SOME RESULTS ON K-CONTACT AND TRANS-SASAKIAN MANIFOLDS

¹S. Yadav*, ²P. K. Dwivedi and ³D. L. Suthar

1, 3 Department of Mathematics, Alwar Institute of Engineering & Technology M. I. A. Alwar-301030, Rajasthan (INDIA)

Email: prof_sky16@yahoo.com,dd_suthar@yahoo.co.in

² Department of Mathematics, Institute of Engineering & Technology M. I. A. Alwar-301010, Rajasthan (INDIA)

Email: drpkdwivedi@yahoo.co.in

(Received on: 06-06-11; Accepted on: 29-06-11)

ABSTRACT

In this paper we study some properties of curvature tensor, projective curvature tensor with respect to semi-symmetric metric connection in a k-contact and trans-Sasakian manifold. Further we obtained necessary and sufficient condition for the Ricci tensor to be symmetric and skew-symmetric with respect to this connection $\tilde{\nabla}$

Key words and phrases: k-contact manifold, trans-Sasakian manifold, semi-symmetric metric connection, projective curvature tensor.

Mathematics Subject Classification (2000): 53B15,53D15.

1. INTRODUCTION

The idea of semi-symmetric linear connection on a differentiable manifold was introduced by Friedmann and Schouten [7]. A linear connection $\tilde{\nabla}$ in a n-dimensional differentiable manifold M is said to be semi-symmetric connection if its torsion \tilde{T} is of the form.

$$\widetilde{T}(X,Y) = u(X)Y - u(Y)X, \tag{1.1}$$

where u is 1-form The connection $\tilde{\nabla}$ is said to be metric connection if there is a Riemannian metric g such that $\tilde{\nabla} g = 0$, otherwise it is non-metric.

In 1932, Hyden [9] defined a semi-symmetric metric connection on a Riemannian manifolds and this was further developed by Yano [14] in 1970 and later studied by.Amur and Pujar [1], Bagewadi [2], De et al [6], Sharafuddin and Hussain [12].

Tripathi [13] studied a semi-symmetric metric connection in a Kenmotsu manifolds whereas Bagewadi et all studied k-contact and trans-Sasakian manifolds with reference to this connection.

2. PRILIMINARIES

Let M^n be an almost contact metric manifold [5] with almost contact metric structure (ϕ, ξ, η, g) , that is ϕ is a (1,1) – tensor field, ξ is a vector field, η is a 1-form and g is a compatible Riemannian metric such that

(i)
$$\phi^2 = -I + \eta \otimes \xi$$
, (ii) $\eta(\xi) = 1$, (iii) $\phi(\xi) = 0$, (iv) $\phi \circ \xi = 0$, (2.1)

$$g(\phi X, \phi Y) = g(X, Y) - \eta(X)\eta(Y) \tag{2.2}$$

Corresponding author: \(^1S\). Yadav, *E-mail: prof sky16@yahoo.com

¹S. Yadav*, ²P. K. Dwivedi and ³D. L. Suthar / Some results on K-Contact and trans-Sasakian manifolds / IJMA- 2(7), July-2011, Page; 1202-1207

(i)
$$g(X, \phi Y) = -g(\phi X, Y)$$
, (ii) $g(X, \xi) = \eta(X)$, (2.3)

for all $X, Y \in TM$.

If M is a k-contact Riemannian manifold, then besides (2.1) and (2.2), the following relations hold [11]:

$$\eta(R(X,Y)Z) = g(Y,Z)\eta(X) - g(X,Z)\eta(Y) \tag{2.4}$$

$$\nabla_X . \xi = -\phi X \quad , \tag{2.5}$$

$$(\nabla_X \eta)(Y) = -g(\phi X, Y) , \qquad (2.6)$$

$$S(X,\xi) = (n-1)\eta(X)$$
, (2.7)

for any vector field X, Y, where R and S denotes respectively the curvature tensor of type (1,3) and the Ricci tensor of type (0,2).

