allows us to study the commutativity of such near-
field spaces. Throughout this section, N represents an associative near-field may be without unity 1 and C = N(N), the 
set of nilpotent elements of N.  
 
Definition 2.1: A near-field space is called periodic near-field space if for each x ∈ N there exist distinct positive 
integers m = m(x), n = n(x) such that xm = xn. 
 
Definition 2.2: A near-field space N is called zero commutative near-field space if xy =0 implies that yx =0 for all       
x, y ∈ N. 
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Definition 2.3: An element x of N satisfying the property xn(x) = x for some n(x) > 1 is called potent. 
 
Let B be the set of all potent elements, If B = N, then N is a J-near-field space. By a well known theorem of Jacobson, 
J-near-field spaces are necessarily commutative near-field spaces. A sufficient condition for N to be periodic near-field 
space for each x ∈ N there exists an integer p = p(x) > 1 and a polynomial f(t) ∈ Z(t) such that xp = xp+1f(x). If N is 
periodic near-field space then every element x ∈ N can be written in the form x = b + c, where b, c ∈ C. Further if in a 
periodic near-field space N, each element has a unique representation as above, then both B and C are sub near-field 
spaces and N = B ⊕ C.  By these two we obtain a decomposition theorem for near-field spaces satisfying one of the 
properties (B) and (B1). In fact, I establish the following result:  
 
Theorem 2.4: Let N be a near-field space satisfying one of the properties (B) and (B1). Then N is a direct sum of a        
J-near-field space and a null near-field space. 
 
Proof: We prove this theorem into the following parts called steps. 
 
Step-1: Let N be a near-field space satisfying (B). Then N is periodic near-field. 
 
Proof: Let y = x in (B). This shows that N satisfies criterion for periodicity and hence the near-field space satisfying 
(B) is necessarily periodic near-field. 
 
Step-2: Let N be the near-field space satisfying (B). Then N is zero commutative near-field. 
 
Proof: Let xy = 0. Then there exist integers p’ = p(x, y) ≥ 0, q’ = q(x, y) ≥ 0 and a polynomial h(t) ∈ t Z(t) such that    
yx = yp’h(xyx)yq’ = 0. This implies that N is zero commutative near-field. 
 
Step-3: Let N be a near-field space satisfying (B), Then NC = CN = (0). 
 
Proof: let r(x) = 2. Replacing y by x in (B), we get x2 = xr g(x), for some g(t) ∈ tZ(t) and by step 1, N is periodic near-
field. Clearly N is nil near-field. 
 
Now we have  

x2 = xr g(x) for g(t) Z(t),   r(x) ≥ 2                                                                                                     (2.1) 
 
Let c ∈ C and x ∈ N. Then choose integers p1 = p(c, x) ≥ 0, q1 = q(c, x) ≥ 0 and a polynomial f1(t) ∈ tZ(t) such that   

cx = cp
1f1(cxc)cq

1                                                                                                                                                                                                     (2.2) 
 
From the equality (2.1) one can easily observe that c2 = 0and hence 0 = xc2 = (xc)c. Step 2 gives that c(xc) =0 which 
together with (2.2) yields that cx = 0 and again step 2 gives that xc = 0 for all x ∈ N, c ∈ C. Thus gives the required 
result  
i.e.,                       NC = CN = (0)                                                                                                                                   (2.3) 
 
By Step 1, N is periodic near-field space so that each element x ∈N can be written in the form b + c, where b ∈B and    
c ∈ C. By a nice result it is enough to show that this representation is unique. If a + c = b + d for some a, b ∈ B and        
c, d ∈ C then        a – b = d – c                                                                                                                                       (2.4) 
 
Let a, b ∈ B. Then there exist at least one odd of the positive integers r = r(a) and s = s(b) such that ar = a and bs = b. 
 
Let k = (r – 1) s – (r – 2) = (s -1)r – (s – 2) be an odd positive integer. Thus it is clear that ak = a and bk = b. Also           
e1 = ak-1, e2 = bk-1 are idempotents in N with e1a = a and e2b = b. Multiplying (2.4) by a and b from both sides using the 
result of step 3, we get a2 = ab = ba. This gives that a2 = b2 and hence e1 = e2. 
 
If k is even and ak = a, then a2(k-1)+1 = a, where 2(k – 1) + 1 is odd, so this yields the required result. 
 
