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ABSTACT
The concept of Almost Semilattice (ASL) is introduced and certain properties of ASLS are derived and established

set of equivalent conditions for an ASL to become semilattice. Also, introduced the concept of amicable set in
ASL and certain properties of amicable setin ASLS are derived. Introduce the concept of ASL with O and
prove some properties of ASL with 0.
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1. INTRODUCTION

The concept of semilattice was introduced by F.Klein in (1939) [7]. He was define as a semilattice S is a partially
ordered set in which any two elements ¢, [/ have a greatest lower bound /3 , but not necessarily a least upper bound.

In Mathematical order theory, a semilattice is a partially ordered set with in which either all binary sets have a supremum
(join) or all binary sets have an infimum (meet). Consequently, one speaks of either a join semilattice or meet semilattice.
Semilattices provide a generalization of the more prominent concept of a lattice and as such provide a natural way to
introduce this concept as partial order which is both a meet and a join semilattice. As a natural consequence of the fact
that semilattices are among the most basic "Basic-like" structures, they can be characterized both in terms of order theory
and Universal Algebra.

The concept of Almost Distributive Lattice (ADL) was introduced by Swamy, U. M. and Rao, G. C. [4] and they
proved several properties of ADLs. Also, they introduced the concept of ideal, filter and congruences in ADLs and
proved several properties of these concepts. In this paper we introduce the concept of Almost Semilattice (ASL) which

is a generalization of semilattice and derive many important properties of ASLS . In section 2, we recall the necessary
definitions and results briefly which are taken from [11]. In section 3, we introduce the concept of ASL and establish
the independency of axioms in the definition. Also, we give few examples of ASL . In section 4, we prove some results
in the class of ASL and obtain a few necessary and sufficient conditions for an ASL to become a semilattice. In
section 5, we define amicable setsin  ASL and prove that the relation between maximal sets and amicable sets in  ASL
. In section 6, we define unimaximal element and unielement in ASL and obtain certain properties of unimaximal
elements and unielements in  ASL . Finally, in section 7, we introduce the concept of ASL with O and prove some
properties of ASL with 0.

2. PRELIMINARIES

In this section we collect a few important definitions and results which are already known and which will be used more
frequently in the paper.
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Definition 2.1: Let A and B be two nonempty sets. Then a relation R from A to B is a subset of AxB.
Relations from A to A are called relationon A.

Arelation R onanonempty set A may have some of the following properties:
1. R isreflexiveifforall a in A wehave (a,a)eR.

2. R issymmetricifforall @ and b in A; (a,b) eR implies (b,a)eR.
3. R isantisymmetricifforall a and b in A; (a,b)€R and (b,a) € R implies a=Db.
4. R istransitive if forall a,b,ceR; (a,b)eR and (b,c) eR implies (a,c)eR.

Definition 2.2: A relation R on a nonempty set A is an equivalence relation if R is reflexive, symmetric and
transitive.

Definition 2.3: A relation R on a set A is called a partial order relation if R is reflexive, antisymmetric and
transitive.

In this case (A, R) is called partially ordered set or poset.

Definition 2.4: A partial order relation < on A is called a total order or linear order if for each a,b e A, either
a<b or b<a.Then (A <) iscalled achain or totally ordered set.

Definition 2.5: Let (P,<) be a poset. The element a in P is called a greatest (least) element of P if for all
XeP,wehave x<a(a<x).

Definition 2.6: Let (P,<) be a poset. An element @ in P is called a maximal (minimal) element of P if
a<x(x<a) implies a=x forall XeP.

Easily seen that every poset has at most one greatest (least) element. How ever, there may be none, one or several
maximal (minimal) elements. Also, seen that greatest (least) element is maximal (minimal) but not converse.

Definition 2.7: Let (P,<) beaposetand S < P . Then:

1. ae€ P is called an upper bound of S Hif S <@ forall SE€S .

2. 8€P jiscalled a lower bound of S (i @ <S forall SES.

3. The greatest element among the lower bounds of S, whenever if exists, is called the greatest lower bound (glb)
or infimum of S and is denoted by inf S.

4. The least element among the upper bounds of S, whenever if exists, is called the least upper bound (lub) or
supremum of S, and is denoted by SUp S.

Definition 2.8: (Zorn’s Lemma): If (P, <) is a poset such that every chain of elements in P has an upper bound in
P, then P has at least one maximal element.

Definition 2.9: A semilattice is an algebra (S, *) where S is nonempty set and * is a binary operation on S
satisfying:

1. x*(y*z2)=(X*y)*z

2. X*y=y#*X

3. xx*x=X,forall X,y,2€S.

In other words, a semilattice is an idempotent commutative semigroup. The symbol * can be replaced by any binary
operation symbol, and in fact we use one of the symbols of A, Vv, + or . , depending on the setting. The most natural

example of a semilattice is (P ( X, m)) , or more generally any collection of subsets of X closed under intersection. A

sub semilattice of (S,*) is a subset of a semilattice S which is closed under the operation *. Of-course that makes
T asemilattice in its own right, since the equation defining a semilattice still hold in (T ,*) . Similarly, a
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homomorphism between two semilattices (S,*) and (T,*) is a map h:S —T with the property that

h(x*y) =h(x)*h(y) farall X,y €S. Anisomorphism is a homomorphism that is 1—1 and onto. It is worth

nothing that, because the operation is determined by the order and vice versa. Also, it can be easily observed that two
semilattices are isomorphic if and only if they are isomorphic as ordered sets.

Definition 2.10: [3] Anelement @& of S is called a central element if there exist semigroup S, with land S, with
0 and anisomorphism S onto S, xS, that mapes a onto (1,0).Theset B(S) of all central elements of S is
called the Birkhoff center of S .