An almost contact metric structure (ϕ, ξ, η, g) in M is called trans-Sasakian structure [9] if $(M \times R, J, G)$ belongs to the class W_4 ([4],[8]) where J is the almost complex structure on $M \times R$ defined by $J(X, \lambda \frac{d}{dt}) = (\phi X - \lambda \xi, \eta(X) \frac{d}{dt})$ for all vector fields X on M and smooth functions λ on $M \times R$ and G is the product metric on $M \times R$. This may expressed by condition[4].

$$(\nabla_X . \phi)(Y) = \alpha(g(X, Y)\xi - \eta(Y)X) + \beta(g(\phi X, Y)\xi - \eta(Y)\phi X)$$
(2.8)

for some smooth function α and β on M and we say that the trans-Sasakian structure is of type (α, β) . Let M be an n –dimensional trans-Sasakian manifold. From (2.8) it is easy to see that

$$\nabla_{X} \cdot \xi = -\alpha \phi X + \beta \left(X - \eta(X) \xi \right) \tag{2.9}$$

$$(\nabla_X.\eta)(Y) = -\alpha_g(\phi X, Y) + \beta_g(\phi X, \phi Y)$$
(2.10)

In a n –dimensional trans-Sasakian manifold, we have

$$R(\xi, X)\xi = \left(\alpha^2 - \beta^2 - \xi\beta\right)\left(\eta(X)\xi - X\right) , \qquad (2.11)$$

$$2\alpha\beta + \alpha\xi = 0 \tag{2.12}$$

$$S(X,\xi) = \left((n-1)(\alpha^2 - \beta^2 - \xi\beta)(X) - (n-2)X\beta - (\phi X)\alpha \right). \tag{2.13}$$

If a *n*-dimensional trans-Sasakian manifold of type (α, β) , we have [3].

$$\phi(\operatorname{grad}\alpha) = (n-2)\operatorname{grad}\beta \tag{2.14}$$

Then equation (2.11) and (1, 13), reduces to

$$R(\xi, X)\xi = \left(\alpha^2 - \beta^2\right) \left(\eta(X)\xi - X\right), \tag{2.15}$$

$$S(X,\xi) = \left((n-1)(\alpha^2 - \beta^2)\eta(X)\right) \tag{2.16}$$

In the whole paper we study trans-Sasakian manifold under the condition (2.14).

Let (M^n, g) be an n –dimensional Riemannian manifold of class C^{∞} with metric tensor g and let ∇ be the Levi-Civita connection on M^n . A Linear connection $\widetilde{\nabla}$ on (M^n, g) is said to be semi-symmetric [12] if the torsion tensor \widetilde{T} of the connection $\widetilde{\nabla}$ satisfies

$$\tilde{T}(X,Y) = \pi(X)Y - \pi(Y)X, \qquad (2.17)$$

where π is a 1-form on (M^n, g) with ρ as associated vector field,i.e. $\pi(X) = g(X, \rho)$ for any differentiable vector field X on (M^n, g)

¹S. Yadav*, ²P. K. Dwivedi and ³D. L. Suthar / Some results on K-Contact and trans-Sasakian manifolds / IJMA- 2(7), July-2011, Page; 1202-1207

A semi-symmetric connection $\tilde{\nabla}$ is called semi-symmetric metric connection [7] if it further satisfies $\tilde{\nabla}g = 0$. In a almost contact manifold the semi-symmetric metric connection is defined by identifying 1-form π of (2.17) with contact 1-form η , i.e. setting [12]

$$\widetilde{T}(X,Y) = \eta(X)Y - \eta(Y)X, \qquad (2.18)$$

with ξ associated vector field i.e. $g(X,\xi) = \eta(X)$

The relation between the semi-symmetric metric connection $\widetilde{\nabla}$ and the Levi-Civita connection ∇ of (M^n, g) has been obtained by .Yano [14], which is given by

$$\tilde{\nabla}_{X} Y = \nabla_{X} Y + \eta(Y)X - g(X,Y)\xi \tag{2.19}$$

Further, a relation between the curvature tensor R and \tilde{R} of type (1,3) of the connection ∇ and $\tilde{\nabla}$ respectively is given by [14]:

$$\tilde{R}(X,Y)Z = R(X,Y)Z - K(Y,Z)X + K(X,Z)Y - g(Y,Z)FX + g(X,Z)FY . \tag{2.20}$$

where K is a tensor of type (0,2) defined as

$$K(Y,Z) = g(FY,Z) = (\nabla_X \eta)(Z) - \eta(Y)\eta(Z) + \frac{1}{2}\eta(\xi)g(Y,Z)$$
(2.21)

for any vector field X and Y. From (2.20), it follows that

$$\tilde{S}(Y,Z) = S(Y,Z) - (n-2)K(Y,Z) - a \cdot g(Y,Z)$$
 (2.22)

where \widetilde{S} denotes the Ricci tensor with respect $\widetilde{\nabla}$ to and a = TrK.

