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ABSTRACT 
In this paper new concepts namely 𝛼𝛼𝛼𝛼-Neighbourhood, 𝛼𝛼𝛼𝛼-Interior, 𝛼𝛼𝛼𝛼-Limit point, and 𝛼𝛼𝛼𝛼-Closure of sets are 
introduced and their properties are analyzed. Also 𝛼𝛼𝛼𝛼-continuous mappings are defined and their properties are 
characterized. 
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1. INTRODUCTION  
 
The notion of alpha open sets(briefly𝛼𝛼-open) was introduced by Njastad [9] in 1965. As an extension of this class, J.S.I 
Mary and Sindhu[10] developed a new class open sets namely 𝛼𝛼𝛼𝛼-open sets and its topological properties are 
initialized. Followed by the class of 𝛼𝛼-open sets, several other related classes such as 𝛼𝛼𝛼𝛼-open sets and 𝛼𝛼𝛼𝛼-open sets 
were defined by Maki, et.al [7].  
 
The class of 𝑏𝑏-open sets is defined and studied by Andrijevic [2] in 1984. As an extension of this class, Hariwan 
Ibrahim [3] introduced 𝐵𝐵𝛼𝛼-open sets, and concepts such as 𝐵𝐵𝛼𝛼-interior, 𝐵𝐵𝛼𝛼-limit points, and 𝐵𝐵𝛼𝛼-closure of sets. In this 
paper we define topological properties namely 𝛼𝛼𝛼𝛼-neighbourhood, 𝛼𝛼𝛼𝛼-interior, 𝛼𝛼𝛼𝛼-closure, and 𝛼𝛼𝛼𝛼-compact of a set. 
Levine [6] introduced the concept of a semi-open sets and semi-continuous functions. As the extension of this function 
Alias Khalaf, et.al [1] initialized 𝑠𝑠𝛼𝛼-open sets and 𝑠𝑠𝛼𝛼-continuous function and further properties are analyzed. In this 
paper we introduce and investigate the concept of 𝛼𝛼𝛼𝛼-continuous functions. 

 
2. PRELIMINARIES 
 
Throughout this paper, (𝑋𝑋, 𝜏𝜏) denote a topological space with topology 𝜏𝜏. For a subset 𝐴𝐴 of 𝑋𝑋 the interior of 𝐴𝐴 and 
closure of 𝐴𝐴 are denoted by 𝑖𝑖𝑖𝑖𝑖𝑖(𝐴𝐴) and 𝛼𝛼𝑐𝑐(𝐴𝐴) respectively. 
 
Definition 2.1: A subset 𝐴𝐴 of a topological space (𝑋𝑋, 𝜏𝜏) is called 

1. 𝛼𝛼-𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖 𝑠𝑠𝑜𝑜𝑖𝑖  if  𝐴𝐴 ⊂ 𝐼𝐼𝑖𝑖𝑖𝑖(𝐶𝐶𝑐𝑐(𝑖𝑖𝑖𝑖𝑖𝑖(𝐴𝐴)) and  𝛼𝛼-𝛼𝛼𝑐𝑐𝑜𝑜𝑠𝑠𝑜𝑜𝑐𝑐 𝑠𝑠𝑜𝑜𝑖𝑖  if 𝐼𝐼𝑖𝑖𝑖𝑖(𝐶𝐶𝑐𝑐(𝑖𝑖𝑖𝑖𝑖𝑖(𝐴𝐴)) ⊂ 𝐴𝐴 [9]. 
2. 𝑆𝑆𝑜𝑜𝑆𝑆𝑖𝑖-𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖  𝑠𝑠𝑜𝑜𝑖𝑖 if 𝐴𝐴 ⊂ 𝐶𝐶𝑐𝑐( 𝑖𝑖𝑖𝑖𝑖𝑖(𝐴𝐴)) and 𝑆𝑆𝑜𝑜𝑆𝑆𝑖𝑖-𝛼𝛼𝑐𝑐𝑜𝑜𝑠𝑠𝑜𝑜𝑐𝑐  𝑠𝑠𝑜𝑜𝑖𝑖  if 𝐶𝐶𝑐𝑐(𝑖𝑖𝑖𝑖𝑖𝑖(𝐴𝐴)) ⊂ 𝐴𝐴[6] . 
3. b-𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖 𝑠𝑠𝑜𝑜𝑖𝑖 if  𝐴𝐴 ⊂ (𝐼𝐼𝑖𝑖𝑖𝑖 𝐶𝐶𝑐𝑐(𝐴𝐴)) ∪ (𝐶𝐶𝑐𝑐 𝑖𝑖𝑖𝑖𝑖𝑖(𝐴𝐴)) and 𝑏𝑏-𝛼𝛼𝑐𝑐𝑜𝑜𝑠𝑠𝑜𝑜𝑐𝑐 𝑠𝑠𝑜𝑜𝑖𝑖 if �𝐼𝐼𝑖𝑖𝑖𝑖 𝐶𝐶𝑐𝑐(𝐴𝐴)� ∪   �𝐶𝐶𝑐𝑐 𝑖𝑖𝑖𝑖𝑖𝑖(𝐴𝐴)� ⊂ 𝐴𝐴 [2]. 
4. 𝜃𝜃-𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖 𝑠𝑠𝑜𝑜𝑖𝑖  if  for each 𝑥𝑥 ∈ 𝐴𝐴, there exists an open set 𝐺𝐺 such that  𝑥𝑥 ∈ 𝐺𝐺 ⊂ 𝛼𝛼𝑐𝑐(𝐺𝐺) ⊂ A [11]. 

 
Definition 2.2:   

1. The intersection of all semi-closed sets containing 𝐴𝐴  is called the 𝑠𝑠𝑜𝑜𝑆𝑆𝑖𝑖-𝛼𝛼𝑐𝑐𝑜𝑜𝑠𝑠𝑐𝑐𝑐𝑐𝑜𝑜 𝑜𝑜𝑜𝑜 𝐴𝐴 denoted  by 𝑠𝑠𝐶𝐶𝑐𝑐(𝐴𝐴) [6]. 
2. The intersection of all 𝛼𝛼 -closed sets containing  𝐴𝐴 is called 𝛼𝛼-𝛼𝛼𝑐𝑐𝑜𝑜𝑠𝑠𝑐𝑐𝑐𝑐𝑜𝑜 𝑜𝑜𝑜𝑜 𝐴𝐴 denoted by  𝛼𝛼𝐶𝐶𝑐𝑐(𝐴𝐴) [9]. 
3. The intersection of all b-closed sets containing  𝐴𝐴  is called the 𝑏𝑏-𝛼𝛼𝑐𝑐𝑜𝑜𝑠𝑠𝑐𝑐𝑐𝑐𝑜𝑜 𝑜𝑜𝑜𝑜 𝐴𝐴  denoted by  𝑏𝑏𝐶𝐶𝑐𝑐(𝐴𝐴) [2]. 

 
Definition 2.3: The family of all open sets, semi-open sets, 𝛼𝛼-open sets, 𝜃𝜃-open sets are denoted by 
𝑂𝑂(𝑋𝑋), 𝑆𝑆𝑂𝑂(𝑋𝑋),𝛼𝛼𝑂𝑂(𝑋𝑋), 𝜃𝜃𝑂𝑂(𝑋𝑋) respectively. 
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Definition 2.4: [10] A subset 𝐴𝐴 of a topological space 𝑋𝑋 is called 𝜶𝜶𝜶𝜶-𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐 𝒔𝒔𝒐𝒐𝒔𝒔  if for each  𝑥𝑥 ∈ 𝐴𝐴 ∈ αO(𝑋𝑋), there 
exists a closed set 𝐹𝐹, such that  𝑥𝑥 ∈ 𝐹𝐹 ⊂  𝐴𝐴. The family of all 𝛼𝛼c-open subsets of a topological space (𝑋𝑋, 𝜏𝜏) is denoted 
by 𝛼𝛼cO(X). 
 
Definition 2.5: [9] Let 𝐴𝐴 be a subset of a topological space (𝑋𝑋, 𝜏𝜏).  

1. A point 𝑥𝑥 ∈ 𝑋𝑋 is said to be 𝛼𝛼-𝑖𝑖𝑖𝑖𝑖𝑖𝑜𝑜𝑐𝑐𝑖𝑖𝑜𝑜𝑐𝑐 𝑜𝑜𝑜𝑜𝑖𝑖𝑖𝑖𝑖𝑖 𝑜𝑜𝑜𝑜 𝐴𝐴,  if there exists an 𝛼𝛼-open set 𝑈𝑈 such that 𝑥𝑥 ∈ 𝑈𝑈 ⊂ 𝐴𝐴.  The 
set of all 𝛼𝛼-interior points of 𝐴𝐴 is called 𝛼𝛼-interior of 𝐴𝐴 and is denoted by 𝛼𝛼𝐼𝐼𝑖𝑖𝑖𝑖(𝐴𝐴). 

2. A subset 𝐴𝐴 of 𝑋𝑋 is said to be 𝛼𝛼-𝑖𝑖𝑜𝑜𝑖𝑖𝛼𝛼ℎ𝑏𝑏𝑜𝑜𝑐𝑐𝑐𝑐ℎ𝑜𝑜𝑜𝑜𝑐𝑐 of 𝑥𝑥, if there exists a 𝛼𝛼-open set 𝑈𝑈 in 𝑋𝑋 such that  
𝑥𝑥 ∈ 𝑈𝑈 ⊂ 𝐴𝐴. 

3. A point 𝑥𝑥 ∈ 𝑋𝑋 is said to be 𝛼𝛼-𝑐𝑐𝑖𝑖𝑆𝑆𝑖𝑖𝑖𝑖 𝑜𝑜𝑜𝑜𝑖𝑖𝑖𝑖𝑖𝑖  𝑜𝑜𝑜𝑜 𝐴𝐴  if for each 𝛼𝛼-open set 𝑈𝑈 containing 𝑥𝑥, 𝑈𝑈 ∩ (𝐴𝐴\{𝑥𝑥}) ≠ ∅. The 
set of all 𝛼𝛼-limit points of 𝐴𝐴  is called 𝛼𝛼-Derived set of 𝐴𝐴 denoted by (𝛼𝛼𝛼𝛼(𝐴𝐴)). 

 
Definition 2.6: [9] A topological space (X,𝜏𝜏) is 𝜶𝜶-𝜶𝜶𝒐𝒐𝒄𝒄𝒐𝒐𝒄𝒄𝜶𝜶𝒔𝒔  if for every 𝛼𝛼-open cover {𝑉𝑉𝛼𝛼 :𝛼𝛼 ∈ ∆} of  𝑋𝑋, there exist a 
finite subset ∆0 𝑜𝑜𝑜𝑜 ∆ such that  𝑋𝑋=∪ {𝑉𝑉𝛼𝛼 :𝛼𝛼 ∈ ∆0}. 
 
Definition 2.7: [5] The space 𝑋𝑋 is Hausdorff if for each pair 𝑐𝑐,𝑣𝑣 of distinct points of 𝑋𝑋, there exists disjoint 
neighbourhoods   𝑈𝑈 and 𝑉𝑉 containing 𝑐𝑐 and 𝑣𝑣 respectively [15]. 
 
Definition 2.8: A topological space 𝑋𝑋 is said to be: 

1. 𝑳𝑳𝒐𝒐𝜶𝜶𝒄𝒄𝑳𝑳𝑳𝑳𝑳𝑳 𝒊𝒊𝒐𝒐𝒊𝒊𝒊𝒊𝒔𝒔𝜶𝜶𝒊𝒊𝒐𝒐𝒔𝒔𝒐𝒐, if  every open subset of 𝑋𝑋 is closed  
2. 𝑹𝑹𝒐𝒐𝑹𝑹𝑹𝑹𝑳𝑳𝒄𝒄𝒊𝒊 if for each 𝑥𝑥 ∈ 𝑋𝑋 and for each open set 𝐴𝐴 containing 𝑥𝑥, there exists an open set 𝐺𝐺 containing x such 

that   𝑥𝑥 ∈ 𝐺𝐺 ⊂ 𝛼𝛼𝑐𝑐(𝐺𝐺) ⊂ 𝐴𝐴. 
3. 𝑻𝑻𝟏𝟏- 𝒔𝒔𝒐𝒐𝒄𝒄𝜶𝜶𝒐𝒐 if to each pair of distinct points 𝑥𝑥,𝑦𝑦 of 𝑋𝑋 there exist a pair of open sets, one containing 𝑥𝑥 but not 𝑦𝑦 

and other containing 𝑦𝑦 but not 𝑥𝑥, as well as is 𝑇𝑇1 if and only if for any point 𝑥𝑥 ∈ 𝑋𝑋, the singleton set {𝑥𝑥} is 
closed. 

