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ABSTRACT 
Analysis of dynamic characteristics plays an important role in designing hydrodynamic bearings. The analysis of 
dynamic characteristics for a finite slider bearing with exponential film profile is presented by taking into account the 
bearing squeezing action. The detailed analysis is presented for exponential film-shaped finite slider bearings by using 
perturbation technique. Two types of Reynolds equations pertaining to steady performance and the dynamic 
characteristics are obtained. The closed form solution of these equations is obtained by Numerical methods. Increasing 
values of aspect ratio (width-to-length ratio) enhances the pressure performance. Comparing with those of plane slider 
bearing, the exponential shaped slider bearing provides the higher values of load carrying capacity, stiffness 
coefficient and damping coefficient.   
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1. INTRODUCTION 
 
Slider bearings are designed mainly to support the axial component of the load or thrust in a rotating shaft which passes 
through the casing of a perimeter. Analysis of the steady-state performance and dynamic characteristics of bearings 
taking into account the geometry and different operating conditions is important. The study of slider bearings with 
various film shapes lubricated with Newtonian fluids has been investigated by Hamrock [1], Pinkus and Sternlicht [2] 
and Cameron [3].  Bearing characteristics have been analyzed by considering different film shapes. Advanced analysis 
is presented by considering different operation conditions, such as the viscosity variation across the film [4], the inertia 
force effects [5-7], the turbulent flows [8-9], the temperature variation of fluid film [2], the thermal effects [10-13]. All 
these studies focus upon the performance of slider bearing operating under the steady state situation in which the 
effects of dynamic squeezing motion are neglected. It is known fact that the steady-state performance provides a basic 
reference in designing bearings. In order to avoid runner-pad contact and for predicting stability behavior of the 
bearing, a study of dynamic characteristics shows more important. An understanding of dynamic stiffness and damping 
behaviors is helpful in designing the bearing because the slider-bearing surfaces operate mainly upon the wedge-action 
principle. Lin et al [14] have analyzed the dynamic characteristics of wide slider bearings with an exponential film 
profile. To provide more information for the bearing designing, we are motivated to investigate the dynamic 
characteristics of the finite slider bearings with an exponential film profile. 
 
On the basis of the thin film lubrication theory, this study is mainly concerned with the dynamic characteristics of finite 
slider bearings with an exponential film shape including the effects of squeezing action. The dynamic Reynolds-type 
equation, both of the steady-state Reynolds equation and the perturbed-type Reynolds equation are derived by applying 
a small perturbation technique. The steady-state performance and the dynamic characteristics of the bearings at 
different profile parameters and aspect ratio are then evaluated. Comparing with those of plane sliders, characteristics 
of bearings in terms of the steady load carrying capacity, dynamic stiffness and damping coefficient performance is 
better in case of exponential film profile.      
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2. MATHEMATICAL FORMULATION OF THE PROBLEM 
 
The physical geometry of the problem under consideration is shown in the Fig.1. It consists of an exponential-film 

slider bearing of length L and width B with sliding velocity U including the effect of squeezing action
t
h
∂
∂

, h1 (t) is the 

inlet film thickness and outlet film thickness is h0 (t). It is assumed that, the lubricant in the film region is Newtonian 
fluid. Newton’s equations of motion are given by 
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where u, v and w are the velocity components of the lubricant in the x, y and z direction respectively. The relevant 
boundary conditions for the velocity components are 
 , 0, 0 0u U v w at z= = = = ,                                                                                                  (5) 

 0, 0, dHu v w at y H
dt

= = = = ,                                                     (6) 

 
The solution of equations (1) and (2) subject to the boundary conditions (5) and (6) is obtained as  
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Integrating the continuity equation (4) over the fluid film thickness and using the expressions (7) and (8) for u and v 
respectively and use the boundary conditions for w given in equations (5) and (6), the generalized Reynolds equation is 
obtained in the form 

 ( ) ( ) 6 1 2p p H Hf H f H U
x x y y x t

µ µ
 ∂ ∂ ∂ ∂ ∂ ∂  + = +  ∂ ∂ ∂ ∂ ∂ ∂   

                                                           (9) 

where    3( )f H H= . 
 
Exponential film shape slider bearing 
 
To study the static and dynamic characteristics of exponential film-shaped slider bearing, the film thickness is separated 
into two parts: the minimum film thickness, ( )mh t  and the exponential shaped slider profile function, ( )eh x  i.e. 

( , )H x t = ( ) ( )m eH t H x = ( ) exp lnm
xH t r
L

 −  
 where r  denotes the inlet-outlet film ratio 
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= ( ) ( )0 0a H t H t +  , where a  is the shoulder height denoting the difference between the inlet and outlet height. 

 
Introducing the non-dimensional quantities  
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into the dynamic Reynolds-type equation (7) we get  

  
2
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where 3( )f H H= . 
 
Since the linear dynamic characteristics can be obtained for the bearing under small disturbances about its steady-state, 
the inlet-outlet film ratio can be approximated by 1r = + λ  and the film thickness is then expressed as 

( , )H x τ = ( ) ( )m eH H xτ = ( ) exp lnm
xH t r
L

 −  
.  

