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ABSTRACT 
This paper gives the notion of orthogonality between (σ,τ)-Derivations and Bi-(σ,τ)-Derivations in Semiprime rings. 
In this paper, we give three conditions equivalent to the notion of orthogonality between the (σ,τ)-derivation and        
bi-(σ,τ)-derivation of a semiprime ring. It is shown that if R is a 2-torsion free semiprime ring, B is a bi-(σ,τ)-
derivation and d is a (σ,τ)-derivation on R, then B and d are orthogonal if only if one of the following equivalent 
conditions holds for every Ryx ∈, : (i) dB=0 (ii) 0),()( =yxBxd or ( ) ( , ) 0d x B y x =  (iii) dB is a bi- (σ,τ)-derivation 
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INTRODUCTION  
 
Bresar and Vukman [2], introduced the notion of orthogonality for a pair d and g of derivations on a semiprime ring 
and they have proved several necessary and sufficient conditions for d and g to be orthogonal.  Daif. et al. [4], studied 
the orthogonality between the derivation and biderivation of a ring and also in terms of a nonzero ideal of a 2-torsion 
free semiprime ring. In this section, we give three conditions equivalent to the notion of orthogonality between the 
(σ,τ)-derivation and bi-(σ,τ)-derivation of a semiprime ring. It is shown that if R is a 2-torsion free semiprime ring, B is 
a bi-(σ,τ)-derivation and d is a (σ,τ)-derivation on R, then B and d are orthogonal if only if one of the following 
equivalent conditions holds for every Ryx ∈, : (i) dB=0 (ii) ( ) ( , ) 0d x B x y = or 0),()( =xyBxd (iii) dB is a bi- 
(σ,τ)-derivation. 
 
PRELIMINARIES 
 
Throughout this paper R will be an associative ring. A ring R is said to be 2-torsion-free if 2x = 0, x∈ R implies x = 0.   
R is called prime if xRy = 0 implies x = 0 or y =0, and R is semiprime if xRx = 0 implies x = 0 for all  x, y∈ R . 
 
We write the usual commutator [x, y] = xy− yx  for all x, y∈ R, and we use the basic commutator identities                   
[x, yz] = [x, y]z+y[x, z] and [xz, y] = [x, y]z+x[z, y].  
 
An additive mapping d: R → R is called a derivation if d(xy) = d(x)y + xd(y) for every x, y ∈ R. Let R be a semiprime 
ring, two derivations d and g of R are called orthogonal if d(x)Rg(y) = 0 = g(y)Rd(x) [2]. Following Daif.et.al [4], a 
biadditive map B: R× R→ R  is called a biderivation of R if B(xy, z) = B(x, z)y + xB(y, z) for all x, y, z∈ R.  We know 
that an additive mapping :d R R→ is called a (σ,τ) derivation if ( ) ( ) ( ) ( ) ( )d xy x d y d x yσ τ= + for all 

Ryx ∈, . A biadditive mapping :B R R R× → is called a biderivation of R if it is a derivation in each argument. 
That is for every Rx∈ , the maps :B R R R× → and ( , )y B y x→  are derivations of R into R. B is called a bi-

(σ,τ) derivation if ( , ) ( ) ( , ) ( , ) ( )B xy z x B y z B x z yσ τ= +  for all ,x y R∈ , where τσ ,  are endomorphisms on R. 
A (σ,τ)-derivation d and bi-(σ,τ) derivation B of R are called orthogonal if ( , ) ( ) 0 ( ) ( , )B x y Rd z d z RB x y= =  for 
all , ,x y z R∈ . 
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Throughout this section R will denote a 2-torsion free semiprime ring.  
 
We now consider some well known results that will be needed in the subsequent results. 
 
Lemma 1: [[2], Lemma 1] Let R be a 2-torsion free semiprime ring and Rba ∈, . Then the following are equivalent: 

• 0=axb for all x R∈  
• 0=bxa for all x R∈  
• 0=+ bxaaxb for all x R∈  

 
If one of the above conditions is fulfilled, then ,0== baab too. 
 
Lemma 2: [[4], Lemma 2] Let R be a semiprime ring. Suppose that an additive mapping h on R and a biadditve 
mapping RRRf →×: satisfy ( , ) ( ) (0)f x y Rh x = , then )0()(),( =zRhyxf for all Rzyx ∈,, . 
 
Lemma 3: Let R be a 2-torsion free semiprime ring. A bi-(σ,τ)- derivation B and a (σ,τ)-derivation d are orthogonal iff  

+)(),( zdyxB  0),()( =yzBxd  for all Rzyx ∈,, . 
 