Definition 2.11: [9] Aring R iscalleda p, —ringif,toeach X € R, there exists a central idempotent X° € R such
that:

1. xx°=X
2. Foranyidempotent e of R, Xe = X implies that X°e = X° .

Here, X° is known as minimal idempotent duplicator of X in the center of R.

Definition 2.12: [5] A semigroup S with O is called a Bear-Stone semigroup if, to each X € S, there exists a central
idempotent X~ € S such that:

1. X'S={yeS|xy=0=yx}

2. Themap S+ (X"S,X™s) isanisomorphismof S onto X'SxX™S.

Definition 2.13: [12] Aring R is called a regular ring if, to each a € R , there exists X € R suchthat axa = a.
Definition 2.14: [6] Aring R is called a p- ring ( p is prime) if, forany X€ R, x” = X and px=0 .
Definition 2.15: [1] Aring R is called biregular if every principal ideal is generated by a central idempotent .

Definition 2.16: A ring R is a Bear ring if, to each X € R, there exists a central idempotent € € R such that

eR={yeR| xy =0=yx}.

Definition 2.17: A pseudocomplemented distributive lattice with O is called a Stone lattice if, for any X e L,
X*vx® =1
Definition 2.18: [8] A pseudocomplemented semilattice S is called strongly admissible if:

1. Foreach X e S, there exists a dense element d € S (that is ,d* =0) suchthatx = x™d .

2. Thereisamapping f :S™ xD — D,where S™ isthe setofall closed elementsof S and D the set of

all dense elements of S, suchthat, forany x €S, X< f(a,d) ifandonlyif xAa<d forall aeS™
and d €S.
3. f(avb,d)="f(a,d)A f(b,d) forall a,beS™ and a€D.

Definition 2.19: [10] Let S be a semigroup with O satisfying the hypothesis of the above definition. Then S is
called a p, —semigroup if:

1. Foreach X e S, thereexist X’ € B(S) suchthat Xx° = X
2. Forany aeB(S) suchthat ax = x, must ax’ = x°

3. DEFINITION AND INTERPRETATION OF THE AXIOMS

In this section we introduce the concept of an Almost Semilattice and we establish the independency of axioms in the
definition. Further we give few examples of Almost Semilattice.
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Definition 3.1: An Almost Semilattice is an algebra (L,o) where L is a nonempty setand o is a binary operation on L,
satisfies:

(AS)) (Xoy)oz=Xo(yoz) (Associative Law)
(AS,) (Xoy)oz=(yox)oz (Almost Commutative Law)
(AS;) Xox=x (Idempotent Law)

For brevity, in future, we will refer to this Almost Semilattice as ASL. Now, we give examples to exhibit the idempotency
of the axioms in the above definition.

Example 3.1: Let L ={1,2,3,...}, the set of all natural number. Define a binary operationoon L by: Xoy = X.y for
all X,y eL,where . isausual multiplication.

Here, the algebra (L,o) satisfies the axioms (AS,) and (AS,). But, it fails to satisfy the axiom (AS,), since
XoX=X.X#X,forall X(#1)el.

Example 3.2: Let L be a nonempty set. Define a binary operation o on L by
Xoy=X,forall X,yel.

Here, the algebra (L,o) satisfies the axioms of (AS,) and (AS,). But, it does not satisfy the axiom (AS,). Since
for any three distinct elements X,Y,Z€L,(Xoy)oz=Xoz=X and (YyoX)oZ=Yyoz=Y .Therefore,
(Xoy)oz#(yoX)oz.

Example 3.3: Let L ={a,b,c}. Define a binary operation o on L as follows:

o |o|® |o

DO |V (D

olo|o|,
OO0

Here, the algebra (L,o) satisfies the axioms of (AS,) and (AS;). But, it fails to satisfy the axiom (AS;), since
(aeb)oc=aoc=c#a=aca=ao(bocC).

We conclude this section by exhibiting the structure of an ASL in some known algebras.

Example 3.4: Every semilattice (S,o) isan ASL.

Example 3.5: Let L ={a,b,c}. Define a binary operation o on L as below:

OO0 |O

o|o|®|oc

olo|o |,
oo ||

Then L isan ASL, but not a semilattice, since boec=Cc#b=cob.
The following examples shows that every nonempty set can be made into an ASL.

Example 3.6: Let L be a nonempty set. Define a binary operation o on L by
Xoy=Yy, forall X,yel

Then it is easy to verify that (L,o) isan ASL, and it is called discrete ASL.

Example 3.7: Let (R,+,.,0) be a commutative regular ring with unity. Let a° be the unique idempotent element in

R suchthat aR =a°’R.Forany a,be R, define aocb=a’h.Then (R,0) isan ASL.
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It is well known that the structure of P, —semigroup is a common abstraction of P, —rings and Baer- Stone

semigroups. Thus the class of P, —semigroups include the classes of Boolean rings, regular rings, P-rings, biregular
rings, Bear rings, stone lattice, Strongly admissible semilattice etc. In the following example, we define a binary
operation o ona P, —semigroup (S,.) and with this operation, (S,c) becomesan ASL . Thus we have an ASL
structure in each of the algebras mentioned above.

Example 3.8: Let (S,.) be a P, —semigroup. Let us recall that, to each X € S, there exists x° in the Birkhorff
center B(S) of S which is least among the elements of B(S) with the property X°x = X. Since X° € B(S),
there exists X° € B(S) such that the mapping Y > (X°y,x"y) of S onto X°Sxx’S is an isomorphism.
Now, define, forany X,y € S,Xoy = Xoy . Then it can be easily verified that (S,o) isan ASL.

