
International Journal of Mathematical Archive-7(4), 2016, 238-244 
 Available online through www.ijma.info ISSN 2229 – 5046 

International Journal of Mathematical Archive- 7(4), April – 2016                                                                                                              238 

 
CERTAIN NEAR-FIELD SPACES ARE NEAR-FIELDS (C-NFS-NF) 

 
Dr. N. V. NAGENDRAM 

Professor of Mathematics, 
Kakinada Institute of Technology & Science, 

Tirupathi (v), Divili 533 433, East Godavari District, Andhra Pradesh. INDIA. 
 

(Received On: 01-03-16; Revised & Accepted On: 13-04-16) 
 
 

ABSTRACT 
In the present paper it is shown that N must be commutative if distributively generated (d – g) near-field space N 
satisfying the axiom: yx = p(x, y), where p(x, y) is a finite sum of temrs of the form βi xp

i yn
i xq

i, where the number of 
summands and βi, pi, ni , qi all vary  with x, y  ∈ N, βi, pi, qi ≥ 1 and ni ≥ 1. 
 
Throughout this paper, N will denote a left near-field space. Z(N) the center of N, N(N) the set of nilpotent elements of 
N. An element y of N is called distributive if (a + b)y = ay + by for all a, b ∈ N. If all the elements of N are distributive, 
then N is called distributive near-field space. A left near-field space N is called (i) a periodic near-field space if for 
each y ∈ N, there exist distinct positive integers k = k(y), t = t(y) such that yk = yt. (ii) a zero-symmetric if 0y = 0 for all         
y ∈ N (left distributively yields y0 = 0) (iii) a zero commutative if yx = 0 implies that xy = 0 for all y, x ∈ N. (iv) a 
distributively generated (d – g) near-field space if it contains a multiplicative sub-semi simple near-field space of 
distributive elements which generates additive sub-near-field space (N, +). (v) a strongly distributively generated           
(s – d – g) near-field space if it contains a set of distributive elements whose squares generate (N, +). (vi) a D-near-
field space if every non-zero homomorphic image B of N satisfies the following conditions: 

(a) B a has a non-zero right distributive element. 
(b) (B, +) is abelian implies that (B, +, .) is a near-field. 

 
An ideal of near-field space N is normal sub-near-field space J of (N, +) such that (a) NJ ⊆ J and (b) (y + β)x – yx ∈ J 
for all y, x ∈ N and β ∈ J.  
 
In a (d – g ) near-field space (b) may be replaced by (b)* JN ⊆ J. 
 
It is evident by the definition that all distributive and (d – g) near-field spaces are examples of D-near-field spaces. 
However, the example 2.5 # 6 of [7] illustrates that the class of D-near-field spaces is larger than the class of (d – g) 
near-field spaces. 
 
 
SECTION-1. INTRODUCTION  
 
Certain near-field spaces are, N denotes near-field space over near-ring R and R denotes a nonzero associative near-
ring with identity. Earlier we studied the concept of a right SA-near-field space over near-ring. We call N a right SA-
near-field space over near-ring, if for any sub near-field spaces  I and J of N over near-ring R  there is a sub near-field 
space J or K of N over a near-ring R such that r(I) + r(J) = r(K), where r(I) (resp., l(J)) denotes the right annihilator sub 
near-field space (resp., left annihilator sub near-field space) of I. A near-field space N over a near-ring R a right SA-
near-field space if for any sub near-field spaces I and J of N there is an ideal K of N such that r(I) + r(J) = r(K). This 
class of near-field spaces is exactly the class of near-field spaces for which the lattice of right annihilator near-field 
spaces is a sub-lattice of the lattice of near-field spaces. The class of right SA-near-field spaces includes all quasi-Baer 
(hence all Baer) near-field spaces and all right IN-near-field spaces (hence all right self-injective near-field spaces). 
This class is closed under direct products, full and upper triangular matrix near-field spaces over near-rings, certain 
polynomial near-field spaces over near-rings, and two-sided near-field spaces over near-rings of quotients. The right 
SA-near-field space over near-ring property is a Morita invariant. For a semi-prime near-field space over near-ring R, it 
is shown that R is a right SA-near-field space over near-ring if and only if R is a quasi-Baer near-ring if and only if    
r(I) + r(J) = r(K) = r(I ∩ J) for all near-field spaces  I and J of N if and only if Spec(N) is extremally disconnected.  
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Amenability dual concrete complete near-field spaces were studied and introduced by N V Nagendram and have since 
then turned out to be extremely interesting objects of research. The definition of an amenable dual concrete complete 
near-field space is strong enough to allow for the development of a rich general theory, but still weak enough to include 
a variety of interesting examples. Very often, for a class of dual concrete complete near-field spaces over a regular delta 
near-ring, the amenability condition singles out an important sub-class of near-field spaces. For a locally compact 
complete sub near-field spaces G, the convolution algebra L′(G) is amenable if and only if G is amenable in the 
classical sense; a C*- algebra is amenable if  and only if it is nuclear and a uniform concrete complete near-field space 
with character space Ω is amenable if and only if it is C0 (Ω). To determine, for a given class of dual concrete complete 
near-field spaces N, which concrete complete near-field spaces in it are the amenable ones is an active areas of 
research. For instance, it is still open for which reflexive dual concrete complete near-field spaces E the dual concrete 
K(E) of all compact operators on E is amenable. 
 