3. MAIN RESULTS

Lemma: 3.1. Let (M^n, g) be an n-dimensional trans-Sasakian manifold with semi-symmetric metric connection $\widetilde{\nabla}$

$$\begin{split} &\text{(i)} \stackrel{\left(\widetilde{\nabla}_{X}.\phi\right)\left(Y\right)}{\left(\widetilde{\nabla}_{X}.\phi\right)\left(Y\right)} = (\nabla_{X}.\phi)(Y) - \eta(Y)\phi X - g\left(X,\phi Y\right)\xi \\ &\text{(ii)} \stackrel{\left(\widetilde{\nabla}_{X}.\xi\right)}{\left(\widetilde{\nabla}_{X}.\eta\right)\!\left(Y\right)} = \alpha g\left(\phi Y,X\right) + (1+\beta)g\left(\phi X,\phi Y\right) \\ &\text{(iii)} \end{split}$$

Proof: From (2.1)-i and(2.19) we get (i). Iin view of (2.9) and (2.19) and by using(2.3)-(ii),we get(ii). Finally taking covariant derivative of (2.3)-ii and using(2.3)-i and (2.9) we get (iii). This proves the lemma3.1.

Corollary: 1 In a n-dimensional trans-Sasakian manifold (M^n, g) with semi-symmetric metric connection $\widetilde{\nabla}$ the tensor field K of type (0,2) satisfies

$$2F + I = 0$$
, for all X .

Let \tilde{R}' be the curvature tensor of (0,4) type given by

$$\widetilde{R}'(X,Y,Z,U) = g(\widetilde{R}(X,Y)Z,U)$$

Theorem: 3.1 In a n-dimensional trans-Sasakian manifold (M^n, g) with semi-symmetric metric connection $\widetilde{\nabla}$ we have

$$\widetilde{R}(\xi,Y)Z = \left\{ (\alpha^2 - \beta^2)g(Y,Z) + 2\alpha\beta g(\phi Y,Z) - K(Y,Z) \right\} \xi - (\xi\beta(g(Y,Z) - \eta(Y)\eta(Z))$$

$$-((\alpha^2 - \beta^2) + 1)\eta(Z)Y + \frac{1}{2}g(Y,Z)$$
(i)

(ii)
$$\widetilde{R}(X,Y)Z + \widetilde{R}(Y,Z)X + \widetilde{R}(Z,X)Y = 0$$

(iii)
$$\widetilde{R}'(Y, X)Z,W$$
) + $\widetilde{R}'(Y, X)Z,W$) = 0

¹S. Yadav*, ²P. K. Dwivedi and ³D. L. Suthar / Some results on K-Contact and trans-Sasakian manifolds / IJMA- 2(7), July-2011, Page: 1202-1207

Proof: From (2.15) and (2.20) we get

$$\tilde{R}(\xi, Y)Z = (\alpha^2 - \beta^2) [g(Y, Z)\xi - \eta(Z)Y] - K(Y, Z)\xi + K(\xi, Z)Y - g(Y, Z)F\xi + g(\xi, Z)FY$$
(3.1)

Using (2.10) and (2.21) in(3.1), we get(i) i.e.

$$\tilde{R}(\xi, Y)Z = \left\{ (\alpha^2 - \beta^2)g(Y, Z) + 2\alpha\beta g(\phi Y, Z) - K(Y, Z) \right\} \xi - (\xi\beta(g(Y, Z) - \eta(Y)\eta(Z)) - ((\alpha^2 - \beta^2) + 1)\eta(Z)Y + \frac{1}{2}g(Y, Z)$$
(3.2)

By using (2.20) and first Bainchi identity

$$R(X,Y)Z + R(Y,Z)X + R(Z,X)Y = 0$$

with respect to Levi-Civita connection ∇ .we get

$$\tilde{R}(X,Y)Z + \tilde{R}(Y,Z)X + \tilde{R}(Z,X)Y = -K(Y,Z)X + K(X,Z)Y - g(Y,Z)FX + g(X,Z)FY - K(Z,X)Y + K(Y,X)Z - g(Z,X)FY - K(X,Y)Z + K(Z,Y)X - g(X,Y)FZ - g(Z,Y)FX$$
(3.3)

Therefore K is symmetric then equation (3.3) reduces to

$$\widetilde{R}(X,Y)Z + \widetilde{R}(Y,Z)X + \widetilde{R}(Z,X)Y = 0$$

Finally (2.20), we get

$$\tilde{R}'(X,Y)Z,W) = R(X,Y)Z,W) - K(Y,Z)g(X,W) + K(X,Z)g(Y,W) - g(Y,Z)g(FX,W) + g(X,Z)g(FY,W)$$
(3.4)

By changing the role of X and Y in (3.4), we get

$$\tilde{R}'(Y,X)Z,W) = R(Y,X)Z,W) - K(X,Z)g(Y,W) + K(Y,Z)g(X,W) - g(X,Z)g(FY,W) + g(Y,Z)g(FX,W)$$
(3.5)

Adding (3.4) and (3.5) and using (2.21) we get (iii)i.e.

$$\widetilde{R}'(Y,X)Z,W) + \widetilde{R}'(Y,X)Z,W) = 0$$

This proves the theorem 3.1.