 
Definition 2.9: A mapping f: 𝑋𝑋 → 𝑌𝑌 is said to be  

1. 𝒄𝒄𝑳𝑳𝒂𝒂𝒄𝒄𝑳𝑳𝒔𝒔 𝜶𝜶-𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐 if the image of every 𝛼𝛼-open set of 𝑋𝑋 is an 𝛼𝛼-open set in 𝑌𝑌. 
2. 𝜶𝜶-𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐 if the image of every open set of 𝑋𝑋 is an 𝛼𝛼-open set in Y. 
3. 𝜶𝜶-𝜶𝜶𝒐𝒐𝒐𝒐𝒔𝒔𝒊𝒊𝒐𝒐𝑹𝑹𝒐𝒐𝑹𝑹𝒔𝒔 if the inverse image of every open subset in 𝑌𝑌 is an 𝛼𝛼-open set in 𝑋𝑋[8] . 
4. 𝜶𝜶𝑳𝑳𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐-𝜶𝜶𝒐𝒐𝒐𝒐𝒔𝒔𝒊𝒊𝒐𝒐𝑹𝑹𝒐𝒐𝑹𝑹𝒔𝒔  if the inverse image of every open subset in 𝑌𝑌 is an 𝛼𝛼𝑐𝑐𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖 set in 𝑋𝑋 [1]. 
5. 𝜽𝜽-𝜶𝜶𝒐𝒐𝒐𝒐𝒔𝒔𝒊𝒊𝒐𝒐𝑹𝑹𝒐𝒐𝑹𝑹𝒔𝒔 if the inverse image of every open subset in 𝑌𝑌 is an 𝜃𝜃-open set in 𝑋𝑋 [11]. 

 
Theorem 2.10: [10] Let (𝑋𝑋,𝜏𝜏) be a topological space and {𝐴𝐴𝑗𝑗  : j ∈ ∆} be a collection of αc-open sets in 𝑋𝑋. Then 
∪ {𝐴𝐴𝑗𝑗 ∶  j ∈ ∆}  is αc-open. 
 
Theorem 2.11: [10] The set 𝐴𝐴 is 𝛼𝛼𝛼𝛼-open in the space (𝑋𝑋,𝜏𝜏)  if and only if for each 𝑥𝑥 ∈ 𝐴𝐴, there exists a 𝛼𝛼𝛼𝛼-open set 𝐵𝐵 
such that 𝑥𝑥 ∈ 𝐵𝐵 ⊂  𝐴𝐴. 
 
Theorem 2.12: [10] Let {𝐵𝐵𝑗𝑗  : j ∈ ∆} be a collection of α𝛼𝛼-closed sets in  a topological space 𝑋𝑋. Then ∩ {𝐵𝐵𝑗𝑗 ∶  j ∈ ∆} is 
α𝛼𝛼-closed set. 
 
Theorem 2.13: [10] Every open set is 𝛼𝛼𝛼𝛼-open set in X, if one of the following holds. 

(𝑖𝑖)   (𝑋𝑋,𝜏𝜏) is Locally indiscrete. 
(𝑖𝑖𝑖𝑖) 𝑋𝑋 is Regular. 

 
Theorem 2.14: [10] Every  𝜃𝜃-open set of a space 𝑋𝑋 is 𝛼𝛼𝛼𝛼-open. 
 
Theorem 2.15: [10] Let 𝑋𝑋 and 𝑌𝑌 be two topological spaces and 𝑋𝑋 × 𝑌𝑌 be the product topology. If 𝐴𝐴 ∈ 𝛼𝛼𝛼𝛼𝑂𝑂(𝑋𝑋) and 
𝐵𝐵 ∈ 𝛼𝛼𝛼𝛼𝑂𝑂(𝑌𝑌). Then 𝐴𝐴 × 𝐵𝐵 ∈ 𝛼𝛼𝛼𝛼𝑂𝑂(𝑋𝑋 × 𝑌𝑌). 
 
3. ON 𝜶𝜶𝜶𝜶-INTERIOR AND 𝜶𝜶𝜶𝜶-CLOSURE OF SETS  
 
In this section, we define and study topological properties of 𝛼𝛼𝛼𝛼-Neighborhood, 𝛼𝛼𝛼𝛼-Interior, 𝛼𝛼𝛼𝛼-Closure and 𝛼𝛼𝛼𝛼-derived 
of a set using the concept of 𝛼𝛼𝛼𝛼-open sets. 
 
3.1 𝜶𝜶𝜶𝜶-Neighborhood: 
 
Definition 3.1: Let (𝑋𝑋, 𝜏𝜏) be a topological space and 𝑥𝑥 ∈ 𝑋𝑋, then a subset 𝑁𝑁 of 𝑋𝑋 is said to be 𝜶𝜶𝜶𝜶-𝒐𝒐𝒐𝒐𝒊𝒊𝑹𝑹𝒏𝒏𝒏𝒏𝒐𝒐𝒊𝒊𝒏𝒏𝒐𝒐𝒐𝒐𝒊𝒊 of 
𝑥𝑥, if there exists a 𝛼𝛼𝛼𝛼-open set 𝑈𝑈 in 𝑋𝑋 such that 𝑥𝑥 ∈ 𝑈𝑈 ⊂ 𝑁𝑁. 
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The following Theorem gives a characterization of 𝛼𝛼𝛼𝛼-open set with respect to the 𝛼𝛼𝛼𝛼-neighbourhood of each of its 
points. 
 
Theorem 3.1.1: In a topological space (𝑋𝑋, 𝜏𝜏),  a subset 𝐴𝐴 of 𝑋𝑋 is 𝛼𝛼𝛼𝛼-open set if and only if it is a𝛼𝛼𝛼𝛼-neighbourhood of 
each of its points. 
 
Proof: Let 𝐴𝐴 be a 𝛼𝛼𝛼𝛼-open set. By Definition (2.4), for every 𝑥𝑥 ∈ 𝐴𝐴,  𝑥𝑥 ∈ 𝐴𝐴 ⊂ 𝐴𝐴.  
 
Hence  𝐴𝐴 is 𝛼𝛼𝛼𝛼-neighbourhood of each of its points. 
 
Conversely, Let 𝐴𝐴 be a 𝛼𝛼𝛼𝛼-neighbourhood of each of its points. Then for each 𝑥𝑥 ∈ 𝐴𝐴, there exists an 𝐵𝐵𝑥𝑥 ∈ 𝛼𝛼𝛼𝛼𝑂𝑂(𝑋𝑋) such 
that 𝑥𝑥 ∈ 𝐵𝐵𝑥𝑥 ⊂ 𝐴𝐴. Then  𝐴𝐴=∪ {𝐵𝐵𝑥𝑥 ∶ 𝑥𝑥 ∈ 𝐴𝐴} where 𝐵𝐵𝑥𝑥 - is 𝛼𝛼𝛼𝛼𝑂𝑂(𝑋𝑋). By Theorem (2.10), Since the union of 𝛼𝛼𝛼𝛼-open set is 
𝛼𝛼𝛼𝛼-open set. We have 𝐴𝐴 is 𝛼𝛼𝛼𝛼-open set.    
 
Remark 3.1:  

1. For any two subsets 𝐴𝐴 and 𝐵𝐵 of a topological space (𝑋𝑋, 𝜏𝜏) and 𝐴𝐴 ⊂ 𝐵𝐵, if 𝐴𝐴 is 𝛼𝛼𝛼𝛼-neighborhood of the point 
𝑥𝑥 ∈ 𝑋𝑋, then 𝐵𝐵 is also a  𝛼𝛼𝛼𝛼-neighbourhood of the same point 𝑥𝑥. 

2. Every  𝛼𝛼𝛼𝛼-neighbourhood of a point is 𝛼𝛼-neighbourhood. It follows from the fact that  every 𝛼𝛼c-open set is    
𝛼𝛼-open. 

 
3.2 𝜶𝜶𝜶𝜶 - Interior points: 
 
In this section we introduce the definition of 𝛼𝛼𝛼𝛼-interior point of a set 𝐴𝐴 as further study of 𝛼𝛼𝛼𝛼 - open sets. 
 
Definition 3.2.1: Let 𝐴𝐴 be a subset of a topological space (𝑋𝑋, 𝜏𝜏).  A point 𝑥𝑥 ∈ 𝑋𝑋 is said to be 𝜶𝜶𝜶𝜶-i𝒐𝒐𝒔𝒔𝒐𝒐𝒊𝒊𝒊𝒊𝒐𝒐𝒊𝒊 𝒐𝒐𝒐𝒐𝒊𝒊𝒐𝒐𝒔𝒔 𝒐𝒐𝒐𝒐 𝑨𝑨, 
if there exists an 𝛼𝛼𝛼𝛼-open set 𝑈𝑈 such that 𝑥𝑥 ∈ 𝑈𝑈 ⊂ 𝐴𝐴. The set of all 𝛼𝛼𝛼𝛼-interior points of 𝐴𝐴 is called 𝛼𝛼𝛼𝛼-interior of 𝐴𝐴 is 
denoted by  𝛼𝛼𝛼𝛼𝐼𝐼𝑖𝑖𝑖𝑖(𝐴𝐴). 
 
The following Theorem gives the properties of αc-interior of a set. 
 
Theorem 3.2.1: For subsets  𝐴𝐴,𝐵𝐵  of a space 𝑋𝑋, the following statements  hold: 

(𝑖𝑖)     𝛼𝛼𝛼𝛼𝐼𝐼𝑖𝑖𝑖𝑖(𝐴𝐴) is the union of all 𝛼𝛼𝛼𝛼-open sets  contained in 𝐴𝐴. 
(𝑖𝑖𝑖𝑖)    𝛼𝛼𝛼𝛼𝐼𝐼𝑖𝑖𝑖𝑖(𝐴𝐴) is an 𝛼𝛼𝛼𝛼-open set in 𝑋𝑋. 
(𝑖𝑖𝑖𝑖𝑖𝑖)   𝐴𝐴 is 𝛼𝛼𝛼𝛼-open set if and only if 𝐴𝐴 = 𝛼𝛼𝛼𝛼𝐼𝐼𝑖𝑖𝑖𝑖(𝐴𝐴). 
(𝑖𝑖𝑣𝑣)    𝛼𝛼𝛼𝛼𝐼𝐼𝑖𝑖𝑖𝑖(𝛼𝛼𝛼𝛼𝐼𝐼𝑖𝑖𝑖𝑖𝐴𝐴)) = 𝛼𝛼𝛼𝛼𝐼𝐼𝑖𝑖𝑖𝑖(𝐴𝐴). 
(𝑣𝑣)     𝛼𝛼𝛼𝛼𝐼𝐼𝑖𝑖𝑖𝑖(∅) = ∅ and 𝛼𝛼𝛼𝛼𝐼𝐼𝑖𝑖𝑖𝑖(𝑋𝑋) = 𝑋𝑋 
(𝑣𝑣𝑖𝑖)    𝛼𝛼𝛼𝛼𝐼𝐼𝑖𝑖𝑖𝑖(𝐴𝐴) ⊂ 𝐴𝐴. 
(𝑣𝑣𝑖𝑖𝑖𝑖)   𝐼𝐼𝑜𝑜 𝐴𝐴 ⊂ 𝐵𝐵, then 𝛼𝛼𝛼𝛼𝐼𝐼𝑖𝑖𝑖𝑖(𝐴𝐴) ⊂ 𝛼𝛼𝛼𝛼𝐼𝐼𝑖𝑖𝑖𝑖(𝐵𝐵). 
(𝑣𝑣𝑖𝑖𝑖𝑖𝑖𝑖) 𝛼𝛼𝛼𝛼𝐼𝐼𝑖𝑖𝑖𝑖(𝐴𝐴) ∪ 𝛼𝛼𝛼𝛼𝐼𝐼𝑖𝑖𝑖𝑖(𝐵𝐵) ⊂ 𝛼𝛼𝛼𝛼𝐼𝐼𝑖𝑖𝑖𝑖(𝐴𝐴 ∪ 𝐵𝐵) 
(𝑖𝑖𝑥𝑥)    𝛼𝛼𝛼𝛼𝐼𝐼𝑖𝑖𝑖𝑖(𝐴𝐴 ∩ 𝐵𝐵) ⊂ 𝛼𝛼𝛼𝛼𝐼𝐼𝑖𝑖𝑖𝑖(𝐴𝐴) ∩  𝛼𝛼𝛼𝛼𝐼𝐼𝑖𝑖𝑖𝑖(𝐵𝐵). 
(𝑥𝑥)     𝛼𝛼𝛼𝛼𝐼𝐼𝑖𝑖𝑖𝑖(𝐴𝐴) ⊂ 𝛼𝛼𝐼𝐼𝑖𝑖𝑖𝑖(𝐴𝐴). 