Proof: Suppose B and d, such that 

( , ) ( ) ( ) ( , ) 0B x y d z d x B z y+ = for all Rzyx ∈,, .                                                  (1) 
 
By taking zxz = , we obtain  

 ( , ) ( ) ( ) ( , ) 0B x y d zx d x B zx y+ = . Thus 
 ( , ) ( ) ( ) ( , ) ( ) ( ) ( ) ( ) ( , ) ( ) ( , ) ( ) 0 .B x y z d x B x y d z x d x z B x y d x B z y xσ τ σ τ+ + + =   

It implies, ( , ) ( ) ( ) ( ) ( ) ( , ) { ( , ) ( ) ( ) ( , )} ( ) 0 .B x y z d x d x z B x y B x y d z d x B z y xσ σ τ+ + + =                              (2) 
 
Using (1) and (2) gives 

( , ) ( ) ( ) ( ) ( ) ( , ) 0B x y z d x d x z B x yσ σ+ =  for all .,, Rzyx ∈                                                                (3) 
 
It can be written as ( , ) ( ) ( ) ( , ) 0B x y Rd x d x RB x y+ = . 
 
Using Lemma 1 in (3) gives  

( ) ( , ) (0)d x RB x y =  for all ., Ryx ∈  
 
Hence by Lemma 2, we get  

( ) ( , ) (0)d x RB z y =  for all Rzyx ∈,, .                                                                (4) 
 
Using Lemma 1, again in (4) gives 
 ( ) ( , ) (0 ) ( , ) ( ).d x RB z y B z y Rd x= =  
 
So B and d are orthogonal. 
 
Conversely, if B and d are orthogonal then  

( ) ( , ) (0 ) ( , ) ( ),d x B z y B x y d z= =  by Lemma 1. 
 
Thus ( ) ( , ) ( , ) ( ) 0 .d x B z y B x y d z+ =       
 
From the definitions of d and B, we have   
 
Lemma 4:  Let d be a (σ,τ)- derivation and B a bi-(σ,τ)-derivation of  a ring R. The following identity holds for all 

, ,x y z R∈ . 
( , )dB xy z = { ( ) ( , ) ( , ) ( )}d x B y z B x z yσ τ+  

     2 2( ) ( , ) ( ) ( , ) ( , ) ( ) ( , ) ( ).x dB y z d x B y z B x z d y dB x z yσ σ τ σ τ τ= + + +  
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Theorem 5: Let R be a 2-torsion free semiprime ring. A bi- ),( τσ -derivation B and a ),( τσ -derivation d are 
orthogonal iff dB=0. 
 
Proof:  Let B and d be such that dB=0. According to Lemma 4, 

( ) ( , ) ( , ) ( ) 0 .d x B y z B x z d yσ τ σ τ+ =  Then 

1 1 1 1 1 1( ) ( , ) ( , ) ( ) 0d x B y z B x z d y+ = , where ,)( 1xx =σ ττ BB = , 

1 1( , ) ( , )y z y zτ = , B Bσ σ=  and .)( 1yy =τ  
 
By using Lemma 3, d and B are orthogonal. 
 
Conversely, if d and B are orthogonal, then ( ) ( , ) 0d x sB y z =  for all .,,, Rszyx ∈   
 
Hence    0 ( ( ) ( , ))d d x sB y z= = ( ( ) ) ( , )d x s dB y zσ + ( ( ) ) ( , )d d x s B y zτ  

0 ( ) ( ) ( , )d x s dB y zσ σ= ( ) ( ) ( , )d x d s B y zσ τ+ 2 ( ) ( ) ( , )d x s B y zτ τ+ . 

10 ( ) ( ) ( , )d x s dB y zσ= , 1 1 1( ) ( , )d x RB y z+ 1 1 1( ) ( , )d x RB y z+  

where d dσ σ= and 1( ) ,x x B Bσ τ τ= = and 1 1( , ) ( , ).y z y zτ =  
 
The sum of the last two summands is zero as d and B are orthogonal. So the above relation becomes 

1( ) ( , ) 0,d x rdB y z =                                                                                                                                        (5) 

where ( )s r Rσ = ∈ and rzyx ,,,  are arbitrary elements in R. In 5, let ),,(1 zyBx =  then  

( , ) ( , ) (0 )dB y z RdB y z =  for all ., Rzy ∈  
 
Since R is semiprime,  

( , ) 0dB y z =  for all ., Rzy ∈  
 
Hence dB=0.           
 