4, PROPERTIES OF ASLs

In this section, we prove some results in the class of ASLS . Further, for any ASL L, we define a partial ordering

< on L and prove that, with this partial ordering, the poset is directed above if and only if L is a semilattice. We
also obtain a few more necessary and sufficient conditions for an ASL to become a semilattice.

Throughout the remaining of this section, by L we meanan ASL (L,o) unless otherwise specified. Using the axioms
of ASL, we have the following.

Lemma 4.1: Forany a,b e L, we have
1. ao(aech)=aoh
2. (aeb)ob=aob
3. bo(ach)=aob

Proof: Suppose a,b e L. Then,
1. ao(aoh)=(aca)ob

=aob.

2. (acb)eb=ac(bob)
=—aob.

3. bo(ach)=(bca)ob
:(aob)ob
=ao(bob)
=—aob.

We introduce a partial ordering on L in the following.

Definition 4.2: Forany a,b e L, wesaythat a islessorequalto b andwrite a<b,if acb=a.

Now, we prove the following results which depends on <.

Lemma4.3: Forany a,belL,aob<b.

Proof: Let a,b e L. Thenwe have, (@acb)ob=aob sinceby (2) of Lemma 4.1.Hence aob<b.

Lemma4.4: Forany a,belL,acb=Dboa whenever a<b.

Proof: Let a,b € L such that a < b.Now, acb=a=aca=(aocb)oa=(boa)oa=bo(aca) =boa. Therefore
aob = boa.

In the following, we prove that < is a partially ordered relation.

© 2016, IJMA. All Rights Reserved 56



G. Nanaji Rao?, Terefe Getachew Beyene*? / Almost Semilattice / IIMA- 7(3), March-2016.
Theorem 4.5: The relation < is a partial orderingon L.

Proof: The reflexivity of < follows from (AS,). Let a,be L besuchthat a<b and b<a.Then acbh=a
and boa =Db. Therefore by lemma 4.4, a=Db. Thus < is antisymmetric. Finally, suppose a,b,Cc €L such
that a<b and b<c .Then aob=a and boc=b . Now, aoc=(ach)oc=ac(boc)=ach=a.
Therefore @ < C. Thus, < is transitive. Hence < is a partial ordered relationon L.

Remark 4.6: If we define a relation & on L by aéb if aocb=Db,then @ is reflexive and transitive. But, & is
not in general antisymmetric. For, consider the ASL (L,o) defined in example 3.6 . In this example, if L contains

at least two elements, say a and b.Thenwehave adb and bfa.But, a # b andhence @ isnotantisymmetric.

However, in the following, we prove that € is antisymmetric equivalent to an ASL to become a semilattice. Also,
give a set of equivalent conditions for an ASL to become a semilattice.

Theorem 4.7: Let L bean ASL. Then the following are equivalent:
1. L isaSemilattice
2. Therelation 6:={(a,b) e LxL| aob=Db} isantisymmetric
3. Therelation @ defined above is a partial ordering on L

Proof:
(1) =(2): Assume (1). Suppose (a,b),(b,a) € 8. Then aocb=b and boa=a.
Now, a=boa=aob=Db.Thus a=Db. Therefore & is antisymmetric.

(2) =(3): Suppose @ is anti-symmetric. We shall prove that @ is both reflexive and transitive. Since aca =a for
all ael, (a,a)ed. Therefore O is reflexive. Suppose (a,b),(b,c)e . Then acb=b and boc=c.
Now, aoCc=ao(bocC)=(aob)oc=Dboc=c. Thus (a,c) €@ . Hence @ is transitive. Therefore @ is a
partial ordered relationon L.

(3) =(1): Suppose @ is a partial ordered relation on L. We shall prove that L is a semilattice. Let a,b € L. Then
(aob)o(boa) = aO(bO(boa)) = aO((bOb)oa) =ao(boca) =(aocb)oca=(bca)ca=bo(aca)=boa and
(boa)o(acb) =bo(ac(acb)) =bo((aca)eb) =bo(acb) = (boa)ob = (ach)ob=ao(bob) =acb.
Therefore (aoh,boa),(boa,ach)e@.Since 6 isantisymmetric, acb =boa.Thus L is a semilattice.

Theorem 4.8: Forany a,b € L, the following are equivalent:
1. L isasemilattice

2. aob<a

3. aob istheglbof a and b in (L)

4, boa<b

5. boa istheglbof a and b in (L,0)
Proof:

(1) =(2): Suppose L is a semilattice. Then aocb=Dboa for any a,be L. Since boa<a (by leema 4.3).,
aob<a

(2) =(3): Suppose aob <a.But, we have aoh <b (by Leema 4.3). Therefore, aob isa lower bound of a and
b.Let CeL suchthat ¢ isalowerboundof a and b.Then C<a and c<b.

Now,
co(aoh)=(coa)ob
=cob (-.c<a)
=c¢ (-.c<h)

Therefore c <aob.Hence aob istheglbof a and b.
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(3) =(1): Assume (3) We shall prove that L is a semilattice. Let @,b € L. Thenwe have aob istheglb of a and
b . Therefore aob < a. Hence by lemma 4.4,(acb)ca=ao(aoh). Thisimplies (hca)ca=(aca)ob and
hence bo(aca)=(aca)ob. It follows that boa=aob. Thus L is a semilattice. Similarly we can prove that
conditions (1), (4) and (5) are also equivalent.

Theorem 4.9: Forany a€ L, theset L, ={xoa| x € L} isasemilattice under the induced operation o, with a
as its greatest element.

Proof: Let @ € L. Then, clearly L, is closed under the operation o.Hence (L,o) isan ASL.let t,SeL,. Then
t=Xoa and S=Yyoa for some X,ye€L.Now, tos=(xca)o(yca)= ((xoa)Oy)Oa = (yO(xoa))Oa =
yo((xea)ea) =yo((acx)oa)=yo(ac(xoa)) =(yca)o(xca) =sot Then o iscommutative. Hence (L,,0)
is a semilattice.