 
Proof: 
(𝒊𝒊) Let ∪ 𝐵𝐵𝑖𝑖  be the union of all 𝛼𝛼𝛼𝛼-open sets 𝐵𝐵𝑖𝑖  contained in 𝐴𝐴. Let 𝑥𝑥 ∈ 𝛼𝛼𝛼𝛼𝐼𝐼𝑖𝑖𝑖𝑖(𝐴𝐴), then there exists an 𝛼𝛼𝛼𝛼-open  set 𝑉𝑉 
such that  𝑥𝑥 ∈ 𝑉𝑉 ⊂ 𝐴𝐴. Then for some 𝑖𝑖 , 𝐵𝐵𝑖𝑖  = 𝑉𝑉 implies 𝑥𝑥 ∈ ∪ 𝐵𝐵𝑖𝑖 . Thus 𝛼𝛼𝛼𝛼𝐼𝐼𝑖𝑖𝑖𝑖(𝐴𝐴) ⊂ ∪ 𝐵𝐵𝑖𝑖 . 
 
Conversely, Let 𝑥𝑥 ∈ ∪ 𝐵𝐵𝑖𝑖  where 𝐵𝐵𝑖𝑖 ′𝑠𝑠 are 𝛼𝛼𝛼𝛼-open set contained in 𝐴𝐴. Then there exists some 𝑖𝑖 such that 𝑥𝑥 ∈ 𝐵𝐵𝑖𝑖 ⊂ 𝐴𝐴, 
implies 𝑥𝑥 ∈ 𝛼𝛼𝛼𝛼𝐼𝐼𝑖𝑖𝑖𝑖(𝐴𝐴).  Hence  𝛼𝛼𝛼𝛼𝐼𝐼𝑖𝑖𝑖𝑖(𝐴𝐴)=∪ 𝐵𝐵𝑖𝑖  . 
 
(𝒊𝒊𝒊𝒊) By(𝑖𝑖), 𝛼𝛼𝛼𝛼𝐼𝐼𝑖𝑖𝑖𝑖(𝐴𝐴)=∪ 𝐵𝐵𝑖𝑖   where 𝐵𝐵𝑖𝑖  is 𝛼𝛼𝛼𝛼-open sets contained in 𝐴𝐴. Hence by Theorem(2.10), we have 𝛼𝛼𝛼𝛼𝐼𝐼𝑖𝑖𝑖𝑖(𝐴𝐴) is 
an 𝛼𝛼𝛼𝛼-open set in 𝑋𝑋. 
 
(𝒊𝒊𝒊𝒊𝒊𝒊) Let 𝐴𝐴 be 𝛼𝛼𝛼𝛼-open set. Then By(𝑖𝑖),  𝐴𝐴 ⊆ 𝛼𝛼𝛼𝛼𝐼𝐼𝑖𝑖𝑖𝑖(𝐴𝐴). Conversely, Let 𝐴𝐴=𝛼𝛼𝛼𝛼𝐼𝐼𝑖𝑖𝑖𝑖(𝐴𝐴). By(𝑖𝑖𝑖𝑖),  𝐴𝐴 is  𝛼𝛼𝛼𝛼- open set. 
 
(𝒊𝒊𝒊𝒊) By(𝑖𝑖𝑖𝑖),  𝛼𝛼𝛼𝛼𝐼𝐼𝑖𝑖𝑖𝑖(𝐴𝐴) is  𝛼𝛼𝛼𝛼-open set in 𝑋𝑋 and By(𝑖𝑖𝑖𝑖𝑖𝑖),  𝛼𝛼𝛼𝛼𝐼𝐼𝑖𝑖𝑖𝑖(𝐴𝐴)= 𝛼𝛼𝛼𝛼𝐼𝐼𝑖𝑖𝑖𝑖�𝛼𝛼𝛼𝛼𝐼𝐼𝑖𝑖𝑖𝑖(𝐴𝐴)�. 
 
(𝒊𝒊) Since ∅ and 𝑋𝑋 are 𝛼𝛼𝛼𝛼-open sets, from(𝑖𝑖𝑖𝑖𝑖𝑖),  𝛼𝛼𝛼𝛼𝐼𝐼𝑖𝑖𝑖𝑖(∅)=∅ and 𝛼𝛼𝛼𝛼𝐼𝐼𝑖𝑖𝑖𝑖(𝑋𝑋)=𝑋𝑋. 
 
(𝒊𝒊𝒊𝒊) From(𝑖𝑖),  𝛼𝛼𝛼𝛼𝐼𝐼𝑖𝑖𝑖𝑖(𝐴𝐴)=∪ 𝐵𝐵𝑖𝑖   where 𝐵𝐵𝑖𝑖  is 𝛼𝛼𝛼𝛼-open set contained in 𝐴𝐴. Hence ∪ 𝐵𝐵𝑖𝑖 ⊂ 𝐴𝐴 and by(𝑖𝑖𝑖𝑖𝑖𝑖), 𝛼𝛼𝛼𝛼𝐼𝐼𝑖𝑖𝑖𝑖(𝐴𝐴) is an 
𝛼𝛼𝛼𝛼 - open set implies 𝛼𝛼𝛼𝛼𝐼𝐼𝑖𝑖𝑖𝑖(𝐴𝐴) ⊂ 𝐴𝐴. 
 
(𝒊𝒊𝒊𝒊𝒊𝒊) Let  𝑥𝑥 ∈ 𝛼𝛼𝛼𝛼𝐼𝐼𝑖𝑖𝑖𝑖(𝐴𝐴) . Then there exists an 𝛼𝛼𝛼𝛼-open set 𝑈𝑈 such that  𝑥𝑥 ∈ 𝑈𝑈 ⊂ 𝐴𝐴.𝐴𝐴 ⊂ 𝐵𝐵 implies 𝑥𝑥 ∈ 𝑈𝑈 ⊂ 𝐵𝐵. Thus 
𝑥𝑥 ∈ 𝛼𝛼𝛼𝛼𝐼𝐼𝑖𝑖𝑖𝑖(𝐵𝐵). Hence   𝛼𝛼𝛼𝛼𝐼𝐼𝑖𝑖𝑖𝑖(𝐴𝐴) ⊂ 𝛼𝛼𝛼𝛼𝐼𝐼𝑖𝑖𝑖𝑖(𝐵𝐵). 
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(𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊)  Since 𝐴𝐴 ⊂ 𝐴𝐴 ∪ 𝐵𝐵 and 𝐵𝐵 ⊂ 𝐴𝐴 ∪ 𝐵𝐵, by(𝑣𝑣𝑖𝑖𝑖𝑖),  𝛼𝛼𝛼𝛼𝐼𝐼𝑖𝑖𝑖𝑖(𝐴𝐴) ⊂ 𝛼𝛼𝛼𝛼𝐼𝐼𝑖𝑖𝑖𝑖(𝐴𝐴 ∪ 𝐵𝐵) and 𝛼𝛼𝛼𝛼𝐼𝐼𝑖𝑖𝑖𝑖(𝐵𝐵) ⊂ 𝛼𝛼𝛼𝛼𝐼𝐼𝑖𝑖𝑖𝑖(𝐴𝐴 ∪ 𝐵𝐵). 
Hence  𝛼𝛼𝛼𝛼𝐼𝐼𝑖𝑖𝑖𝑖(𝐴𝐴) ∪ 𝛼𝛼𝛼𝛼𝐼𝐼𝑖𝑖𝑖𝑖(𝐵𝐵) ⊂ 𝛼𝛼𝛼𝛼𝐼𝐼𝑖𝑖𝑖𝑖(𝐴𝐴 ∪ 𝐵𝐵). 
 
(𝒊𝒊𝒊𝒊) Since (𝐴𝐴 ∩ 𝐵𝐵) ⊆ 𝐴𝐴 and (𝐴𝐴 ∩ 𝐵𝐵) ⊆ 𝐵𝐵 , by (𝑣𝑣𝑖𝑖𝑖𝑖) 𝛼𝛼𝛼𝛼𝐼𝐼𝑖𝑖𝑖𝑖(𝐴𝐴 ∩ 𝐵𝐵) ⊂ 𝛼𝛼𝛼𝛼𝐼𝐼𝑖𝑖𝑖𝑖(𝐴𝐴) ∩  𝛼𝛼𝛼𝛼𝐼𝐼𝑖𝑖𝑖𝑖(𝐵𝐵). 
 
(𝒊𝒊) Let 𝑥𝑥 ∈ 𝛼𝛼𝛼𝛼𝐼𝐼𝑖𝑖𝑖𝑖(𝐴𝐴) , then there exists an 𝛼𝛼𝛼𝛼-open set 𝑈𝑈 such that  𝑥𝑥 ∈ 𝑈𝑈 ⊂ 𝐴𝐴. Since every 𝛼𝛼𝛼𝛼-open set is 𝛼𝛼- open set, 
we have U is 𝛼𝛼-open set. It follows that  𝑥𝑥 ∈ 𝛼𝛼𝐼𝐼𝑖𝑖𝑖𝑖(𝐴𝐴). Hence  𝛼𝛼𝛼𝛼𝐼𝐼𝑖𝑖𝑖𝑖(𝐴𝐴) ⊂ 𝛼𝛼𝐼𝐼𝑖𝑖𝑖𝑖(𝐴𝐴). 
 
3.3 𝜶𝜶𝜶𝜶-Limit Points: 
 
The concept of limit points is essential to explore more properties of a given set. In this section we introduce 𝛼𝛼𝛼𝛼-limit 
point of a set induced by 𝛼𝛼𝛼𝛼-open set. 
 
Definition 3.3.1: Let 𝐴𝐴 be a subset of a topological space (𝑋𝑋, 𝜏𝜏). A point 𝑥𝑥 ∈ 𝑋𝑋 is said to be 𝜶𝜶𝜶𝜶-𝑳𝑳𝒊𝒊𝒄𝒄𝒊𝒊𝒔𝒔𝒐𝒐𝒐𝒐𝒊𝒊𝒐𝒐𝒔𝒔  𝒐𝒐𝒐𝒐 𝑨𝑨  if 
for each 𝛼𝛼𝛼𝛼-open set 𝑈𝑈 containing 𝑥𝑥, 𝑈𝑈 ∩ (𝐴𝐴\{𝑥𝑥}) ≠ ∅. The set of all 𝛼𝛼𝛼𝛼-limit points  of 𝐴𝐴 is called 𝛼𝛼𝛼𝛼-Derived set of 
𝐴𝐴 denoted by (𝛼𝛼𝛼𝛼𝛼𝛼(𝐴𝐴)). 
 