 
3. SOLUTION OF THE PROBLEM 
 
The steady and dynamic characteristics of the exponential film-shaped slider bearings are obtained by using the 
perturbations in mH . The minimum film thickness and the local film pressure are assumed to be of the form 

  0 11 ,    i i
mH e P P P eτ τε ε= + = +                                                                                                     (11) 

where ε  is the small perturbation amplitude and 1i = − . Substituting (11) into the non-dimensional dynamic 
Reynolds-type equation (10) and neglecting the higher order terms of ε , the two Reynolds-type equations 
corresponding to both steady-state pressure and the perturbed film pressure are obtained in the form 
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where 

 ( )3
0 ,ef H x=  ( )1 3 ef H x=                                                                                                (14) 

 
The relevant boundary conditions for the steady state and perturbed film pressure are 
  0 0   at 0,   1,  0,   1P x x y y= = = − = = ;                                                            (15) 

  1 0   at 0,   1,  0,   1P x x y y= = = − = = .                                             (16) 
 
The modified Reynolds equation will be solved numerically by using a finite difference scheme. The film domain 
under consideration is divided by the grid spacing as shown in Fig.2.  In finite increment format, the terms in the Eqn. 
(12) and Eqn. (13) can be expressed as 
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After the substitution for the above finite difference forms, the steady-state and perturbed Reynolds equations (12) and 
(13) leads to 
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where the perturbed film pressure has been expressed in terms of real and imaginary parts   

1 1 1rp ipp p i p= + .                                                                                                                                         (24) 
 
The coefficients 0 12 to c c  are defined as 
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The steady-state film pressure and the perturbed film pressure are then calculated by using numerical method with grid 
spacing of Δ Δ 0.05x y= = . The steady-state load carrying capacity, sW  and perturbed film force, dW  are 
evaluated by integrating the steady-state film pressure and perturbed film pressure respectively over the film region.   
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which in non-dimensional form 
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where M+1 and N+1 are the number of grid points in the x  and z  directions respectively. 
 
From the linear theory, the resulting dynamic film force can be expressed in terms of linearized spring and damping 
coefficients. 

  0 0( )i i i
d d m d m

dW e S H e C H e
dt

τ τ τε ε ε= − − ,                                                                                      (29) 

which in non-dimensional form  
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The non-dimensional dynamic stiffness coefficient, dS  and dynamic damping coefficient, dC  are obtained by 

equating the real and imaginary parts of dW  respectively as 
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4. RESULTS AND DISCUSSION 
 
Considering the transient squeezing-action effects, the dynamic characteristics of an exponential film shaped finite 
slider bearings lubricated with Newtonian fluid are investigated. Both of the steady-state performance and the dynamic 
characteristics are analyzed by applying a small perturbation technique. In this paper we have compared plane slider 
bearing with an exponential shaped slider bearing for steady state film pressure, steady load carrying capacity, stiffness 

coefficient and damping coefficient. Figure 3 shows the variation of steady state film pressure, 0P  with x -axis for 

different values of aspect ratio, δ . It is observed that increasing values of aspect ratio, δ  increases the state film 

pressure. Figures 4 and 5 shows the variation of dimensionless steady load-carrying capacity, sW  with profile 

parameter, λ  and aspect ratio, δ  respectively. The dotted curve shows the results for finite plane slider bearing 
obtained by Naduvinamani et al [14]. The solid curve presents the steady load-carrying capacity for the present study. 
Comparing with those of the inclined plane slider, the exponential shaped slider provides a higher load-carrying 
capacity for larger values of the profile parameter. 
 

Figures 6 and 7 shows the variation of dimensionless dynamic stiffness coefficient, dS  with the profile parameter, λ  

and aspect ratio, δ  respectively. It is observed for the inclined plane slider that the maximum stiffness coefficient lies 
within the range of small values of the profile parameter. But the maximum stiffness shifts to the position of a larger λ  
for the exponential shaped bearing. Comparing with the inclined-plane slider, the slider with an exponential shaped 
film results in a significantly increased stiffness for larger values of the profile parameter, λ  and aspect ratio, δ .   
 

The variation of non-dimensional damping coefficient, dC  with the profile parameter λ  and the aspect ratio, δ  is 

illustrated in figures 8 and 9. For both types of bearings, increasing value of  λ   yields a decreasing damping 
coefficient. Comparing with those of the inclined plane slider, the exponential shaped slider provides a higher damping 
coefficient especially for larger values of the profile parameter λ . Comparing with those of the inclined plane slider, 
the exponential shaped slider provides higher damping coefficient for increasing values of aspect ratio, δ . 
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5. CONCLUSIONS 
 
In this paper, on the basis of the thin-film lubrication theory, a study of dynamic characteristics for a exponential 
shaped finite slider bearing considering the squeezing action is presented. Both the steady-state performance and the 
dynamic characteristics are evaluated by applying a small perturbation technique to the dynamic Reynolds-type 
equation. 
 
Both of the steady-state performance and the dynamic characteristics are significantly affected by both the profile 
parameter, λ  and aspect ratio, δ . Comparing with those of the inclined plane slider by Naduvinamani et al [15], the 
exponential shaped slider provides higher load-carrying capacity and better dynamic stiffness and damping coefficient 
for increasing values of profile parameter, λ  and aspect ratio, δ . This analysis provides the useful information for 
engineers in designing and application of bearing systems. 
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Fig.1: Physical geometry of an exponential – film slider bearing 
 

 
Fig.2: Grid point notation for film domain
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Fig.3: Non-dimensional steady-state film pressure 0P  for different values of aspect ratio δ  with =0.75λ  
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 Fig.5  Variation of non-dimensional steady load carrying capacity Ws 
               with aspect ratio δ for λ=0.75
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 Fig.6  Variation of non-dimensional dynamic stiffness coefficient 
               Sd with profile parameter λ for δ= 1.5
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 Fig.8  Variation of non-dimensional dynamic damping coefficient 
               Cd with profile parameter λ for δ= 1.5
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 Fig.9  Variation of non-dimensional dynamic damping coefficient 
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