Corollary: 2 If the curvature tensor \tilde{R} with respect to semi-symmetric metric connection $\tilde{\nabla}$ vanishes in trans-Sasakian manifold the scalar curvature of the manifold is that r = -2a.

4. SYMMETRIC AND SKE-SYMMETRIC CONDITION

Theorem: 4.1 The Ricci tensor \widetilde{S} with respect to semi-symmetric metric connection $\widetilde{\nabla}$ in a trans-Sasakians manifold is symmetric if and only if $K(Y,Z) = \frac{a}{n-2} g(Y,Z)$.

Proof: From (2.22), we get

$$\tilde{S}(Y,Z) = S(Y,Z) - (n-2)K(Y,Z) - a \cdot g(Y,Z) \tag{4.1}$$

and

$$\tilde{S}(Z,Y) = S(Z,Y) - (n-2)K(Z,Y) - a \cdot g(Z,Y)$$
 (4.2)

Subtracting (4.2) from (4.1), we get

$$\widetilde{S}(Y,Z) - \widetilde{S}(Z,Y) = -2(n-2)K(Y,Z) - 2a \cdot g(Y,Z)$$

If \tilde{S} is symmetric then left hand side of above equation vanishes then, we get

$$K(Y,Z) = \frac{a}{n-2}g(Y,Z)$$

This prove the theorem 4.1.

Theorem: 4.2.The necessary and sufficient condition for the Ricci tensor \tilde{S} with respect to connection $\tilde{\nabla}$ in trans-Sasakian manifold is skew-symmetric is that

$$S(Y,Z) = (n-2)K(Y,Z) + a \cdot g(Y,Z)$$

¹S. Yadav*, ²P. K. Dwivedi and ³D. L. Suthar / Some results on K-Contact and trans-Sasakian manifolds / IJMA- 2(7), July-2011, Page: 1202-1207

Proof: From (4.1) and (4.2), we get

$$\tilde{S}(Y,Z) + \tilde{S}(Z,Y) = 2S(Y,Z) - 2(n-2)K(Y,Z) - 2a \cdot g(Y,Z)$$
(4.3)

If \tilde{S} is skew-symmetric then left hand side of the equation (4.3) vanishes then, we get

$$S(Y,Z) = (n-2)K(Y,Z) + a \cdot g(Y,Z)$$
(4.4)

Moreover if using (4.4.) in(4.3), we get

$$\widetilde{S}(Y,Z) + \widetilde{S}(Z,Y) = 0$$

This proves the theorem 4.2.

Corollary: 3 In a k-contact manifold with semi-symmetric metric connection $\tilde{\nabla}$ we have

(i)
$$\widetilde{S}(X,\xi) = \frac{1}{2} (3n - 4 - a) \eta(X)$$

$$\widetilde{S}(\phi X, \phi Y) = S(X, Y) + \left(\frac{1}{2} - a\right)g(X, Y) + (n - 2)g(\phi X, Y) - \left(\frac{2n - 2a - 1}{2}\right)\eta(X)\eta(Y)$$

5. PROJECTIVE CURVATURE TENSOR

Let M be an n –dimensional k-contact manifold. The projective curvature tensor \tilde{P} of type (1,3) of with respect to the semi-symmetric metric connection $\tilde{\nabla}$ is defined by [10].

$$\widetilde{P}(X,Y)Z = \widetilde{R}(X,Y)Z + \frac{1}{n+1} \left\{ \widetilde{S}(X,Y)Z - \widetilde{S}(Y,X)Z \right\} - \frac{n}{n^2 - n} \left\{ \widetilde{S}(Y,Z)X - \widetilde{S}(X,Z)Y \right\}$$

$$- \frac{1}{n^2 - 1} \left\{ \widetilde{S}(Z,Y)X - \widetilde{S}(Z,X)Y \right\}$$

$$(5.1)$$

Theorem: 5.1 An *n*-dimensional ξ -projectively flat k-contact manifold is locally ξ -projectively flat with semi-symmetric metric connection $\widetilde{\nabla}$.