Theorem 3.3.1:  Let 𝐴𝐴 be a subset of 𝑋𝑋.  If for each closed set 𝐹𝐹 of 𝑋𝑋 containing 𝑥𝑥 such that 𝐹𝐹 ∩ (𝐴𝐴\{𝑥𝑥}) ≠ ∅,  then the 
point 𝑥𝑥 ∈ 𝑋𝑋 is an 𝛼𝛼𝛼𝛼-limit point of 𝐴𝐴. 
 
Proof: Let 𝑈𝑈 be any 𝛼𝛼𝛼𝛼-open set containing 𝑥𝑥. By the definition (2.4), for each 𝑥𝑥 ∈ 𝑈𝑈, there exists a closed set 𝐹𝐹 such 
that 𝑥𝑥 ∈ 𝐹𝐹 ⊂ 𝑈𝑈. By hypothesis  𝐹𝐹 ∩ (𝐴𝐴\{𝑥𝑥}) ≠ ∅. 
 
Hence  𝑈𝑈 ∩ (𝐴𝐴\{𝑥𝑥}) ≠ ∅. Therefore 𝑥𝑥 is an 𝛼𝛼𝛼𝛼-limit point  of 𝐴𝐴. 
 
The following Theorem gives the properties of αc-Derived sets in the space X. 
 
Theorem 3.3.2: Let 𝐴𝐴 and 𝐵𝐵 be subsets of a topological space 𝑋𝑋. Then the following properties hold: 

(𝑖𝑖)       𝛼𝛼𝛼𝛼𝛼𝛼(∅)=∅. 
(𝑖𝑖𝑖𝑖)      If 𝑥𝑥 ∈ 𝛼𝛼𝛼𝛼𝛼𝛼(𝐴𝐴), then 𝑥𝑥 ∈  𝛼𝛼𝛼𝛼𝛼𝛼(𝐴𝐴\{𝑥𝑥}). 
(𝑖𝑖𝑖𝑖𝑖𝑖)    If 𝐴𝐴 ⊂ 𝐵𝐵,  then  𝛼𝛼𝛼𝛼𝛼𝛼(𝐴𝐴) ⊂ 𝛼𝛼𝛼𝛼𝛼𝛼(𝐵𝐵). 
(𝑖𝑖𝑣𝑣)    𝛼𝛼𝛼𝛼𝛼𝛼(𝐴𝐴) ∪ 𝛼𝛼𝛼𝛼𝛼𝛼(𝐵𝐵) ⊂ 𝛼𝛼𝛼𝛼𝛼𝛼(𝐴𝐴 ∪ 𝐵𝐵). 
(𝑣𝑣)     𝛼𝛼𝛼𝛼𝛼𝛼(𝐴𝐴 ∩ 𝐵𝐵) ⊂ 𝛼𝛼𝛼𝛼𝛼𝛼(𝐴𝐴) ∩  𝛼𝛼𝛼𝛼𝛼𝛼(𝐵𝐵). 
(𝑣𝑣𝑖𝑖)    𝛼𝛼𝛼𝛼𝛼𝛼�𝛼𝛼𝛼𝛼𝛼𝛼(𝐴𝐴)�\𝐴𝐴 ⊂ 𝛼𝛼𝛼𝛼𝛼𝛼(𝐴𝐴). 
(𝑣𝑣𝑖𝑖𝑖𝑖)   𝛼𝛼𝛼𝛼𝛼𝛼(𝐴𝐴 ∪ 𝛼𝛼𝛼𝛼𝛼𝛼(𝐴𝐴)) ⊂ 𝐴𝐴 ∪ 𝛼𝛼𝛼𝛼𝛼𝛼(𝐴𝐴). 
(𝑣𝑣𝑖𝑖𝑖𝑖𝑖𝑖) 𝛼𝛼𝛼𝛼𝛼𝛼(𝐴𝐴)  ⊂ 𝛼𝛼𝛼𝛼(𝐴𝐴). 

 
Proof: 
(𝒊𝒊) Suppose not, let 𝑥𝑥 ∈ 𝛼𝛼𝛼𝛼𝛼𝛼(∅), then for each 𝛼𝛼𝛼𝛼-open set 𝑈𝑈 containing 𝑥𝑥, we have 𝑈𝑈 ∩ (∅\{𝑥𝑥})≠ ∅. Then               
𝑈𝑈 ∩ ∅ ≠ ∅, which is a contradiction. 
 
(𝒊𝒊𝒊𝒊) Let  𝑥𝑥 ∈  𝛼𝛼𝛼𝛼𝛼𝛼(𝐴𝐴), then for each 𝛼𝛼𝛼𝛼-open set 𝑈𝑈 containing 𝑥𝑥,we have 𝑈𝑈 ∩ (𝐴𝐴\{𝑥𝑥})≠ ∅. 
 
Since 𝐴𝐴\{𝑥𝑥}= (𝐴𝐴\{𝑥𝑥})\{𝑥𝑥},  𝑈𝑈 ∩ ((𝐴𝐴\{𝑥𝑥})\{𝑥𝑥}) ≠ ∅.  Hence  𝑥𝑥 ∈  𝛼𝛼𝛼𝛼𝛼𝛼(𝐴𝐴\{𝑥𝑥}). 
 
(𝒊𝒊𝒊𝒊𝒊𝒊)  Let 𝑥𝑥 ∈  𝛼𝛼𝛼𝛼𝛼𝛼(𝐴𝐴), then for each 𝛼𝛼𝛼𝛼-open set 𝑈𝑈 containing 𝑥𝑥, we have 𝑈𝑈 ∩ (𝐴𝐴\{𝑥𝑥})≠ ∅. 
 
If 𝐴𝐴 ⊂ 𝐵𝐵, then  𝑈𝑈 ∩ (𝐴𝐴\{𝑥𝑥}) ⊂  𝑈𝑈 ∩ (𝐵𝐵\{𝑥𝑥}). Therefore 𝑈𝑈 ∩ (𝐵𝐵\{𝑥𝑥})≠ ∅, which implies 𝑥𝑥 ∈  𝛼𝛼𝛼𝛼𝛼𝛼(𝐵𝐵). Hence 
𝛼𝛼𝛼𝛼𝛼𝛼(𝐴𝐴) ⊂ 𝛼𝛼𝛼𝛼𝛼𝛼(𝐵𝐵). 
 
(𝒊𝒊𝒊𝒊)  As  𝐴𝐴 ⊂ 𝐴𝐴 ∪ 𝐵𝐵, from (𝑖𝑖𝑖𝑖𝑖𝑖),  𝛼𝛼𝛼𝛼𝛼𝛼(𝐴𝐴) ⊂ 𝛼𝛼𝛼𝛼𝛼𝛼(𝐴𝐴 ∪ 𝐵𝐵).  As  𝐵𝐵 ⊂ 𝐴𝐴 ∪ 𝐵𝐵, from(𝑖𝑖𝑖𝑖𝑖𝑖), 𝛼𝛼𝛼𝛼𝛼𝛼(𝐵𝐵) ⊂ 𝛼𝛼𝛼𝛼𝛼𝛼(𝐴𝐴 ∪ 𝐵𝐵).  
Hence  𝛼𝛼𝛼𝛼𝛼𝛼(𝐴𝐴) ∪ 𝛼𝛼𝛼𝛼𝛼𝛼(𝐵𝐵) ⊂ 𝛼𝛼𝛼𝛼𝛼𝛼(𝐴𝐴 ∪ 𝐵𝐵). 
 
(𝒊𝒊) Since 𝐴𝐴 ∩ 𝐵𝐵 ⊂ 𝐴𝐴 and 𝐴𝐴 ∩ 𝐵𝐵 ⊂ 𝐵𝐵,  by(𝑖𝑖𝑖𝑖𝑖𝑖),  Hence 𝛼𝛼𝛼𝛼𝛼𝛼(𝐴𝐴 ∩ 𝐵𝐵) ⊂ 𝛼𝛼𝛼𝛼𝛼𝛼(𝐴𝐴) ∩  𝛼𝛼𝛼𝛼𝛼𝛼(𝐵𝐵). 
 
(𝒊𝒊𝒊𝒊) Let  𝑥𝑥 ∈  𝛼𝛼𝛼𝛼𝛼𝛼�𝛼𝛼𝛼𝛼𝛼𝛼(𝐴𝐴)�\𝐴𝐴 .Then 𝑥𝑥 ∈  𝛼𝛼𝛼𝛼𝛼𝛼�𝛼𝛼𝛼𝛼𝛼𝛼(𝐴𝐴)�  and 𝑥𝑥 ∉  𝐴𝐴. 
Then for each 𝛼𝛼𝛼𝛼-open set 𝑈𝑈 containing 𝑥𝑥, we have 𝑈𝑈 ∩ (𝛼𝛼𝛼𝛼𝛼𝛼(𝐴𝐴)\{𝑥𝑥})≠ ∅. There exists 𝑦𝑦 ∈ 𝑋𝑋 such that                   
𝑦𝑦 ∈ 𝑈𝑈 ∩ (𝛼𝛼𝛼𝛼𝛼𝛼(𝐴𝐴)\{𝑥𝑥}) implies 𝑦𝑦 ∈ 𝑈𝑈 and 𝑦𝑦 ∈ (𝛼𝛼𝛼𝛼𝛼𝛼(𝐴𝐴)\{𝑥𝑥}). 
 
So 𝑦𝑦 is a 𝛼𝛼𝛼𝛼-limit point of 𝐴𝐴 and 𝑦𝑦 ∈ 𝑈𝑈.  Hence there exists 𝑧𝑧 ∈ 𝑋𝑋  such that  𝑧𝑧 ∈ 𝑈𝑈 ∩ (A\{y}) then 𝑧𝑧 ≠ 𝑥𝑥 since 𝑥𝑥 ∉ 𝐴𝐴 
and 𝑧𝑧 ∈ 𝐴𝐴. Hence 𝑈𝑈 ∩ (𝐴𝐴\{𝑥𝑥}) ≠ ∅ implies 𝑥𝑥 ∈ 𝛼𝛼𝛼𝛼𝛼𝛼(𝐴𝐴).  Thus 𝛼𝛼𝛼𝛼𝛼𝛼�𝛼𝛼𝛼𝛼𝛼𝛼(𝐴𝐴)�\𝐴𝐴 ⊂ 𝛼𝛼𝛼𝛼𝛼𝛼(𝐴𝐴). 
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(𝒊𝒊𝒊𝒊𝒊𝒊)  Let 𝑥𝑥 ∈  𝛼𝛼𝛼𝛼𝛼𝛼(𝐴𝐴 ∪ 𝛼𝛼𝛼𝛼𝛼𝛼(𝐴𝐴)). If 𝑥𝑥 ∈ 𝐴𝐴  then the result is obvious. If 𝑥𝑥 ∉ 𝐴𝐴, then 𝑥𝑥 ∈ 𝛼𝛼𝛼𝛼𝛼𝛼(A∪ 𝛼𝛼𝛼𝛼𝛼𝛼(𝐴𝐴))\𝐴𝐴. Then 
for each 𝛼𝛼𝛼𝛼-open set 𝑈𝑈 containing 𝑥𝑥,  we have 𝑈𝑈 ∩ (𝐴𝐴 ∪ 𝛼𝛼𝛼𝛼𝛼𝛼(𝐴𝐴)\{𝑥𝑥}) ≠ ∅. Hence (𝑈𝑈 ∩ 𝐴𝐴\{𝑥𝑥}) ∪ (𝑈𝑈 ∩ 𝛼𝛼𝛼𝛼𝛼𝛼(𝐴𝐴)\
{𝑥𝑥}) ≠ ∅ implies 𝑈𝑈 ∩ 𝐴𝐴\{𝑥𝑥} ≠ ∅  or 𝑈𝑈 ∩ (𝛼𝛼𝛼𝛼𝛼𝛼(𝐴𝐴)\{𝑥𝑥}) ≠ ∅.Thus 𝑥𝑥 ∈ 𝛼𝛼𝛼𝛼𝛼𝛼(𝐴𝐴)  (or)  𝑥𝑥 ∈ 𝛼𝛼𝛼𝛼𝛼𝛼(𝛼𝛼𝛼𝛼𝛼𝛼(𝐴𝐴)). Since 𝑥𝑥 ∉ 𝐴𝐴, 
latter implies 𝑥𝑥 ∈ 𝛼𝛼𝛼𝛼𝛼𝛼(𝛼𝛼𝛼𝛼𝛼𝛼(𝐴𝐴))\A. 
 