Theorem 6:  Let R be a 2-torsion free semiprime ring.  A bi- ),( τσ -derivation B and a ),( τσ -derivation d are 

orthogonal iff 0),()( =yxBxd  or 0),()( =xyBxd for all ., Ryx ∈  
 
Proof: We assume B and d such that  

0),()( =yxBxd   for all ., Ryx ∈                                                  (6) 
 
A linearization on x for 6 gives,  

0),()(),()(),()(),()( =+++ yzBzdyxBzdyzBxdyxBxd                                             (7) 
for all .,, Rzyx ∈     
 
Using (6) and (7), we obtain 

0),()(),()( =+ yxBzdyzBxd for all .,, Rzyx ∈                                                (8) 
 
By taking zsz = in (8) gives  

.0),()(),()( =+ yxBzsdyzsBxd This implies  

( ) ( ) ( , ) ( ) ( , ) ( ) ( ) ( ) ( , ) ( ) ( ) ( , ) 0 .d x z B s y d x B z y s z d s B x y d z s B x yσ τ σ τ+ + + =                   (9) 
 
By (8), we get  

( ) ( , ) ( ) ( , )d x B z y d z B x y= −  and 
( ) ( , ) ( ) ( , ).d s B x y d x B s y= −  

 
So 9 becomes, 

( ) ( ) ( , ) ( ) ( , ) ( ) ( ) ( ) ( , ) ( ) ( ) ( , ) 0 .d x z B s y d z B x y s z d x B s y d z s B x yσ τ σ τ− − + =              (10) 
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By replacing )()( xdz =σ in (10), gives 

2 2( ) ( , ) ( ) ( , ) ( ) ( ) ( , ) ( ) ( ) ( , ) 0d x B s y d z B x y s d x B s y d z s B x yτ τ− − + = . 
 
This implies ( )[ ( ), ( , )] 0.d z s B x yτ =         
 
By taking ( ) ,s r Rτ = ∈  we have ( )[ , ( , )] 0.d z r B x y =                                                            (11) 
 
By assuming rwr =  in (11), we get 

( )[ , ( , )] 0.d z rw B x y =  
 
So  ( ) [ , ( , )] ( )[ , ( , )] 0.d z r w B x y d z r B x y w+ =  
 
By (11), it reduces to  

( ) [ , ( , )] 0.d z r w B x y =  
 
It can be written as ( ) [ , ( , )] 0d z R w B x y = for all .,,, Rwzyx ∈  
 
But  [ ( ), ( , )] [ ( ), ( , )] (0)d z B x y R d z B x y =  for all .,, Rzyx ∈  
 
Hence, ( ) ( , ) ( , ) ( )d z B x y B x y d z= for all .,, Rzyx ∈  
 
Therefore, (8) can be written as  

( ) ( , ) ( , ) ( ) 0d x B z y B x y d z+ = for all .,, Rzyx ∈  
 
Thus, using Lemma 3, we see that d and B are orthogonal.. 
 
Similarly, we can prove that if ( ) ( , ) 0d x B y x = then d and B are orthogonal. 
 
Conversely, if d and B are orthogonal, then )0(),()( =yxRBxd  for all ., Ryx ∈  

Therefore,  ),0(),()( =yxBxd by Lemma 1. 

Similarly    .0),()( =xyBxd        
 
Theorem 7: Let R be 2-torsion free semiprime ring. Then a bi- ),( τσ -derivation B and a ),( τσ -derivation d are 

orthogonal iff  dB  is a bi- ),( τσ -derivation. 
 
Proof: Let B and d be such that dB  is a bi- ),( τσ derivation. Then 

)(),(),()(),( yzxdBzydBxzxydB τσ +=  for all .,, Rzyx ∈                                            (12) 
 

In Lemma 4, by taking σσ =2  and ττ =2 , we get  
( , ) ( ) ( , ) ( ) ( , ) ( , ) ( ) ( , ) ( ).dB xy z x dB y z d x B y z B x z d y dB x z yσ σ τ σ τ τ= + + +                              (13) 

 
From (12) and (13), we get  

.0)(),(),()( =+ ydzxBzyBxd τστσ  
 
By taking BBxx ττσ == ,)( 1 , )(),( 1,1 zyzy =τ , 1)( yy =τ and ),(),( 11 zxzx =σ , the above relation reduces to 

0)(),(),()( 111111 =+ ydzxBzyBxd for all .,, 111 Rzyx ∈  
So, by Lemma 3, we have that d and B are orthogonal. 
 
Conversely, let d and B are orthogonal. Then Lemma 3 implies that 

0)(),(),()( =+ ydzxBzyBxd   for all .,, Rzyx ∈                                                           (14) 
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Again by using Lemma 4 to the relation (13), and using ,)( 1xx =σ  BB ττ = and )(),( 1,1 zyzy =τ , 1)( yy =τ
and ),(),( 11 zxzx =σ ,  we get 

1 1 1 1 1 1( , ) ( ) ( , ) ( ) ( , ) ( , ) ( ) ( , ) ( )dB xy z x dB y z d x B y z B x z d y dB x z yσ τ= + + +  
for all .,, 111 Rzyx ∈  
 
By 14, it reduces to, 

( , ) ( ) ( , ) ( , ) ( )dB xy z x dB y z dB x z yσ τ= +  for .,, Rzyx ∈  

Thus dB is a bi- ),( τσ -derivation.          
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