In the following, we prove that the operation o is isotone.

Theorem 4.10: Let a,be L with a<b.Then aocc<boc and coa<cob forall CelL.

Proof: Suppose a,be L suchthat a<b .Then aob=a.Now,
(acc)o(boc)=((aoc)eb)oc=(bo(acc))oc=((beca)ec)oc=(boa)o(cec)=(ach)oc=aoc.
Thus (aoC)o(bocC)=aoc. Therefore acc<boc. Also, consider
(coa)o(cob)=((ceca)ec)ob=(co(cca))ocb=((coc)eca)ocb=(coa)ocb=co(ach)=ceca.Thus
(coa)o(cob)=coa.Hence coa<cob.

5. AMICABLE SETS

If (S,.) isa P,— semigroup,then S isan ASL asdescribedin example 3.8 and the Birkhoff center B(S)

of S has the following property; "given X € S there is an element in B(S), (via.x®) which is least among the
elements @ of B(S) suchthat aox=ax=x".

In this section, we introduce compatible set, maximal set M , M-amicable element and amicable set in ASL L. Also,
we prove some results on these concepts. We establish a relation between maximal sets and amicable sets. First we
introduce definition of compatible set.

Throughout the remaining of this section, by L we meanan ASL (L,o) unless otherwise specified.

Definition 5.1: Let L bean ASL. Thenforany a,b e L, wesaythat a iscompatible with b and write a~b if
aob=boa.Asubset S of L issaidto be compatible set if a~b, forall a,beS.

If L isan ASL, then it can be easily seen that forany a € L, {a} isa compatible set. Also, seen that, the set of all
compatible sets inan ASL L is a poset with respect to set inclusion.

Definition 5.2: Let L bean ASL . Then a maximal compatible set of L is called a maximal set.

It is clear that if L is a semilattice, then L itself a maximal set. This clearly that ~ is reflexive and symmetric. But,
ingeneral ~ is not transitive in L. For, consider the ASL in example 3.5. In this example, we have b~a and

a~c. But, b+ csince boc=c#b=cob.Hence ~ isnot transitive in L.

Now, we prove the following:
Theorem 5.3: Forany a,b € L,a~b ifand only if acb~boa.

Proof: Suppose aob~boa. Then (aoh)o(boa)=(boa)e(aoh).Now,
aob = (aob)o(aob) = (boa)o(aob) = (aob)o(boa) = ((aob)ob)oa: (ao(bob))oa: (aob)oa:
(boa)oa=bo(aca) =boa. Hence a~b. The converse is trivial.
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In the following, we prove that, any maximal setin ASL , is a semilattice. For this first we need the following lemmas.
Lemma5.4: Forany a,b,ce L, a~b and a~c imply that a~boc.

Proof: Suppose a~b and a~c in L. Now, ao(bec)=(aob)oc=(boa)ec=bo(acc)=bo(coa)=
(boc)oa. Therefore a~boc.

Lemma5.5: Let M beamaximal setin L and X € L besuchthat x~a, forall a€ M .Then Xe M .

Proof: Suppose M is a maximal setand X € L with x~a for all @ € M. Thus M U{X} is a compatible set and
M < M U{x}. It follows that M = M U{x}. Therefore X M .

Now, we prove the following theorem.
Theorem 5.6: If M isamaximal setin L,then M is a semilattice under the induced operation o on L.

Proof: Let M be a maximal setin L. Then, by lemma 5.4 and 5.5, M is closed under the operation o. It follows
that (M ) is a semilattice.

We immediately have the following corollary, whose proof is straight forward.

Corollary 5.7: The following are equivalent inan ASL L.
1. L isasemilattice
2. L isacompatible set
3. L isamaximal set

In the following, we prove some more properties of maximal setin L.

Theorem 5.8: Let M beamaximalsetin L and @€ M . Thenforany XeL,XxcaeM.

Proof: Suppose M is a maximal set in L and a€M . Then for any X€lL and beM , consider
(Xxca)ob=xo(aoh)=xo(boa)=(xob)ca=(box)ca=bo(Xxca) . Thus xoa~b . Therefore by
lemma 5.5, xcae M

Corollary 5.9: Let M be a maximal set. Then M is an initial segment in the poset (L,o). Thatis, forany X € L
and aeM,x<a implies Xxe M .

Proof: Suppose M is a maximal set and @ € M such that X <@ (XeL). Then Xoa=X.Since XeL and
ae€ M by the above theorem 5.8, xoca e M . Therefore X=XocaeM .

Now, we give the definition of M-amicable elementin L.

Definition 5.10: Let M be a maximal set in L. Then an element X € L is said to be M —amicable if there
exists @€ M suchthat aoX =X.

Theorem 5.11: Let M be a maximal setand X € L be M- amicable. Then there exists an element @ € M with the
following properties:

1. aoX=X

2. Forany beL with box=X.Then boa=a

Proof: Let X € L be M-amicable. Then by the definition of M-amicable, there exists an element C € M such that
Co X = X. Thus by theorem 5.8, XoCe M .

Now, put @ =XoC. Then, acXx=(XoC)oX=(CoX)oX=Co(XoX)=CoXx=X. Therefore (1) is proved. Now,
suppose b e L with box=x.Then boa=Dbo(XxoC)=(boX)oC=XoC=a.Hence (2) is proved.
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Corollary 5.12: If M isamaximal setand X € L is M-amicable, then there is a smallest element @ € M with the
property aoX =X .