From(𝑣𝑣𝑖𝑖), since 𝛼𝛼𝛼𝛼𝛼𝛼(𝛼𝛼𝛼𝛼𝛼𝛼(𝐴𝐴))\A⊂ 𝛼𝛼𝛼𝛼𝛼𝛼(𝐴𝐴), we have 𝑥𝑥 ∈  𝛼𝛼𝛼𝛼𝛼𝛼(𝐴𝐴). Hence in both cases we have  𝑥𝑥 ∈  𝛼𝛼𝛼𝛼𝛼𝛼(𝐴𝐴). 
 
Thus 𝛼𝛼𝛼𝛼𝛼𝛼(𝐴𝐴 ∪ 𝛼𝛼𝛼𝛼𝛼𝛼(𝐴𝐴)) ⊂ 𝐴𝐴 ∪ 𝛼𝛼𝛼𝛼𝛼𝛼(𝐴𝐴). 
 
(𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊)Let 𝑥𝑥 ∈ 𝛼𝛼𝛼𝛼𝛼𝛼(𝐴𝐴), then for each 𝛼𝛼𝛼𝛼-open set 𝑈𝑈 containing 𝑥𝑥, we  have 𝑈𝑈 ∩ (𝐴𝐴\{𝑥𝑥}) ≠   ∅.  Since every 𝛼𝛼𝛼𝛼-open 
set is 𝛼𝛼-open, 𝑈𝑈 is 𝛼𝛼-open set. Thus 𝑥𝑥 ∈ 𝛼𝛼𝛼𝛼(𝐴𝐴).  Hence 𝛼𝛼𝛼𝛼𝛼𝛼(𝐴𝐴)  ⊂ 𝛼𝛼𝛼𝛼(𝐴𝐴) . 
 
3.4 𝜶𝜶𝜶𝜶-Closure: 
 
In this section we define, 𝛼𝛼𝛼𝛼-closure of a set with respect to 𝛼𝛼𝛼𝛼- limit points. 
 
Definition 3.4.1: For any subset 𝐴𝐴 of a topological space 𝑋𝑋, the 𝜶𝜶𝜶𝜶-𝜶𝜶𝑳𝑳𝒐𝒐𝒔𝒔𝑹𝑹𝒊𝒊𝒐𝒐 𝒐𝒐𝒐𝒐 𝑨𝑨 denoted by(𝛼𝛼𝛼𝛼𝐶𝐶𝑐𝑐(𝐴𝐴)) is defined as 
the intersection of all 𝛼𝛼𝛼𝛼-closed sets containing 𝐴𝐴. 
 
Definition 3.4.2:  A point 𝑥𝑥 ∈ 𝑋𝑋 is said to be in 𝛼𝛼𝛼𝛼-closure of 𝐴𝐴 if for each 𝛼𝛼𝛼𝛼-open set 𝑈𝑈 containing 𝑥𝑥 such that 
𝑈𝑈 ∩ 𝐴𝐴 ≠ ∅.  
 
The following Theorem gives the characterization of αc-closed sets. 
 
Theorem 3.4.1: A subset 𝐴𝐴 of a topological space 𝑋𝑋 is 𝛼𝛼𝛼𝛼-closed set if and only if it contains all of its 𝛼𝛼𝛼𝛼- limit points. 
 
Proof: Let 𝐴𝐴 be an 𝛼𝛼𝛼𝛼-closed set. Suppose 𝐴𝐴 does not contain all of its 𝛼𝛼𝛼𝛼- limit points. 
 
Let 𝑥𝑥 be the 𝛼𝛼𝛼𝛼- limit point of 𝐴𝐴 such that 𝑥𝑥 ∉ 𝐴𝐴. Then 𝑥𝑥 ∈ 𝑋𝑋\𝐴𝐴, 𝑋𝑋\𝐴𝐴 is 𝛼𝛼𝛼𝛼-open. 
 
This implies (𝑋𝑋\𝐴𝐴) ∩ (𝐴𝐴\{𝑥𝑥}) ≠ ∅.  i.e, (𝑋𝑋\𝐴𝐴) ∩ 𝐴𝐴 ≠ ∅ as 𝑥𝑥 ∉ 𝐴𝐴, which is a contradiction. 
 
Conversely, Let 𝐴𝐴 contains all of its 𝛼𝛼𝛼𝛼- limit points. Therefore for each 𝑥𝑥 ∈ 𝑋𝑋\𝐴𝐴,  𝑥𝑥 is not an 𝛼𝛼𝛼𝛼- limit point of 𝐴𝐴.  
 
This implies that there exists an 𝛼𝛼𝛼𝛼-open set 𝑈𝑈 containing 𝑥𝑥 such that  𝑈𝑈 ∩ (𝐴𝐴\{𝑥𝑥}) = ∅.  𝑥𝑥 ∉ 𝐴𝐴 implies 𝑈𝑈 ∩ 𝐴𝐴 = ∅.  
 
This implies  𝑥𝑥 ∈ 𝑈𝑈 ⊂ 𝑋𝑋\𝐴𝐴. By Theorem (2.11), we have  𝑋𝑋\𝐴𝐴  is 𝛼𝛼𝛼𝛼-open set. Hence 𝐴𝐴 𝑖𝑖𝑠𝑠 𝛼𝛼𝛼𝛼-closed. 
 
Theorem 3.4.2: Let 𝐴𝐴 be a subset of a topological space 𝑋𝑋. Then 𝛼𝛼𝛼𝛼𝐶𝐶𝑐𝑐(𝐴𝐴) = 𝐴𝐴 ∪ 𝛼𝛼𝛼𝛼𝛼𝛼(𝐴𝐴). 
 
Proof: First let us show that 𝐴𝐴 ∪ 𝛼𝛼𝛼𝛼𝛼𝛼(𝐴𝐴) ⊂ 𝛼𝛼𝛼𝛼𝐶𝐶𝑐𝑐(𝐴𝐴).  
 
We know that 𝐴𝐴 ⊂ 𝛼𝛼𝛼𝛼𝐶𝐶𝑐𝑐(𝐴𝐴). By the definition of the 𝛼𝛼c-closure of 𝐴𝐴,  𝐴𝐴 ⊂ ∩ 𝐵𝐵𝑖𝑖 , where 𝐵𝐵𝑖𝑖- is 𝛼𝛼𝛼𝛼-closed set containing 
𝐴𝐴. Since 𝐴𝐴 ⊂ ∩ 𝐵𝐵𝑖𝑖 , by Theorem 3.3.2(𝑖𝑖𝑖𝑖𝑖𝑖), 𝛼𝛼𝛼𝛼𝛼𝛼(𝐴𝐴) ⊂ 𝛼𝛼𝛼𝛼𝛼𝛼(∩ 𝐵𝐵𝑖𝑖). From Theorem3.3.2(𝑣𝑣), 𝛼𝛼𝛼𝛼𝛼𝛼(𝐴𝐴) ⊂ ∩ 𝛼𝛼𝛼𝛼𝛼𝛼(𝐵𝐵𝑖𝑖) = ∩
𝐵𝐵𝑖𝑖 , since each 𝐵𝐵𝑖𝑖  𝑖𝑖𝑠𝑠 𝛼𝛼𝛼𝛼-closed containing 𝐴𝐴. Thus  𝛼𝛼𝛼𝛼𝛼𝛼(𝐴𝐴) ⊂ 𝛼𝛼𝛼𝛼𝐶𝐶𝑐𝑐(𝐴𝐴). Hence  𝐴𝐴 ∪  𝛼𝛼𝛼𝛼𝛼𝛼(𝐴𝐴) ⊂ 𝛼𝛼𝛼𝛼𝐶𝐶𝑐𝑐(𝐴𝐴) 
 
On the other hand Suppose 𝑥𝑥 ∈ 𝛼𝛼𝛼𝛼𝐶𝐶𝑐𝑐(𝐴𝐴). Since 𝛼𝛼𝛼𝛼𝐶𝐶𝑐𝑐(𝐴𝐴) is the smallest 𝛼𝛼𝛼𝛼-closed set containing 𝑥𝑥, it is sufficient to 
show that 𝐴𝐴 ∪ 𝛼𝛼𝛼𝛼𝛼𝛼(𝐴𝐴) is 𝛼𝛼𝛼𝛼-closed set.  
 
Let 𝑥𝑥 ∈ 𝑋𝑋\( 𝐴𝐴 ∪ 𝛼𝛼𝛼𝛼𝛼𝛼(𝐴𝐴)), then 𝑥𝑥 ∉ 𝐴𝐴 ∪ 𝛼𝛼𝛼𝛼𝛼𝛼(𝐴𝐴). This implies that 𝑥𝑥 ∉ 𝐴𝐴 and 𝑥𝑥 ∉  𝛼𝛼𝛼𝛼𝛼𝛼(𝐴𝐴). 𝐺𝐺𝑥𝑥 ∩ (𝐴𝐴\{𝑥𝑥}) = 𝜙𝜙.  𝑥𝑥 ∉ 𝐴𝐴 
implies that 𝐺𝐺𝑥𝑥 ∩ 𝐴𝐴 = 𝜙𝜙. Then 

𝐺𝐺𝑥𝑥 ⊂ 𝑋𝑋\𝐴𝐴                                                                                                                                       (3.4.1) 
 
Again, since 𝐺𝐺𝑥𝑥  is an 𝛼𝛼𝛼𝛼-open set of each of its points and 𝐺𝐺𝑥𝑥 ⊂ 𝑋𝑋\𝐴𝐴,  no points of 𝐺𝐺𝑥𝑥  is an 𝛼𝛼c-limit point of 𝐴𝐴  implies 
𝐺𝐺𝑥𝑥 ⊈ 𝛼𝛼𝛼𝛼𝛼𝛼(𝐴𝐴). Hence 

𝐺𝐺𝑥𝑥 ⊆ 𝑋𝑋\𝛼𝛼𝛼𝛼𝛼𝛼(𝐴𝐴)                                                                                                                            (3.4.2) 
 
From (3.4.1) and (3.4.2), we have 𝐺𝐺𝑥𝑥 ⊆ (𝑋𝑋\𝐴𝐴) ∩ (𝑋𝑋\𝛼𝛼𝛼𝛼𝛼𝛼(𝐴𝐴)). 
 
For all 𝑥𝑥 ∈ 𝑋𝑋\( 𝐴𝐴 ∪ 𝛼𝛼𝛼𝛼𝛼𝛼(𝐴𝐴)), there exists an 𝛼𝛼𝛼𝛼-open set 𝐺𝐺𝑥𝑥  containing 𝑥𝑥 such that 𝑥𝑥 ∈ 𝐺𝐺𝑥𝑥 ⊆ 𝑋𝑋\(𝐴𝐴 ∪ 𝛼𝛼𝛼𝛼𝛼𝛼(𝐴𝐴)).  
 
This implies that  𝑋𝑋\(𝐴𝐴 ∪ 𝛼𝛼𝛼𝛼𝛼𝛼(𝐴𝐴)) is 𝛼𝛼𝛼𝛼-open. Hence 𝐴𝐴 ∪ 𝛼𝛼𝛼𝛼𝛼𝛼(𝐴𝐴) is 𝛼𝛼𝛼𝛼-closed. Since 𝐴𝐴 ⊆ 𝐴𝐴 ∪ 𝛼𝛼𝛼𝛼𝛼𝛼(𝐴𝐴), we have 
𝛼𝛼𝛼𝛼𝐶𝐶𝑐𝑐(𝐴𝐴) ⊆ 𝐴𝐴 ∪ 𝛼𝛼𝛼𝛼𝛼𝛼(𝐴𝐴). Hence 𝛼𝛼𝛼𝛼𝐶𝐶𝑐𝑐(𝐴𝐴) = 𝐴𝐴 ∪ 𝛼𝛼𝛼𝛼𝛼𝛼(𝐴𝐴).  
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Corollary 3.4.2: Let A be a subset of a topological space 𝑋𝑋. A point 𝑥𝑥 ∈ 𝑋𝑋 is in the 𝛼𝛼𝛼𝛼-closure of A if and only if 
𝐴𝐴 ∩ 𝑈𝑈 ≠ ∅ for every 𝛼𝛼𝛼𝛼-open set 𝑈𝑈 containing 𝑥𝑥. 
 