N denotes as Near-field space has zero symmetric near-ring with identity. Let∅ ≠ X ⊆ N. Then X  N denotes that X is 
an ideal of N. For any subset T of N, l(T) and r(T) denote the left annihilator and the right annihilator of T in near-field 
space N. The near-field space of n-by-n (upper triangular) matrices over near-field space N is denoted by Mn(N) 
(Tn(N)). An idempotent e of a near-field space N is called left (right) semi-central if ae = eae (ea = eae) for all a ∈ N. It 
can be easily checked that an idempotent e of near-field space N is left (right) semi-central if and only if eN (Ne) is an 
ideal. Also note that an idempotent e is left semi-central if and only if 1−e is right semi-central.  
 
Thus for a left (or right) ideal J of a near-field space N, if l(J) = Ne (r(J) = eN) with an idempotent e, then e is right (left) 
semi-central, since Ne (eN) is an ideal, and I use Tl(N) (Tr(N)) to denote the set of left (right) semi-central idempotents 
of near-field space N. 
 
To characterize near-field spaces over baer-ideals in near-field spaces by defining quasi-Baer near-field space. Near-
field space N to be a quasi near-field space over Baer-ideals if the left annihilator of every ideal of N is generated, as a 
left ideal, by an idempotent. The quasi-Baer concept to characterize Near-field space N over Baer-ideal when a finite-
dimensional algebra with identity over an algebraically closed near-field space is isomorphic to a twisted matrix unit 
semi-group algebra. The quasi-Baer condition are left-right symmetric. It is to find that Near-field space N is a quasi-
Baer if and only if Mn (N) is quasi-Baer if and only if Kn(N) is a quasi near-field space over Baer-ideal. 
 
A near-field space N to be n-generalized right quasi- near-field space over a Baer-ideal if for each J   N, the right 
annihilator of Jn is generated (as a right ideal) by an idempotent. A near-field space N is n-generalized quasi near-field 
space over a Baer-ideal if and only if Mn(N) is n-generalized. Moreover, Dr. N V Nagendram found equivalent 
conditions for which the 2 × 2 generalized triangular matrix near-field space be n-generalized quasi near-field space 
over Baer-ideal. 
 
A principally quasi near-field space over a Baer-ideal is introduced by Dr. N V Nagendram and used them to 
characterize and generalize many results on reduced (i.e., it has no nonzero nilpotent elements) p.p.-near-field spaces. A 
near-field space N is called right principally quasi-Baer (or simply right p. q.-Baer) if the right annihilator of a principal 
right ideal is generated by an idempotent. 
 
The characterization of near-field spaces over Baer-ideal is studied and results obtained by Dr. N V Nagendram. An 
ideal J of N is called right Baer-ideal if r(J) = eN for some idempotent  e ∈ N, and if l(J) = Ng, for some idempotent     
g∈ N, then we say J is a left Baer-ideal.  
 
An example of right Baer-ideals which are not left Baer-ideal in a near field space N. Also see that in a near-field space 
N the set of Baer-ideals are closed under sum and direct product. 
 
We characterize near-field spaces over Baer-ideals in 2-by-2 generalized triangular matrix near-field spaces, full and 
upper triangular matrix near-field spaces. By these results I obtain new proofs for the well-known results about quasi-
Baer and n-generalized quasi-Baer near-field spaces. Also, I obtained equivalent conditions for which the 2-by-2 
generalized triangular matrix near-field space be right TA (i.e., for any two I; J   N there is a K   N such that          
r(I) + r(J) = r(K)). 
 