Proof: Suppose M is a maximal setand X € L is M-amicable. Then by (1) of theorem 5.11, there exists an element
a of M suchthat ao X = X. Itremains to showthat a isthe smallest elementof M . Suppose b € M such that
box=x. Since M is a maximal set and a,be€ M , we have a~b. Now, by leema 5.11(2), we have

a=boa=aobh. Therefore acb=a.Thus a<b.Hence a is the smallest element of M , with property that
aoX=X.

We denote the element @ of M in the above corollary 5.12 by x" . Observe that x" depends on M as well
ason X.

Corollary 5.13: Let M be a maximal setin L and X € L. Then X is M-amicable and X = x™ if and only if
XxeM.

Proof: Suppose X € M . Since X, X €M , we have X = XM ox = Xox" . Therefore X < x™. On the other
hand, we have x™ is the smallest elementin M with the property that x™ o X = X. It follows that X™ < X since
XoX=X,XxeM .Thus X=X Converse is clear.

Corollary 5.14: Let M be a maximal set and X € L be M-amicable. If @ € L such that Xoca =a, then a is
M-amicable and @ < x™ .

Proof: Suppose X € L is M-amicableand a € L suchthat Xoa =a.We have x™ is the smallest elementin M
such that XM oX=X. Now, xMoa=xMo(x0a) = (xMox)oa=xo0a=a. Hence a is M-amicable. Also,
since a is M-amicable, we have a" is the smallest element in M such that @ ca=a. It follows that
aM < XM

Corollary 5.15: Let M be amaximal setand @ € L be M- amicable. Then ao a" =a".
Proof: Suppose @€ L is M-amicable. Then a™ is the smallest element in M such that a“ ca=a and
aca=a.Now, by theorem5.11(2) we get aca =aV.

Corollary 5.16: Let M be amaximal setand X € M be M-amicable. Then x" s the largest element of M with
the property Xo xM=x".

Proof: Suppose M is a maximal setand X € M is M-amicable. Then by corollary 5.13 we get X = x™ . Hence
Xox™ =xM . Now, we show that X" is the largest element. Suppose b € M such that Xob =h. Since both
X,beM and M ismaximal set, bo X =xob=b.Thus b < x.Hence b<x™ . Therefore x is the largest
element of M with the property Xo xM = xM.

Corollary 5.17: Let M be a maximal set and X € L be M-amicable. Then, for any ael,aoXx =X and
Xeca=a ifandonlyif a is M-amicable and xM=aV.

Proof: Let X € L be M-amicable and & € L. Suppose aoX =X and Xoa=a. Since X is M-amicable, there
exists a smallest element X" € L suchthat x™ o x = X.

Now, X" oa=xMo(xca)=(x"ox)oa=xoca=a. Thus a is M-amicable. It remains to show that
x" =a". Now,a" ox=a"o(aox)=(a" ca)ox=aox=x. It follows that x" <a" . Similarly we get

aM <xM . Therefore, av = x".
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Conversely, suppose a is M-amicable and a™ = xM . Then
aox=ao(x"ox)=ao(@" ox)=(aca")ox=a"ox=x"ox=x.Andalso,
xoa=xo(a" oa)=xo(x"oa)=(xox")oa=x"oa=a"oca=a.Therefore aox=x and Xca=a.

Corollary 5.18: Let M be a maximal setand X € L be M-amicable. Then x" is the unique element of M such
that X" oXx =X and Xox" =x".

Proof: Suppose M isamaximal setand X € L is M-amicable. Since x™ eM  wehave x“ isM-amicable and
xM =(x"™ . put a=x", then a=a" . Therefore, x =a" . since a is M-amicable and x" =a",
Corollary 5.17 imply that aoX =X and Xoa = a. Therefore, x" ox=x and Xox™ =x".Now, it remains to
show that X" is a unique element of M . Suppose b e M such that bo X =X and Xob =b. Now, we show
that b= x" . Since box=x,Xob=b and be M, by Corollary 5.13 and 5.17,b = b™ = x™ . Thus b= x"
and hence X" isa unique element of M satisfying the given condition.

Corollary 5.19: Let M be a maximal setin L and X,y € L be M-amicable such that x~y. Then X" = y™ if
andonly if X=1Y.

Proof: Suppose xM = y'vI . Then by colollary 5.17 we have XoYy =Y and YoX=X.Thus X=YyoX=Xoy=Y,
since x~y. Conversely, suppose X =Y. Then Xoy =Yooy =Y and Yo X=XoX=X. Therefore by corollary

517, x" =y,

If M isamaximal setin L, then we denote the set of all M-amicable elements of L by A, (L). Now we prove
that A, (L) isan ASL with the induced operationon L.

Theorem 5.20: Let M be a maximal set. Then (A,,(L),o) isan ASL. Moreover, for any X,y e A, (L), we
have (Xoy)" =xMoyM,

Proof: Suppose M is a maximal set of L and A, (L) is the set of all M-amicable elements of L. Now, we shall
prove that A, (L) asub ASL of L. Let a,be A, (L). Then there exists X,y € M such that Xca=a and
yeb=b . Now, (xoy)o(aob) = ((xoy)ea)ob) = (xo(yoa))ob =xo((yoa)ob) =xo((acy)ob) =
xo(ao(yob)) = (xca)o(yob) =acb.