Proof: By definition (3.4.2), implies 𝐴𝐴 ∩ 𝑈𝑈 ≠ ∅ for every 𝛼𝛼𝛼𝛼-open set 𝑈𝑈 containing 𝑥𝑥. 
 
Conversely, Suppose 𝑥𝑥 ∉  𝛼𝛼𝛼𝛼𝐶𝐶𝑐𝑐(𝐴𝐴). Then by Theorem (3.4.2), 𝑥𝑥 ∉ 𝐴𝐴 ∪ 𝛼𝛼𝛼𝛼𝛼𝛼(𝐴𝐴) implies 𝑥𝑥 ∉ 𝐴𝐴 and 𝑥𝑥 ∉  𝛼𝛼𝛼𝛼𝛼𝛼(𝐴𝐴). Thus 
there exists an 𝛼𝛼𝛼𝛼-open set 𝑈𝑈 containing 𝑥𝑥 such that 𝑈𝑈 ∩ (𝐴𝐴\{𝑥𝑥}) = 𝑈𝑈 ∩ 𝐴𝐴 = ∅, which is a contradiction. 
 
Theorem 3.4.3: Let 𝐴𝐴 be any subset of a space 𝑋𝑋. If 𝐴𝐴 ∩ 𝐹𝐹 ≠ ∅ for every closed set 𝐹𝐹 of 𝑋𝑋 containing 𝑥𝑥, then the 
point 𝑥𝑥  is in the 𝛼𝛼𝛼𝛼-closure of 𝐴𝐴. 
 
Proof: Assume that 𝑈𝑈 be any 𝛼𝛼𝛼𝛼-open set containing 𝑥𝑥, by Definition (2.4), there exists a closed set 𝐹𝐹 such that       
𝑥𝑥 ∈ 𝐹𝐹 ⊂ 𝐴𝐴. By hypothesis 𝐴𝐴 ∩ 𝐹𝐹 ≠ ∅ implies 𝐴𝐴 ∩ 𝑈𝑈 ≠ ∅ for every 𝛼𝛼𝛼𝛼-open set𝑈𝑈 containing 𝑥𝑥.  
 
By Corollary (3.4.2), 𝑥𝑥 ∈  𝛼𝛼𝛼𝛼𝐶𝐶𝑐𝑐(𝐴𝐴). 
 
The following Theorem gives the properties of αc-Closure of sets. 
 
Theorem 3.4.4: For subsets 𝐴𝐴,𝐵𝐵 of a space 𝑋𝑋, the following statements are true. 

(𝑖𝑖)    𝛼𝛼𝛼𝛼-closure of A is the intersection of all 𝛼𝛼𝛼𝛼-closed sets containing 𝐴𝐴. 
(𝑖𝑖𝑖𝑖)   𝐴𝐴 ⊂  𝛼𝛼𝛼𝛼𝐶𝐶𝑐𝑐(𝐴𝐴). 
(𝑖𝑖𝑖𝑖𝑖𝑖)  𝛼𝛼𝛼𝛼𝐶𝐶𝑐𝑐(𝐴𝐴) is an 𝛼𝛼𝛼𝛼-closed set in 𝑋𝑋. 
(𝑖𝑖𝑣𝑣)   𝐴𝐴 is 𝛼𝛼𝛼𝛼-closed if and only if 𝐴𝐴 =  𝛼𝛼𝛼𝛼𝐶𝐶𝑐𝑐(𝐴𝐴). 
(𝑣𝑣)    𝛼𝛼𝛼𝛼𝐶𝐶𝑐𝑐�𝛼𝛼𝛼𝛼𝐶𝐶𝑐𝑐(𝐴𝐴)� =  𝛼𝛼𝛼𝛼𝐶𝐶𝑐𝑐(𝐴𝐴). 
(𝑣𝑣𝑖𝑖)   𝛼𝛼𝛼𝛼𝐶𝐶𝑐𝑐(∅) = ∅ and 𝛼𝛼𝛼𝛼𝐶𝐶𝑐𝑐(𝑋𝑋) = 𝑋𝑋. 
(𝑣𝑣𝑖𝑖𝑖𝑖)  If 𝐴𝐴 ⊂ 𝐵𝐵, then 𝛼𝛼𝛼𝛼𝐶𝐶𝑐𝑐(𝐴𝐴) ⊂ 𝛼𝛼𝛼𝛼𝐶𝐶𝑐𝑐(𝐵𝐵). 
(𝑣𝑣𝑖𝑖𝑖𝑖𝑖𝑖) If 𝛼𝛼𝛼𝛼𝐶𝐶𝑐𝑐(𝐴𝐴) ∩ 𝛼𝛼𝛼𝛼𝐶𝐶𝑐𝑐(𝐵𝐵) = ∅, then 𝐴𝐴 ∩ 𝐵𝐵 = ∅. 
(𝑖𝑖𝑥𝑥)   𝛼𝛼𝛼𝛼𝐶𝐶𝑐𝑐(𝐴𝐴) ∪  𝛼𝛼𝛼𝛼𝐶𝐶𝑐𝑐(𝐵𝐵) ⊂  𝛼𝛼𝛼𝛼𝐶𝐶𝑐𝑐(𝐴𝐴 ∪ 𝐵𝐵). 
(𝑥𝑥)     𝛼𝛼𝛼𝛼𝐶𝐶𝑐𝑐(𝐴𝐴 ∩ 𝐵𝐵)  ⊂  𝛼𝛼𝛼𝛼𝐶𝐶𝑐𝑐(𝐴𝐴) ∩ 𝛼𝛼𝛼𝛼𝐶𝐶𝑐𝑐(𝐵𝐵). 

 
Proof:  
(𝒊𝒊) and (𝒊𝒊𝒊𝒊) are obvious. 
 
(𝒊𝒊𝒊𝒊𝒊𝒊) By the definition of 𝛼𝛼𝛼𝛼𝐶𝐶𝑐𝑐(𝐴𝐴), 𝛼𝛼𝛼𝛼𝐶𝐶𝑐𝑐(𝐴𝐴)= ∩ 𝐵𝐵𝑖𝑖  where 𝐵𝐵𝑖𝑖  is the 𝛼𝛼𝛼𝛼-closed set containing  𝐴𝐴. By Theorem (2.12), 
∩ 𝐵𝐵𝑖𝑖  is 𝛼𝛼𝛼𝛼- closed. Hence 𝛼𝛼𝛼𝛼𝐶𝐶𝑐𝑐(𝐴𝐴) is 𝛼𝛼𝛼𝛼-closed in 𝑋𝑋. 
 
(𝒊𝒊𝒊𝒊) Let 𝐴𝐴 be 𝛼𝛼𝛼𝛼-closed set. Since 𝐴𝐴 ⊂ 𝐴𝐴 and 𝐴𝐴 is 𝛼𝛼𝛼𝛼-closed set, we have from  𝛼𝛼𝛼𝛼𝐶𝐶𝑐𝑐(𝐴𝐴) =∩ 𝐹𝐹  with 𝐴𝐴 ⊂ 𝐹𝐹 and 𝐹𝐹 is 
𝛼𝛼𝛼𝛼-closed set that 𝛼𝛼𝛼𝛼𝐶𝐶𝑐𝑐(𝐴𝐴) = 𝐴𝐴. 
 
Conversely, Let 𝐴𝐴 = 𝛼𝛼𝛼𝛼𝐶𝐶𝑐𝑐(𝐴𝐴), By(𝑖𝑖𝑖𝑖𝑖𝑖) we have 𝐴𝐴 is 𝛼𝛼𝛼𝛼-closed set in 𝑋𝑋. 
 
(𝒊𝒊) From(𝑖𝑖𝑖𝑖𝑖𝑖),  𝛼𝛼𝛼𝛼𝐶𝐶𝑐𝑐(𝐴𝐴) is 𝛼𝛼𝛼𝛼-closed set in 𝑋𝑋.  From(𝑖𝑖𝑣𝑣), we have,  𝛼𝛼𝛼𝛼𝐶𝐶𝑐𝑐�𝛼𝛼𝛼𝛼𝐶𝐶𝑐𝑐(𝐴𝐴)� = 𝛼𝛼𝛼𝛼𝐶𝐶𝑐𝑐(𝐴𝐴). 
 
(𝒊𝒊𝒊𝒊)  Since ∅ and 𝑋𝑋 are 𝛼𝛼𝛼𝛼-closed sets, from(𝑖𝑖𝑣𝑣), we have 𝛼𝛼𝛼𝛼𝐶𝐶𝑐𝑐(∅) = ∅ and 𝛼𝛼𝛼𝛼𝐶𝐶𝑐𝑐(𝑋𝑋) = 𝑋𝑋. 
 
(𝒊𝒊𝒊𝒊𝒊𝒊)  Let  𝑥𝑥 ∈  𝛼𝛼𝛼𝛼𝐶𝐶𝑐𝑐(𝐴𝐴). By Corollary (3.4.2), 𝐴𝐴 ∩ 𝑈𝑈 ≠ ∅ for each 𝛼𝛼𝛼𝛼-open set 𝑈𝑈   containing 𝑥𝑥. If 𝐴𝐴 ⊂ B,  then 
𝐵𝐵 ∩ 𝑈𝑈 ≠ ∅. Hence 𝑥𝑥 ∈ 𝛼𝛼𝛼𝛼𝐶𝐶𝑐𝑐(𝐵𝐵). Thus  𝛼𝛼𝛼𝛼𝐶𝐶𝑐𝑐(𝐴𝐴)  ⊂ 𝛼𝛼𝛼𝛼𝐶𝐶𝑐𝑐(𝐵𝐵). 
 
(𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊) Supppose 𝐴𝐴 ∩ 𝐵𝐵 ≠ ∅, then 𝑥𝑥 ∈  𝐴𝐴 ∩ 𝐵𝐵 implies 𝑥𝑥 ∈ 𝛼𝛼𝛼𝛼𝐶𝐶𝑐𝑐(𝐴𝐴 ∩ 𝐵𝐵) .Then for all 𝛼𝛼𝛼𝛼- open sets 𝑈𝑈 containing 𝑥𝑥,       
(𝐴𝐴 ∩ 𝐵𝐵) ∩ 𝑈𝑈 ≠ ∅ implies (𝐴𝐴 ∩ 𝑈𝑈) ∩ (𝐵𝐵 ∩ 𝑈𝑈) ≠  ∅. Consequently 𝐴𝐴 ∩ 𝑈𝑈 ≠ ∅  and 𝐵𝐵 ∩ 𝑈𝑈 ≠ ∅. By 𝐶𝐶orollary(3.4.2), 
𝑥𝑥 ∈ 𝛼𝛼𝛼𝛼𝐶𝐶𝑐𝑐(𝐴𝐴) and 𝑥𝑥 ∈ 𝛼𝛼𝛼𝛼𝐶𝐶𝑐𝑐(𝐵𝐵). Thus 𝑥𝑥 ∈ 𝛼𝛼𝛼𝛼𝐶𝐶𝑐𝑐(𝐴𝐴) ∩ 𝛼𝛼𝛼𝛼𝐶𝐶𝑐𝑐(𝐵𝐵), which is a contradiction. 
 