Left multiplying (2.4) by e1 now yields a = b and this completes the proof of the theorem. 
 
Similar arguments can be used if N satisfies the property (B1). 
 
Remark 2.5: By the result of step 2, one concludes that the nilpotent elements of N annihilates N on both sides and 
hence are central near-fields. However, J-near-field spaces are commutative near-fields so that theorem 2.4 at once 
gives the following corollary which extends the main result. 
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Corollary 2.6: Let N be a near-field space satisfying any one of the following properties (B) (B1). Then N is 
commutative near-field. 
 
SECTION-3: DECOMPOSITION THEOREMS FOR NEAR-FIELD SPACES 
 
In this section, I investigate the structure of near-field spaces satisfying the properties (B) and (B1). Here, N denotes a 
left near-field space and Z = Z(N) the multiplicative center of N.  
 
Definition 3.1: An element x of N is called distributive if (a + b)x = ax + bx for all a, b ∈ N are distributive, then N is 
called a distributive  near-field space.  
 
Definition 3.2:  A near-field space N is called a periodic near-field space if for each x ∈ N there exist distinct positive 
integers m = m(x) and n = n(x) such that xm = xn.  
 
Definition 3.3: A near-field space N is called a zero-symmetric if 0x = 0 for all x ∈ N (or left distributivity yields       
x0 = 0). 
 
Definition 3.4: A sub near-field space of a near-field space N is a normal sub near-field space M of (N, +) such that (i) 
NM ⊆ M and (ii) (x + α)y – xy ∈ M for all x, y ∈ N and α ∈ M. 
 
Note 3.5: One can not get the direct sum decomposition under the hypothesis of the theorem 2.4 even in the case of 
distributive near-field spaces. 
 
Definition 3.6: Week orthogonal sum of near-field space. A near-field space N is an orthogonal sum of sub near-
field spaces P and Q denoted by N = P + iQ, if PQ = QP = (0)  and each element of N has a unique representation of the 
form p + q, p  ∈ P,  q ∈ Q. 
 
Now, Dr N V Nagendram’s aim is to establish the decomposition theorems for near-field spaces satisfying any one of 
the following related properties: 
(B2) ∀ x, y in a near-field space N, ∃ integers p = p(x, y) there exist integers p = p(x, y)  ≥ 0, q = q(x, y) ≥ 0 and       

r = r(x, y) ≥ 1 ∋ xy = xp (xyx)r xq                                                                                                       (3.1) 
 

(B3) ∀ x, y in a near-field space N, ∃ integers p = p(x, y)  ≥ 0, q = q(x, y) ≥ 0 and r = r(x, y) ≥ 1 such that  
xy = xp (yxy)r xq                                                                                                                                                                                                      (3.2) 

 
Lemma 3.7: Let N be a zero commutative near-field space. Then the set C of all nil potent elements is a sub near-field 
space if and only if C is a sub near-field space of the additive sub near-field space (N, +). 
 
Lemma 3.8: Let N be a periodic near-field space with multiplicative identity. If C ⊆ Z, then (N, +) is abelian. 
 
Lemma 3.9: Let N be a near-field space in which the idempotents are multiplicatively central near-field space. If e1 and 
e2 are idempotents, then there exists an idempotent e3 such that e3e1 = e1 and e3e2 = e2. 
 
Theorem 3.10: Let N be a near-field space satisfying the property (B2). If the idempotents of N are multiplicatively 
central near-field space, then M is a sub near-field space with (M, +) abelian and C is a sub near-field space with trivial 
multiplication and N = C ⊥ M. 
 
Proof: We prove this theorem with the following existing known lemma 3.7, 3.8 and 3.9. 
 
Clearly we see that a near-field space satisfying (B2) is necessarily ero symmetric as well as zero commutative near-
field space. Let c ∈ C and x be an arbitrary element of N. then there exist integers p = p(x, c) ≥ 0, q = q(x, y) ≥ 0 and      
r = r(x, y) ≥ 1 such that xy = xp (yxy)r xq

                                                                                                                                                                    (3.3) 
 
Next choose integers p’ = p(x) ≥ 0, q’ = q(x) ≥ 0 and r’ = r(x) ≥ 1 such that x2 = xp’ + q’  + 3r’.                                        (3.4) 
 