Let te M . Then (Xoy)ot=Xo(yot)=Xo(toy)=(Xot)oy=(toX)oy=to(Xoy). This imply that
(xoy)~t, for all teM . Thus, by leema 55 Xoye M and hence aob is M-amicable. Therefore
aocbe A, (L) . Hence (A, (L)) is a sub ASL and hence is ASL . It remains to show that

(xoy)M =xMoyM . Now, consider
(xMoyMyo(xoy) = (yMoxM)o(xoy) =yMo(xMo(xoy)) =yMo((xMox)oy) =yMo(xoy) = (yMox) oy =

(xoyM)oy =xo(yMoy) =xo0y . Also, (xoy)o(xMoyM) = (yox)o(xMoyM) =yo(xo(xMoyM)) =
yo((xoxMoyM)=yo(xMoyM) = (yoxM)oyM = (xMoy)oyM =xMo (yoyM) = xMoyM : Hence

(XM o yM)M = (Xo y)M . Now, we show that (XM o yM)M =xMo yM . But, we have xM o yM = ()(M o yM)M ,
since XM o y™ € M . Therefore, (Xxoy)" =x" oy eM .

It can be easily seen that for any maximal set M of L, M < A, (L) < L. Now we prove the following:

Theorem5.21: Let M be a maximal setin L. Then the following are equivalent:

1 M=A,()
2 M=L
3. L isasemilattice
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Proof:

(1) =(2): Assume (1). Let a€ M and X e L.Thenby theorem 5.8, xoa e M . We need to show that aox € M
Now, consider
(xead)o(@aox)=((xca)eca)ox=(xo(aca))ox=(xeca)ox=(aoX)oXx=ao(XeX)=aoX . Hence
aoxe A, (L)=M .Therefore, Xoca,acXe M andhence aox~xoa. Itfollows that
(aox)o(xoa)=(xoa)o(xoa). Hence, we get Xoa =ao X . Therefore x~a. Thus X€ M since M is a
maximal set. Therefore L M andhence M = L.

(2) =(3): Suppose M =L .Since M is a maximal set and hence is a compatible set, it follows that acb=boa
forall a,beM(=L).Thus L isasemilattice.

(3) =(1): Assume (3). Clearly M < A,, (L) . Conversely, let ae A, (L). Then, for any te M , we have
toa=aot, since L is a semilattice. Hence t~a. It follows that @ € M . Therefore, A, (L) = M . Hence

A(L)=M.

Definition 5.22: A maximal set M in L issaidtobe amicable if A, (L) =L.Thatis, everyelementin L is
M-amicable.

Note that, in a discrete ASL, every singleton set is amicable. Now we prove the following theorem:

Theorem 5.23: If (S,.) isa P, — semigroup, then B(S), the Birkhoff center of S isan amicable setin S .

Proof: Let (S,.) be a P, — semigroup. Let us recall that, for any X € S, there is a smallest idempotent element
x° € B(S) such that X°X =X . It is enough if we prove that B(S) is a maximal set and X’oX =X and
XxoX®=X’. Let xeS such that x~a for all @< B(S). In particular, x~x° so that Xx° = x°x° = X0 x°
=x"ox=x"x = Xand hence X € B(S). Thus B(S) is a maximal set. Now, by the definition of the operation o
on S,wehave X’ox=x=x and Xxox’=x"x"=x° forall xeS.Hence B(S) isan amicable set where,

forany xe$S, x®® =x°.

In the following example we describe an ASL L and exhibit a maximal set M of L for which 4, (L) € L. That
is, M isamaximal set but not amicable.

Example 5.1: Let L be the set of all sequences {an} of nonnegative integers whose range is finite. Define a binary
operation o on L as follows: Forany {a,},{b,}eL,
b, ifa,#0
aYofb}={c} where c =< " " (1)
{a,}o{b}=1c,} where c, {0, fa =0
Then it can be verified that (L,o) isan ASL . Also observe that, for any {a,},{b,} € L, {a,}~{b,} if and only if
a, #0=Db, implies a, =b,. Write M = {{a,} € L| a, =nor a, =0, for all n}. Observe that every sequence in

M has only a finite number of nonzero entries. Clearly, M is a compatible setin L. Now, we prove that M isa
maximal set. Let {C,} € L and let {c,}~{a,} forall {a,} € M . Suppose for some m, ¢, #0.

N ider th {a.} wh {m’ ifn=m )
ow consider the sequence a.n whnere an = )
0, ifn=m

Then {C,} €M so that {c,}~{a,}. Hence C, =a, =m since C, #0=a,. Thus {a,} € M . Therefore, M
is a compatible set.
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Now consider the constant sequence {1}. Here, {1}€ L, but {1} ¢ A, (L). For, if {1} A, (L), then there

exists {a,} € M suchthat {a,}o{1}={1} whichmeans a, =0 forall n,which isa contradiction. Hence M
is a maximal setin L which is not amicable.

Definition 5.24: Let (L) and (L,,©) be two ASLS . Then a mapping y:L — L, is said to be a
homomorphism , if for any X,yel, w(Xey)=w(X)ow(y) . A homomorphism 1 is said to be a

monomorphism(epimorphism) if ¥ is 1—1 (onto) and W is said to be an isomorphism if ¥ is bijection.

Finally, we conclude this section with the following theorem which explains the relation between the maximal setsin L
and the amicable sets in L.

Theorem 5.25: Let M be a maximal set and M be an amicable set in L. Then the mapping a — a" s a
monomorphism of the semilattice (M ,0) into the semilattice (M',o).Further, if M isalsoamicable, then the above

mapping is a surjection.
Proof: Suppose M is a maximal set and M is an amicable set in L . Define v M- M’ by w(a) = a" .
Then for any a,b €M , we have aob e M . Now, by theorem 5.20. we get w(aob) = (aob)" =a" ob" .

=y (a) oy (b) Hence ¥ is a homomorphism. Suppose @,b e M such that y(a) =w(b). Then a" =b" .
Therefore by corollary 5.19 a =b since every element in M is M-amicable. Hence i is an injection. Therefore,

 is a monomorphisim. Suppose M is an amicable. Then A, (L) = L. But, we have M is amicable. Therefore
AM.(L) =L . Hence A,(L)=L= AM,(L) . Let beM . Then be AM,(L)Z L=A,(L). Thus b is
M-amicable. Now, by corollary 5.17, there exists a unique element b™ € M such that bob™ =b" and

b™ ob=b. On the other hand b™ € M is M-amicable. Since M is amicable, b" € A, (L) =L = AM.(L).