(𝒊𝒊𝒊𝒊) Since 𝐴𝐴 ⊂ 𝐴𝐴 ∪ 𝐵𝐵 and 𝐵𝐵 ⊂ 𝐴𝐴 ∪ 𝐵𝐵, by(𝑣𝑣𝑖𝑖𝑖𝑖),  𝛼𝛼𝛼𝛼𝐶𝐶𝑐𝑐(𝐴𝐴) ∪  𝛼𝛼𝛼𝛼𝐶𝐶𝑐𝑐(𝐵𝐵) ⊂ 𝛼𝛼𝛼𝛼𝐶𝐶𝑐𝑐(𝐴𝐴 ∪ 𝐵𝐵). 
 
(𝒊𝒊)  Since (𝐴𝐴 ∩ 𝐵𝐵) ⊆ 𝐴𝐴 and (𝐴𝐴 ∩ 𝐵𝐵) ⊆ 𝐵𝐵 , by(𝑣𝑣𝑖𝑖𝑖𝑖),  𝛼𝛼𝛼𝛼𝐶𝐶𝑐𝑐(𝐴𝐴 ∩ 𝐵𝐵) ⊂ 𝛼𝛼𝛼𝛼𝐶𝐶𝑐𝑐(𝐴𝐴) and 𝛼𝛼𝛼𝛼𝐶𝐶𝑐𝑐(𝐴𝐴 ∩ 𝐵𝐵) ⊂ 𝛼𝛼𝛼𝛼𝐶𝐶𝑐𝑐(𝐵𝐵). 
Thus  𝛼𝛼𝛼𝛼𝐶𝐶𝑐𝑐(𝐴𝐴 ∩ 𝐵𝐵) ⊂ 𝛼𝛼𝛼𝛼𝐶𝐶𝑐𝑐(𝐴𝐴) ∩ 𝛼𝛼𝛼𝛼𝐶𝐶𝑐𝑐(𝐵𝐵). 
 
Proposition 3.4.5: For any subset 𝐴𝐴 of a topological space 𝑋𝑋, the following  statements are true: 

(𝑖𝑖)     𝑋𝑋\𝛼𝛼𝛼𝛼𝐶𝐶𝑐𝑐(𝐴𝐴) = 𝛼𝛼𝛼𝛼𝐼𝐼𝑖𝑖𝑖𝑖(𝑋𝑋\𝐴𝐴). 
(𝑖𝑖𝑖𝑖)   𝑋𝑋\𝛼𝛼𝛼𝛼𝐼𝐼𝑖𝑖𝑖𝑖(𝐴𝐴) = 𝛼𝛼𝛼𝛼𝐶𝐶𝑐𝑐(𝑋𝑋\𝐴𝐴). 
(𝑖𝑖𝑖𝑖𝑖𝑖)  𝛼𝛼𝛼𝛼𝐶𝐶𝑐𝑐(𝐴𝐴) = 𝑋𝑋\𝛼𝛼𝛼𝛼𝐼𝐼𝑖𝑖𝑖𝑖(𝑋𝑋\𝐴𝐴). 
(𝑖𝑖𝑣𝑣)  𝛼𝛼𝛼𝛼𝐼𝐼𝑖𝑖𝑖𝑖(𝐴𝐴) = 𝑋𝑋\𝛼𝛼𝛼𝛼𝐶𝐶𝑐𝑐(𝑋𝑋\𝐴𝐴). 



J. Stella Irene Mary*1, Sindhu M2. / On Properties of 𝜶𝜶𝜶𝜶-Interior and 𝜶𝜶𝜶𝜶-Closure of Sets / IJMA- 7(1), Jan.-2016. 

© 2016, IJMA. All Rights Reserved                                                                                                                                                                         80   

 
Proof: 
(𝒊𝒊)   Let 𝑥𝑥 ∈  𝑋𝑋\𝛼𝛼𝛼𝛼𝐶𝐶𝑐𝑐(𝐴𝐴).Then by Corollary(3.4.2) 𝑥𝑥 ∉ 𝛼𝛼𝛼𝛼𝐶𝐶𝑐𝑐(𝐴𝐴) ⟺ There exists an 𝛼𝛼c-open set 𝑈𝑈  containing 𝑥𝑥 such 
that  𝐴𝐴 ∩ 𝑈𝑈 = ∅ ⟺ 𝑥𝑥 ∈ 𝑈𝑈 ⊂ 𝑋𝑋\𝐴𝐴 ⟺ 𝑥𝑥 ∈ 𝛼𝛼𝛼𝛼𝐼𝐼𝑖𝑖𝑖𝑖(𝑋𝑋\𝐴𝐴). 
 
(𝒊𝒊𝒊𝒊) From(𝑖𝑖), 𝛼𝛼𝛼𝛼𝐼𝐼𝑖𝑖𝑖𝑖(𝐴𝐴) = 𝑋𝑋\𝛼𝛼𝛼𝛼𝐶𝐶𝑐𝑐(𝑋𝑋\𝐴𝐴). This implies that 𝑋𝑋\𝛼𝛼𝛼𝛼𝐼𝐼𝑖𝑖𝑖𝑖(𝐴𝐴)= 𝛼𝛼𝛼𝛼𝐶𝐶𝑐𝑐(𝑋𝑋\𝐴𝐴). 
 
(𝒊𝒊𝒊𝒊𝒊𝒊) and (𝒊𝒊𝒊𝒊) follows from (𝑖𝑖) and (𝑖𝑖𝑖𝑖). 
 
3.5. Filter Space:  
 
In this chapter we introduce several definitions on convergent and accumulation of a filter base. 
 
Definition 3.5.1: [4] A filter is a non-empty collection 𝔉𝔉  of subsets of a topological space 𝑋𝑋 such that          

i. ∅ ∉   𝔉𝔉  
ii. If 𝐴𝐴 ∈ 𝔉𝔉   and 𝐵𝐵 ⊇ 𝐴𝐴, then 𝐵𝐵 ∈ 𝔉𝔉 . 

iii. If 𝐴𝐴 ∈ 𝔉𝔉  and 𝐵𝐵 ∈ 𝔉𝔉  ,then 𝐴𝐴 ∩ 𝐵𝐵 ∈ 𝔉𝔉. 
 
The following definitions are introduced. 
 
Definition 3.5.2: A subset 𝐴𝐴 of a topological space 𝑋𝑋 is called 𝜽𝜽𝜶𝜶 -𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐 𝒔𝒔𝒐𝒐𝒔𝒔 (denoted by 𝜽𝜽𝛼𝛼𝑂𝑂(𝑋𝑋))  if for each          
𝑥𝑥 ∈ 𝐴𝐴 ∈ 𝜃𝜃O(𝑋𝑋) , there exists a closed set 𝐹𝐹, such that  𝑥𝑥 ∈ 𝐹𝐹 ⊂  𝐴𝐴. 
 
Definition 3.5.3: Let 𝔉𝔉  be a filter base in a topological space (𝑋𝑋, 𝜏𝜏). We say 𝔉𝔉, 

(𝑖𝑖)𝛼𝛼𝛼𝛼-𝛼𝛼𝑜𝑜𝑖𝑖𝑣𝑣𝑜𝑜𝑐𝑐𝛼𝛼𝑜𝑜𝑠𝑠 to a point 𝑥𝑥 ∈ 𝑋𝑋 if for every 𝛼𝛼𝛼𝛼-open set 𝑉𝑉 containing 𝑥𝑥, there exists an 𝐹𝐹 ∈ 𝔉𝔉 such that 𝐹𝐹 ⊂ 𝑉𝑉. 
(𝑖𝑖𝑖𝑖) 𝜃𝜃𝛼𝛼-𝛼𝛼𝑜𝑜𝑖𝑖𝑣𝑣𝑜𝑜𝑐𝑐𝛼𝛼𝑜𝑜𝑠𝑠 to a point 𝑥𝑥 ∈ 𝑋𝑋 if for every 𝜃𝜃𝛼𝛼-open set 𝑉𝑉 containing 𝑥𝑥, there exists an 𝐹𝐹 ∈ 𝔉𝔉  such that 𝐹𝐹 ⊂ 𝑉𝑉. 
(𝑖𝑖𝑖𝑖𝑖𝑖) 𝛼𝛼𝛼𝛼-𝑎𝑎𝛼𝛼𝛼𝛼𝑐𝑐𝑆𝑆𝑐𝑐𝑐𝑐𝑎𝑎𝑖𝑖𝑜𝑜𝑠𝑠  to a point  𝑥𝑥 ∈ 𝑋𝑋 if 𝐹𝐹 ∩ 𝑉𝑉 ≠ ∅ for every 𝛼𝛼𝛼𝛼-open set 𝑉𝑉 containing 𝑥𝑥 and every 𝐹𝐹 ∈  𝔉𝔉. 
(𝑖𝑖𝑣𝑣) 𝜃𝜃𝛼𝛼-𝑎𝑎𝛼𝛼𝛼𝛼𝑐𝑐𝑆𝑆𝑐𝑐𝑐𝑐𝑎𝑎𝑖𝑖𝑜𝑜𝑠𝑠  to a point  𝑥𝑥 ∈ 𝑋𝑋 if 𝐹𝐹 ∩ 𝑉𝑉 ≠ ∅, for every 𝜃𝜃𝛼𝛼-open set 𝑉𝑉 containing 𝑥𝑥 and every 𝐹𝐹 ∈  𝔉𝔉. 

 
The following Theorem gives the properties of αc-convergent and αc-accumalation of filter base in (𝑋𝑋, 𝜏𝜏). 
 
Theorem 3.5.1: Let 𝔉𝔉 be a filter base in a topological space (𝑋𝑋, 𝜏𝜏). The following assertion hold. 

(𝑖𝑖)  If 𝔉𝔉  𝛼𝛼𝛼𝛼-converges to a point 𝑥𝑥, then 𝔉𝔉   𝜃𝜃𝛼𝛼-converges to the point 𝑥𝑥. 
(𝑖𝑖𝑖𝑖)  If 𝔉𝔉  𝛼𝛼𝛼𝛼-accumulates to a point 𝑥𝑥, then 𝔉𝔉   𝜃𝜃𝛼𝛼-accumulates to the point 𝑥𝑥. 

 
Proof: 
(𝒊𝒊) Let  𝔉𝔉  𝛼𝛼𝛼𝛼-converge to a point 𝑥𝑥 ∈ 𝑋𝑋, and 𝑉𝑉 be any 𝜃𝜃𝛼𝛼-open set containing 𝑥𝑥. By definition (3.5.2) and Theorem 
(2.14),  𝑉𝑉 is 𝛼𝛼𝛼𝛼-open set. Since  𝔉𝔉  𝛼𝛼𝛼𝛼-converges to 𝑥𝑥, there exist an 𝐹𝐹 ∈  𝔉𝔉  such that 𝐹𝐹 ⊂ 𝑉𝑉. This shows that 𝔉𝔉  𝜃𝜃𝛼𝛼-
converges to 𝑥𝑥. 
 
(𝒊𝒊𝒊𝒊) Let 𝔉𝔉  𝛼𝛼𝛼𝛼-accumulate to a point 𝑥𝑥 ∈ 𝑋𝑋, and 𝑉𝑉 be any 𝜃𝜃𝛼𝛼-open set containing 𝑥𝑥. By definition (3.5.2) and 
Theorem(2.14),  implies 𝑉𝑉 is 𝛼𝛼𝛼𝛼-open set. Since  𝔉𝔉  𝛼𝛼𝛼𝛼-accumulates to 𝑥𝑥, 𝐹𝐹 ∩ 𝑉𝑉 ≠ ∅ for every 𝐹𝐹 ∈ 𝔉𝔉 . This shows that 
𝔉𝔉   𝜃𝜃𝛼𝛼-accumulates to a point 𝑥𝑥. 
 
Theorem 3.5.2: Let 𝔉𝔉  be a filter base in a topological space (𝑋𝑋, 𝜏𝜏) and 𝐸𝐸 be any closed set containing 𝑥𝑥. Then the 
following statements hold. 