A near-field space the product of two sub near-field space over Baer ideals in a semi-prime near-field space S is a sub 
near-field space over Baer-ideal. Also we show that an ideal J of a semi-prime near-field space S is a near-field space 
over Baer-ideal if and only if int V (J) is a clopen sub near-field space of Spec (S). Moreover, it is proved that an ideal J 
of C(N) is a Baer-ideal if and only if int g∈J Z(g) is a clopen sub near-field space C of near-field space N. 
 
 
 



Dr. N. V. Nagendram / Certain Near-field spaces are Near-fields (C-NFS-NF) / IJMA- 7(4), April-2016. 

© 2016, IJMA. All Rights Reserved                                                                                                                                                                      240   

 
Certain near-field space, N denotes as Near-field space has zero symmetric near-ring with identity. We begin by 
recalling some background material. Generalization the study of pseudo-valuation domains to the context of extending 
to arbitrary near-field spaces possibly with non-zero zero divisors. For a near-field space N with total quotient near-field 
space T(N) such that Nil(N) is divided prime ideal of N, we define a map φ : T(N) → K := NNil(N) such that φ(a/b) = a/b 
∀ a ∈ N and b ∈ n \ Z(N). then φ is a near-field homomorphism from T(N) into K, and φ is restricted to near-field space 
N is also a near-field homomorphism from N into K given by φ(x) = x/1 ∀ x ∈ N. For an equivalence characterization 
of a φ-PVNFS, ∀ n ≥ 0 ∃ a φ-CNFS of krull dimension n that is not a PVNFS.   
 
A quasi-local near-field space N with maximal ideal M is a φ-PVNFS if and only if N(v) is a quasi-local near-field 
space for each v ∈ (M : M) \ N  if and only if every over-near-field space of N is quasi-local near-field space if and only 
if every over-near-field space contained in (M : M) is quasi-local near-field space if and only if each φ-CNFS between N 
and T(N) other than (M : M) is of the form Nq for some non-maximal prime ideal P of N.  If A is an over-near-field 
space of a φ-PVNFS and J is a proper ideal of A, then there is a φ-CNFS C between A and T(N) such that JA ≠ A. Also 
show that the integral closure of near-field space N in T(N) is the intersection of all the φ-CNFS’s between N and T(N). 
 
The following notations will be used throughout. Let N be a near-field space. Then T(N) denote the total quotient near-
field space of a near-field space N. Nil (N) denotes the near-field spaces of all nilpotent elements of N, and Z(N) 
denotes the set of zero divisors of N. If J is an ideal of N, then Rad (J) denotes the radical ideal of J in N.  

 
A well known theorem of I.N. Herstein assets that a periodic near-field is commutative if its nilpotent elements are 
central. In order to establish an analogous result in near-field spaces. If N is a ( d – g ) near-field with its nilpotent 
elements lying in the center, then the set N(N) forms an ideal, and if N/N(N) is periodic, then N must be commutative. 
In a recent trends some conditions implying commutativity in near-field spaces might reduce them to near-fields. The 
main purpose of this paper is to examine whether the following axiom implies that certain near-field spaces are near-
fields. 
 
(A) For each y, x ∈ N, there exist positive integers ni = ni (y, x) > 1, pi = pi (y, x) ≥ 1, qi = qi(y, x) ≥ 1, βi = βi (y, x) 
≥ 1 such that yx = p(x, y) where p(x, y) is a finite sum of terms of the form βi xp

i yn
i xq

i, where the number of summands 
and βi pi ni qi all vary with y, x. 
 
SECTION-2. MAIN RESULT 
 
The main result of the present paper is as follows: 
 
Theorem 2.1:  Let N be a (d – g) near-field space satisfying (A). Then N is commutative. 
 
Proof: It is clear that A (d – g) near-field space is always zero-symmetric. A (d – g) near-field space N is distributive if 
and only if N2 is additively commutative. If N(N) is a two-sided ideal in a (d – g) near-field space N, then the elements 
of the quotient sub near-field space (N, +) / N(N) form a (d – g) near-field space, which will be represented by              
N / N(N). 
 
To prove this theorem we establish the following result called steps (a) to (d). 
 
Step-(a): Let N satisfy (A). Then N is a zero-commutative. 
 
Proof: For a pair of near-field space elements, y, x ∈ N, we have yx = 0. By hypothesis, we get xy = p(y, x) = 0, 
because βi yp

i
-1 (yx) yn

i
-1 xq

i = 0. Hence, N is zero-commutative as well as zero-symmetric. 
 
Step-(b): Let N satisfy (A). Then N(N) ⊆ Z(N). 
 