Thus b™ is M -amicable. Now, by corollary 5.17, there exists a unique element (b™)" €M’ such that
b o (0™)™ = (™)™ and (b™)" ob" =b" . Hence by uniqueness we get b=(b™) . Now, put

a=b" eM .Then w(a)=w(b™)=(b™) =Db.Hence ¥ isa surjection.
6. UNIELEMENT AND UNIMAXIMAL ELEMENT

In this section, we introduce the concept of unielement and unimaximal elementin ASL L and prove some properties
of these concept. First we begin this section with the following definition:

Definition 6.1: Let M beamaximalsetin L.Anelement u of L issaidtobeaunimaximalof M if a<u for
all ae M.

Observe that a unimaximal of a maximal set, if it exists, then it is unique and isin M . As usual, we say that an element
X €L isamaximal if, forany ye L, X<y implies X=Y.

Definition 6.2: An element M e L is said to be unimaximal if mox =X for all X & L. Observe that every

unimaximal element is maximal and also, in discrete ASL , every element is unimaximal and hence are maximal
elements.

Theorem 6.3: If X and Y are elements of L which are unimaximal, then we have the following:
1. XoVisunimaximal
2. Yo Xisunimaximal

Proof: Suppose X and Y are unimaximal elements of L. Then xca=a and Yoca=a for all a€ L. Now,
(Xoy)ea=Xo(yoa)=Xoa=a.Therefore XoY isunimaximal. Similarly, Yo X isunimaximal.
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Itis clear that forany X,y € L, XoY isaunimaximal if and only if Yo X isa unimaximal.
Theorem 6.4: Let M be a maximal setin L with unielement u.Then M ={Xou| xe L} .

Proof: Put H ={Xxou| X e L}. Now, we shall prove that M =H . Suppose M is a maximal set with the
unielement U . Then we have X <U for all X€ M . Hence X = Xou forall X&€ M . Therefore M c H . Let
teH . Then t=Xxou for some Xe€ L. Now, let SEM . Then Sot=So(XoU)=(SeoX)oU = (XoS)oU =.
Xo(SoU)=Xo(UoS)=(XoU)oS=tos Therefore s~t for all S€ M . It follows that t€ M since M is a
maximal set. Thus H < M .Hence M = H .

Corollary 6.5: Let m be a unimaximal elementof L. Thentheset M :={Xom| x € L} isamaximalsetinL,
with m as its unielement.

Proof: Clearly M, isacompatible set. Let Yy € L be such that y~xom forall X L . In particular, y~m, so that
yom=moy =Y, since m is unimaximal. Hence y € M. Thus M _ is a maximal set. Clearly m is the

unielement of M ;.

Theorem 6.6: Suppose L has a unimaximal element. If a maximal set M of L is amicable, then M has a
unielement.

Proof: Suppose M is amicable. Let m be a unimaximal element of L. Since me L = A, (L), there exists
aeM suchthat aocm=m.Now,forany tel, aoct=ao(mot)=(aom)ot=mot =t . Therefore, a isa
unimaximal element. Let S€ M . Then s~a andhence Sca=aos=5.Hence S<a forall S€ M . Therefore,
a isaunielementof M .

Lemma 6.7: Let M be a maximal set with unielement U . If U is a unimaximal element of L, then M is
amicable.

Proof: Suppose M is a maximal set with a unielement U and suppose U is a unimaximal element of L . Then for
any tel, uot=t. Therefore every elementin L is M-amicable. Thus A, (L) =L.Hence M isamicable.

Now, we have the following corollary in the view of theorem 5.25..

Corollary 6.8: If L has a unimaximal element, then every maximal set can be embedded in any maximal set with
unielement.

Recall that an element @ € L is said to be minimal elementof L if X<a, then x=a,forall XelL.

Theorem 6.9: The following are equivalent in L :
1. a isaminimal elementof L

2. Xoa=a forq Xel

Proof:
(1) =(2): Assume (1). Let X € L. Thenwe have Xeca <a. Itfollowsthat Xoa =a since a is minimal.

(2) =(1): Assume (2). Suppose Y € L suchthat y<a.Then Y =Yyoa=a andhence a isminimal.
Corollary 6.10: L isdiscrete if and only if every element of L is minimal.

Proof: Suppose L is a discrete ASL and suppose @ € L. Then xoa =a forall X € L. Therefore by theorem
5.35, a is aminimal element of L. Conversely, suppose every elements of L is minimal. Then we have Xoa =a
forall Xe L andforall a€L.Thus L isdiscrete ASL.

Finally, we conclude this section with the following theorem which explains every element in L contains a minimal
element.
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Theorem 6.11: If L has minimal elements, then for each X € L, there exists a minimal element M € L such that
m<x.

Proof: Suppose L hasaminimal elementsay Nn.Now,let X€L.Put m=noX.Thenforany teL with t<m
,weget t=tom=to(noXx)=(ton)oXx=noX=m.Hence m isa minimal element of L. Also, NoX <X,
we get M< X,

7. ALMOST SEMILATTICE WITH ZERO

In this section we introduce the concept of zero element in an Almost Semilattice analogous to that of the least element in
a semilattice. We establish the independency of axioms in the definition. Further, we give few examples of Almost

Semilattice with O and prove several properties of ASL with 0.

Definition 7.1: Let L be an ASL. An element O e L is called a zero element of L if Oca =0 for all
ael.