Since (3.4) gives that c2 = (0) for any c ∈ C, we obtain that c(cx) = c2x = 0 and the zero commutativity in N yields that 
(cx)c = 0. Thus by using lemma 3.8 we find that xc = 0 for all x ∈ N, and also ero commutativity near-field space of N 
implies that cx = 0 i.e., NC = CN = (0)                                                                                                                          (3.5) 
 
(3.5) shows that all nil potent elements of N annihilates N on both sides and hence, In particular, C2 = (0) and C ⊆ Z. If 
c, d ∈ C, then (c – d)2 = 0. This gives that c – d ∈ C and C is a sub near-field space of the additive sub near-field space 
(N, +). Now the application of lemma 3.7 yields the required result. This completed the proof of the theorem. 
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Lemma 3.11: Let N be a near-field space satisfying the property (B2). If the idempotents of a near-field space N are 
multiplicatively central near-field space, then M is a sub near-field space with (M, +) abelian. 
 
Proof: Let a, b ∈ M. Then there exist integers m’ = m(a) > 1 and n’ = n(b) > 1 such that am’ = a and bn’ = b.  
 
If                           s = (m’ – 1)n’ – (m’ – 2) = (n’ – 1) m’ – (n’ – 2) > 1                                                                          (3.6) 
 
Then it clear that as = a and bs = b. Note also that e1 = as – 1 and e2 = bs – 1 are central idempotents in N with e1a = a and 
e2b = b. Also in view of (B2) we find that  

ab = (e1a )(e2b) = (e1e2)(ab) = (e1e2)p(e1e2abe1e2)p(e1e2)q                                                                   (3.7) 
 
For some integers p = p(e1e2ab) ≥ 0, q = q(e1e2ab) ≥ 0 and r = r(e1e2ab) > 1.  
 
This yields that ab = (e1e2) (ab)r (e1e2).                                                                                                                           (3.8) 
 
So ab ∈ M. moreover, since N/C has the xm = x property, we have an integer k > 1 such that  

(a – b)k = a – b + c.                                                                                                                            (3.9) 
 
Where a, b ∈ M and c ∈ C. Now e1 and e2 are central idempotents in N and,  in view of lemma 3.9 there exists an 
idempotent e ∈ N such that ee1 = e1 and ee2 = e2. This implies that ea = a and eb = b. Since (3.5) is still valid in the 
present situation, multiply (3.9) by e to get (a – b)k = a – b, and hence a – b ∈ M. Also, eN is a periodic near-field space 
with multiplicative identity element in which nilpotent elements are multiplicatively central near-field space. Thus by 
lemma 3.8, (eN, +) is abelian. Therefore, ea + eb = eb + ea, i.e., a + b = b + a, and hence (M, +) is abelian.  
 
Now we look into Proof of theorem 3.10. Let x ∈ N. Then in view of (3.4), if x2 = xk, k = pr + qs +3r’ ≥ 3, then clearly 
xj = xj + s(k – 2) for all j ≥ 2 and s ≥ 1. It follows at once that (xk – 1)k – 1 = xk – 1, xk – 1 ∈ M. It follows that (x – xk - 1)2 = 0 
and x – xk – 1  ∈ C. Hence, we can write x = x – xk – 1 + xk – 1 and see that N = C + M. Now in view of lemma 3.10 and 
lemma 3.11, it remains only to show that each element of N has the unique representation in the form c + b, where        
c ∈ C, b  ∈ M. Suppose that c + a = d + b, where c, d  ∈ C and a, b  ∈ M. Then – d + c = b – a  ∈ C ∩ M = (0). This 
gives that a = b and c = d. This completes the proof of the theorem. 
 
Note 3.12: It is obvious that centrality of idempotents in the hypothesis of theorem 3.10 is not superfluous. 
 
Note 3.13: If a near-field space N satisfies (B3) then it can be easily verified that N need not be zero commutative near-
field space. However a zero symmetric near-field space satisfying (B3) is necessarily zero commutative near-field 
space. Hence for a zero symmetric near-field space satisfying (B3) lemma 3.10 and lemma 3.11 may be proved easily in 
the same fashion. By using similar arguments used to prove theorem 3.11, with necessary variations, we can prove the 
following result. We omit the details of the proof to avoid repetition. 
 
Theorem 3.14:  Let N be a ero symmetric near-field space satisfying (B3). If the idempotent elements of N are 
multiplicatively central near-field space, then C is a sub near-field space with trivial multiplication, M is a sub near-
field space with (M, +) abelian and N = C + M. 
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