Proof: Let \tilde{P} and P be the projective curvature tensor with respect to $\tilde{\nabla}$ and ∇ respectively By using (2.20) and (2.22) equation (5.1) reduces to

$$\widetilde{P}(X,Y)Z = R(X,Y)Z + \frac{1}{n+1} \left\{ S(X,Y)Z - S(Y,X)Z \right\} - \frac{n}{n^2 - n} \left\{ S(Y,Z)X - S(X,Z)Y \right\}$$

$$- \frac{1}{n^2 - 1} \left\{ S(Z,Y)X - S(Z,X)Y \right\} + \left(1 - \frac{n(n-2)}{n^2 - n} - \frac{(n-2)}{n^2 - 1} \right) \left[K(X,Z)Y - K(Y,Z)X \right]$$

$$+ \frac{na}{n^2 - n} \left(g(X,Z)Y - g(Y,Z)X \right) + g(X,Z)FY - g(Y,Z)FX$$
(5.2)

Equation (5.2), yields

$$\tilde{P}(X,Y)Z = P(X,Y)Z + \left(1 - \frac{n(n-2)}{n^2 - n} - \frac{(n-2)}{n^2 - 1}\right) [K(X,Z)Y - K(Y,Z)X] + \frac{na}{n^2 - n} (g(X,Z)Y - g(Y,Z)X) + g(X,Z)FY - g(Y,Z)FX$$
(5.3)

Taking $Z = \xi$ in (5.3) and using (2.10) and (2.21), we get

$$\widetilde{P}(X,Y)\xi = P(X,Y)\xi + \left(\frac{1}{2} - \frac{(n-2)}{2(n-1)} - \frac{(n-2)}{2(n^2-1)} + \frac{an}{n^2-n}\right) [\eta(Y)X - \eta(X)Y] + \eta(X)FY - \eta(Y)FX$$
(5.4)

Taking X and Y orthogonal to ξ , we get $\widetilde{P}(X,Y)\xi = 0$

This prove of the theorem 5.1.

¹S. Yadav*, ²P. K. Dwivedi and ³D. L. Suthar / Some results on K-Contact and trans-Sasakian manifolds / IJMA- 2(7), July-2011, Page: 1202-1207

REFERENCE

- [1] Amur, K. and S. S. Pujar, On submanifolds of Riemannian manifold admitting a metric semi-symmetric connectin, Tensor, N. S., 32(1978), 35-38.
- [2] Bagewadi, C. S., On totally real submanifolds of a Kahlearian manifold admitting semi-symmetric metric-connectin, Indian. J. Pure. Appl. Math.13(1982),528-536.
- [3] Bagewadi, C. S.and Venkatesha, Some curvature tensors on trans-Sasakian manifolds, Turk.J.Math.31 (2007), 111-121.
- [4] Blair, D.E. and J.A.Oubina, Conformal and related changes of metric on the product of two almost contact metric manifolds, Publ. Math, 34(1990), 199-207.
- [5] Blair, D. E., Contact manifolds in Riemannian geometry ,Lecture notes in Mathematics, 509,Springer-Verlag,Berlin,1976.
- [6] De.U. C., and A. A. Shaikh, On k-contact and Sasakian manifolds with conservative quasi-conformal curvature tensor, Bull. Cal. Math. Soc. 89(1997), 349-354.
- [7] Friedmann, A. and Schouten, J.A., Uber die Geometric der holbsymmetrischen Ubertragurgen. Math. Z.21 (1924), 211-233.
- [8] Gray, A. and L. M. Harvella, The sixteen classes of almost Hermitian manifolds and there linear invariants, Ann. Math. Pure. Appl. 123(1980), 35-58.
- [9] Hyden, H. A., Subspaces of space with torsin, Proc. London Math.Soc.34 (1932), 27-50.
- [10] Mishra, R. S., Streture on differentiable manifolds and there applications Chandrama Prakashan, Allahabad, India, 1984.
- [11] Oubina, J. A., New classes of almost contact metric structures, Publ.Math.Debrecen.32 (1985), 187-193.
- [12] Sharafuddin, A. and S. I. Hussain, Semi-symmetric metric connections in almost contact m, anifolds, Tensor, N.S.30 (1976), 133-139.
- [13] Tripathi, M. M., On a semi symmetric metric connection in a Kenmotsu manifold, J. Pure Math.16 (1999), 67-71.
- [14] Yano, K., On a semi-symmetric metric connection, Revue Roumaina De Math. Pure Appl.15 (1970), 1579-1586.