Observe that an ASL can have at most one zero element and it will be the least element of the poset (L,<). We
always denote the zero element of L, if it exists, by *0°. If L has O, then the algebra (L,0,0) is called an ASL
with * 0. Now, we have the following theorem whose proof is straight forward.

Theorem 7.2: Let L =(L,o) bean ASL and O be any external elementof L.Forany X,y e LU{0}, define:
oy = Xoy, (in L) ifx,yelL.
y 0, Otherwise.

Thus (LW{0},0.0) isan ASL with 0.We denote this ASL by L°.

According to definition7.1, an ASL with O is an algebra (L,0,0) of type (2,0) satisfying the following
axioms:
(AS,) (Xoy)oz=Xo(yoz)  (Associative Law)

(AS,) (Xoy)oz=(yoX)oz (Almost Commutative Law)
(AS;) Xox=X (Idempotent Law)
(AS,) 0ox=0 (forall xel)

3

For brevity, in future, we will refer to this Almost Semilattice with 0 as ASL with 0. Now, we give examples to
exhibit the idempotency of the axioms in the above definition.

Throughout the remaining of this section, by L° we meanan ASL with 0 (L,0,0) unless otherwise specified.

Example 7.1: Let L be a nonempty set. Define a binary operation o on L° by

Xoy=X forall X,yel’.
Here, the algebra (L,0,0), satisfies the axiom of (AS,), (AS;) and (AS,). But, it fails to satisfy the axiom
(AS,), since for any distinct three elements X, Y,z e L, (Xoy)oz=Xoz=X and (yoX)oz=Yyoz=y.
Therefore, (XoYy)oZ#(yoX)oz.

Example 7.2: Let L°={0,1,2,...}. Define a binary operation o on L° by
Xoy =Xy forall X,yel’.

Here, L° satisfies the axioms of (AS,), (AS,) and (AS,). But, it is not satisfy the axiom (AS,), since
XoX=X.X=#X,forall x(+0,1) € L°.

Example 7.3: Let L be a nonempty set. Define a binary operation o on L by
Xoy =Y forall X,yel.
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Here, the algebra (L,c,0) satisfies the axioms of (AS,), (AS,) and (AS,). But, it fails to satisfy the axiom
(AS,),since 0ox=0=Xx forall XelL.

Example 7.4: Let L° ={0,a,b,C}. Define the binary operation o on L as follows:

b
0
a
b
a

o|o|w|o|s
o|o|o|o|o

DO || Ol
OO |O0

Here, L’ satisfies the axioms of (AS,),(AS;) and (AS,). But, it fails to satisfy the axiom (AS,), since
(ach)oc=aocc=c#a=aca=ao(boc).

Example 7.5: Let L° ={0,a,b,C}. Define a binary operation o as follows:

b
0
a
b
b

o|lo|w|o|s
o|lo|o|o|lo

| Ol
OO0 | (Ol

It is easy to verify that (L°,0) isan ASL with O.

Example 7.6: Let L be a nonempty setand fix X, € L. Define a binary operation o on L by:

coy =Y ifx #Xx,. @)
y= X,y X =X,.

(0]

Then L isan ASL with X, asits zero.

In the rest of this section, we prove some results in the class of ASLS with 0. Throughout the remaining of this
section, by L we meanan ASL with O unless otherwise specified. Now, we prove the following.

Lemma7.3: Let L bean ASL with 0. Then, forany ac€lL,ac0=0.

Proof: Suppose L is an ASL with O. Then ao0=ao(0ca)=(ac0)ca=(0ca)ca=00a=0.
Therefore ao0=0.

Lemma7.4: Forany a,beL,aob=0 ifandonlyif boa=0.

Proof: Suppose aob=0. Then boa=Dbo(aca)=(boa)ca=(aob)ca=00a=0. Therefore boa =0.
Similarly, the converse holds true.

Now, we prove the following corollary whose proof follows by leema 7.4.

Corollary 7.5: Forany a,belL,aocb=Dboa whenever aocb =0

Corollary 7.6: Let L be an ASL with O. Then for any a,belL,a<b implies that aoXx<boXx and
Xoa<Xob forall XelL.

Proof: Suppose L is an ASL with O and suppose a <b for any a,be L. Then a=aob. Now, for any
Xxel , (xoa)O(XOb)=(aox)O(XOb)=((a0X)ox)0b=(aO(XOX))Ob=(aox)0b=(xoa)0b=
xo(aob) =xoa . Therefore Xoa < Xxob . Also, (aOX)O(bOX)=(XOa)O(b0X)=((Xoa)Ob)0x=
(XO(aOb))0x=(Xoa)0X=(aOX)0x=aO(x0x)=a0x.Theref0re aoXx<box.
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Since a0c0=0 and 0ca=0 forall aeL, ac0=00a. Thus 0~a. Hence we have the following theorem.

Theorem 7.7: Let L bean ASL with O.Then L isasemilattice with O if and only if ~ is a transitive relation on

L.

Proof: Suppose L is a semilattice with O and assume that a~b and b~c for a,b,Cc € L. Then clearly a~c, since
L is semilattice. Hence ~ is transitive. Conversely, suppose ~ is a transitive relation on L. Then forany a,be L,

we have a~0 and 0~b. Thus a~b, since ~ is transitive. Therefore aob=boa forany a,beL.Hence L isa
semilattice.

But, example 3.6 (with L containing more than one element) shows that if L does not have O, then the above
theorem is not valid.

Definition 7.8: If L isadiscrete ASL, thenthe ASL (L°, o) where L° = L U{0} iscalleda simple ASL.

Finally, we have the following theorem whose proof straightforward.

Theorem 7.9: let L bean ASL with 0. Then the following are equivalent.
(1) L issimple
(2) Every non zero element of L is unimaximal.
(3) ach=Db forall a0
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