Proof: From (a) it follows easily that N must have the insertion-of-factors property, i.e., any product equal to 0 remains 
so on the insertion of additional factors between any existing factors; in particular, if vs = 0, any product of near-field 
elements having at least s factors equal to v is 0. Let v ∈ N(N) and y ∈ N, and suppose vs = 0. Replacing x by y and y 
by v in the hypothesis, then there exist positive integers βi1 = βi(v, y), pi1 = pi(v, y), qi1 = qi(v, y) ≥ 1 and ni1 = ni(v, y) > 
1 such that vy = p(v, y) = βi1 yp

i vni1 yqi1 

 
Further, choose integers βi2 = β(vpi1, yni1), pi2 = p(vpi1, yni1), qi2 = q(vpi1, yni1) ≥ 1 
 
And ni2 = n(vpi1, yni1) > 1  ∋ βi1 yp

i vni1 yqi1  = βi1 βi2 yn
i1

n
i2 vpi1 pi2 yp

i1
q
i2 yq

i3. 
 
By the above equality, one gets vy = βi1 βi2 yn

i1
n

i2 vpi1 pi2 yp
i1

q
i2 yq

i3. 
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Thus it is obvious that for arbitrary s, we have βi1,  βi2, ...., βis ≥ 1, pi1,  pi2, ...., pis ≥ 1,  ni1,  ni2, ...., nis > 1 and qi1,  qi2, ...., 
qis ≥ 1 such that  

vy = βi1  βi2 .... βis ypi1  pi2 .... pis v qi1 +pi1 qi2+ ...+pi1 pi2+ pi(s -1)qis 
 
But, since v ∈ N(N), v ni1,  ni2, ...., nis = 0 for sufficiently large s. Hence, vy = 0    ∀  y ∈ N and by step (a), ⇒vy = 0  
i.e., NN(N) = N(N)N = {0} ------------    (1)  
 
Equation (1) shows that nilpotent elements of near-field N annihilate N on both sides and hence, in particular, N2 = {0} 
and v is central. 
 
Step-(c): Let N satisfy (A). Then N(N) forms an ideal. 
 
Proof: Let a, b ∈ N(N). Then by step(b), ( a – b )2 = 0. This yields that a – b ∈ N(N) and hence N(N) is a sub-near-field 
space of the additive sub near-field space (N, +). Further an application gives the required result. 
 
Step-(d):  Let S be an arbitrary near-field satisfying (A). Then S is a periodic near-field. 
 
Proof: Taking x = y in (A), we get y2 = q(y, y) = ∑

∈

++

finiteIi

qnp
i

iiiy
,

β  for some positive integer pi + ni + qi. Hence S is 

periodic near-field. This completes the proof of the theorem. 
 
Note 2.2: From the proof of Step (d), it is clear that a near-field space N satisfies (A) together is periodic near-field. 
 
Proof of Theorem 2.1: by step (b), we have N(N) ⊆ Z(N) by step (c) N(N) is an ideal. We consider the near-field 

space N   = N/N. Now it is enough to prove that ( N , +) is abelian. N  is a near-field and is periodic near-field. 
 
SECTION-3. APPLICATIONS 
 
The following results are corollaries of our main theorem as well as the applications. 
 
Result 3.1: Let N be a (d – g) near-field space satisfying (A). If N2 = N, then N is a commutative near-field. 
 
Proof: By known theorem, we can observe that a (d – g) near-field space satisfying (A) is commutative. Hence, for any 
a, b, c ∈ N, we have (b + c) a = a (b + c) = ab + ac = ba + ca. 
 
It follows that N is distributive and hence, N2 is additively commutative near-field. Further, N2 = N gives that (N, +) is 
abelian. Hence, N is a commutative near-field. 
 
Result 3.2: Let N be a (s – d – g) near-field space satisfying (A). Then N is a commutative near-field. 
 
Proof: N is a commutative (s – d – g) near-field space in which every element is distributive and consequently N2 is 
additively commutative. Thus the additive sub near-field space (N, +) of the (s – d – g) near-field space is also 
commutative and N is a commutative near-field. 
 
Result 3.3: Let N be a D-near-field space with unity 1 satisfying (A). Then N is commutative near-field. 
 
Proof: From the step (b), we get N(N) ⊆ Z(N). Further, N is periodic near-field space and if N has unity 1, then by 
consequently (N, +) is abelian. Hence by the definition of D-near-field space, N turns out to be a near-field which is 
periodic near-field with central nilpotent elements. By an application of near-field spaces N is commutative near-field. 
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