(𝑖𝑖)If there exist an 𝐹𝐹 ∈ 𝔉𝔉 ,  such that 𝐹𝐹 ⊂ 𝐸𝐸, then 𝔉𝔉  𝛼𝛼𝛼𝛼-converges to 𝑥𝑥 ∈ 𝑋𝑋.  
(𝑖𝑖𝑖𝑖) If for each  𝐹𝐹 ∈ 𝔉𝔉 , such that 𝐹𝐹 ∩ 𝐸𝐸 ≠ ∅, then 𝔉𝔉   𝜃𝜃𝛼𝛼-accumulates to 𝑥𝑥 ∈ 𝑋𝑋.  

 
Proof: 
(𝒊𝒊) Let 𝑉𝑉 be any 𝛼𝛼𝛼𝛼-open set 𝑉𝑉 containing 𝑥𝑥. Then for each 𝑥𝑥 ∈ 𝑉𝑉, there exist a closed set E such that 𝑥𝑥 ∈ 𝐸𝐸 ⊂ 𝑉𝑉. By 
hypothesis, there exists an 𝐹𝐹 ∈ 𝔉𝔉,  such that 𝐹𝐹 ⊂ 𝐸𝐸 ⊂ 𝑉𝑉. Hence 𝔉𝔉  𝛼𝛼𝛼𝛼-converges to 𝑥𝑥. 
  
(𝒊𝒊𝒊𝒊) Let 𝑉𝑉 be any 𝜃𝜃𝛼𝛼-open set containing 𝑥𝑥. Then for each 𝑥𝑥 ∈ 𝑉𝑉, there exist a closed set E such that 𝑥𝑥 ∈ 𝐸𝐸 ⊂ 𝑉𝑉. By 
hypothesis, for every 𝐹𝐹 ∈ 𝔉𝔉 ,  𝐹𝐹 ∩ 𝐸𝐸 ≠ ∅.  Then 𝐹𝐹 ∩ 𝑉𝑉 ≠ ∅.   Hence 𝔉𝔉  𝜃𝜃𝛼𝛼-accumulates to 𝑥𝑥 ∈ 𝑋𝑋.  
 
3.6 𝜶𝜶𝜶𝜶-Compactness: 
 
We introduce two types of compactness namely 𝛼𝛼𝛼𝛼-compactness and 𝜃𝜃𝛼𝛼-compactness. 
 
Definition 3.6.1: A topological space (X,𝜏𝜏) is 𝜶𝜶𝜶𝜶-𝜶𝜶𝒐𝒐𝒄𝒄𝒐𝒐𝒄𝒄𝜶𝜶𝒔𝒔 if for every 𝛼𝛼𝛼𝛼-open cover {𝑉𝑉𝛼𝛼 :𝛼𝛼 ∈ ∆} of 𝑋𝑋, there exist a 
finite subset ∆0 𝑜𝑜𝑜𝑜 ∆ such that 𝑋𝑋=∪ {𝑉𝑉𝛼𝛼 :𝛼𝛼 ∈ ∆0}. 
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Definition 3.6.2: A topological space (X,𝜏𝜏) is 𝜽𝜽𝜶𝜶-𝜶𝜶𝒐𝒐𝒄𝒄𝒐𝒐𝒄𝒄𝜶𝜶𝒔𝒔 if for every 𝜃𝜃𝛼𝛼-open cover {𝑉𝑉𝛼𝛼 :𝛼𝛼 ∈ ∆} of  𝑋𝑋, there exist a 
finite subset ∆0 𝑜𝑜𝑜𝑜 ∆ such that 𝑋𝑋 = ∪ {𝑉𝑉𝛼𝛼 :𝛼𝛼 ∈ ∆0}. 
 
The following Theorem gives the properties of αc-compactness. 
 
Theorem 3.6.1: If every closed cover of a space 𝑋𝑋 has finite subcover,  then 𝑋𝑋 is 𝛼𝛼𝛼𝛼-compact. 
  
Proof: Let { 𝑉𝑉𝛼𝛼 : 𝛼𝛼 ∈ ∆ } be any 𝛼𝛼𝛼𝛼-open cover of 𝑋𝑋 and 𝑥𝑥 ∈ 𝑋𝑋, then for each 𝑥𝑥 ∈ 𝑉𝑉𝛼𝛼 (𝑥𝑥), 𝛼𝛼 ∈ ∆  there exist a closed set 
𝐹𝐹𝛼𝛼(𝑥𝑥) such that 𝑥𝑥 ∈  𝐹𝐹𝛼𝛼(𝑥𝑥) ⊂ 𝑉𝑉𝛼𝛼(𝑥𝑥).  So the family {  𝐹𝐹𝛼𝛼(𝑥𝑥) ∶ 𝑥𝑥 ∈ 𝑋𝑋 } is a cover of 𝑋𝑋 by closed sets. By hypothesis, this 
family has a finite sub-cover such that 𝑋𝑋 = ∪ {  𝐹𝐹𝛼𝛼(𝑥𝑥𝑖𝑖) : (𝑖𝑖=1,2,….n) } ⊂ ∪ { 𝑉𝑉𝛼𝛼(𝑥𝑥𝑖𝑖 ) : (𝑖𝑖=1,2,….n) }.    
 
Therefore  𝑋𝑋 = ∪ { 𝑉𝑉𝛼𝛼(𝑥𝑥𝑖𝑖) : (𝑖𝑖=1,2,….n) }.  Hence 𝑋𝑋 is 𝛼𝛼𝛼𝛼-compact. 
 
Theorem  3.6.2: Let (𝑋𝑋, 𝜏𝜏) be 𝛼𝛼𝛼𝛼-compact. The following properties hold: 

(𝑖𝑖)If  the space X is Locally indiscrete, then 𝑋𝑋 is compact. 
(𝑖𝑖𝑖𝑖) If the space  X is Regular,  then 𝑋𝑋 is compact. 

 
Proof: 
(𝒊𝒊) Let  { 𝑉𝑉𝛼𝛼 : 𝛼𝛼 ∈ ∆ } be any open cover of 𝑋𝑋. Since every open set is 𝛼𝛼-open, this implies that { 𝑉𝑉𝛼𝛼 : 𝛼𝛼 ∈ ∆} is a 𝛼𝛼-open 
cover of 𝑋𝑋. Since the space 𝑋𝑋 be locally indiscrete, Every open subset of 𝑋𝑋 is closed. This implies that { 𝑉𝑉𝛼𝛼 : 𝛼𝛼 ∈ ∆}  is a 
𝛼𝛼𝛼𝛼-open cover of 𝑋𝑋. By hypothesis, 𝑋𝑋 is 𝛼𝛼𝛼𝛼-compact. So there exists a finite subset ∆0 of ∆ such that 
 𝑋𝑋 = ∪ { 𝑉𝑉𝛼𝛼 :𝛼𝛼 ∈ ∆0}. Hence 𝑋𝑋 is compact. 
 
(𝒊𝒊𝒊𝒊) Let  { 𝑉𝑉𝛼𝛼 : 𝛼𝛼 ∈ ∆ } be any open cover of 𝑋𝑋. Since the space 𝑋𝑋 is Regular, by Theorem (2.13), Every open set is 𝛼𝛼c-
open. This implies that every { 𝑉𝑉𝛼𝛼 : 𝛼𝛼 ∈ ∆}  is a 𝛼𝛼𝛼𝛼-open cover of 𝑋𝑋. By hypothesis, 𝑋𝑋 is  𝛼𝛼𝛼𝛼-compact.So there exists a 
finite subset ∆0 of ∆  such that 𝑋𝑋=∪ { 𝑉𝑉𝛼𝛼 :𝛼𝛼 ∈ ∆0}. Hence 𝑋𝑋 is compact.  
 
Theorem 3.6.3: If a topological space (𝑋𝑋, 𝜏𝜏) be 𝛼𝛼𝛼𝛼-compact, then it is is 𝜃𝜃𝛼𝛼-compact. 
 
Proof:  Let {𝑉𝑉𝛼𝛼 : 𝛼𝛼 ∈ ∆ } be any 𝜃𝜃𝛼𝛼 open cover of 𝑋𝑋. By definition(3.5.2) and Theorem(2.14) {𝑉𝑉𝛼𝛼 : 𝛼𝛼 ∈ ∆ } is a  𝛼𝛼𝛼𝛼-open 
cover of 𝑋𝑋. Since 𝑋𝑋 is 𝛼𝛼𝛼𝛼-compact, there exists a finite subset ∆0 of ∆ in 𝑋𝑋 such that 𝑋𝑋 = ∪ { 𝑉𝑉𝛼𝛼 :𝛼𝛼 ∈ ∆0}. 
 
Hence 𝑋𝑋 is 𝜃𝜃c- compact. 
 
Theorem 3.6.4: Let (𝑋𝑋, 𝜏𝜏) be a topological space, then 𝛼𝛼-compactness implies 𝛼𝛼𝛼𝛼-compactness. 
 
Proof:  Let {𝑉𝑉𝛼𝛼 : 𝛼𝛼 ∈ ∆ } be any 𝛼𝛼𝛼𝛼- open cover of 𝑋𝑋. Since every 𝛼𝛼𝛼𝛼-open set is 𝛼𝛼-open set, {𝑉𝑉𝛼𝛼 : 𝛼𝛼 ∈ ∆ } is a 𝛼𝛼- open 
cover of 𝑋𝑋. Since 𝑋𝑋 is 𝛼𝛼-compact, there exists a finite subset ∆0 of ∆ in𝑋𝑋 such that 𝑋𝑋 = ∪ { 𝑉𝑉𝛼𝛼 :𝛼𝛼 ∈ ∆0}.  Hence 𝑋𝑋 is 𝛼𝛼c- 
compact. 
 
Theorem 3.6.5: Every 𝛼𝛼𝛼𝛼-compact space that is 𝑇𝑇1-space must be 𝛼𝛼-compact. 
 
Proof: Let 𝑋𝑋 be 𝛼𝛼𝛼𝛼-compact and 𝑇𝑇1-space. Let {𝑉𝑉𝛼𝛼 : 𝛼𝛼 ∈ ∆ } be any 𝛼𝛼- open cover of 𝑋𝑋. Then for every 𝑥𝑥 ∈ 𝑋𝑋, there 
exists 𝛼𝛼(𝑥𝑥) ∈ ∆ such that 𝑥𝑥 ∈  𝑉𝑉𝛼𝛼(𝑥𝑥). Since 𝑋𝑋 is 𝑇𝑇1-space every singleton set is closed. Then{ 𝑉𝑉𝛼𝛼(𝑥𝑥)} is closed. 
Therefore for each 𝑥𝑥 ∈  𝑉𝑉𝛼𝛼(𝑥𝑥) ⊂  𝑉𝑉𝛼𝛼(𝑥𝑥).Thus  𝑉𝑉𝛼𝛼(𝑥𝑥) is 𝛼𝛼c-open cover of 𝑋𝑋. 
 
Since 𝑋𝑋 is 𝛼𝛼𝛼𝛼-compact, there exists a finite subset ∆0 of ∆ in 𝑋𝑋 such that  𝑋𝑋 = ∪ { 𝑉𝑉𝛼𝛼 :𝛼𝛼 ∈ ∆0}. Hence 𝑋𝑋 is 𝛼𝛼- compact. 
 
3.7 𝜶𝜶𝜶𝜶- CONTINUOUS FUNCTIONS 
 
In this chapter we introduce the 𝛼𝛼𝛼𝛼-Continuous functions. 
 
Definition 3.7.1: A function 𝑜𝑜:𝑋𝑋 → 𝑌𝑌 is called 𝛼𝛼𝛼𝛼-continuous at a point 𝑥𝑥 ∈ 𝑋𝑋 if for each open set 𝑉𝑉 of 𝑌𝑌 containing 
𝑜𝑜(𝑥𝑥), there exists an 𝛼𝛼𝛼𝛼-open set 𝑈𝑈 of 𝑋𝑋 contaning 𝑥𝑥 such that 𝑜𝑜(𝑈𝑈) ⊆ 𝑉𝑉. If 𝑜𝑜 is 𝛼𝛼𝛼𝛼-continuos at every point 𝑥𝑥 of 𝑋𝑋, 
then it is called 𝛼𝛼𝛼𝛼-continuous. 
 
Theorem 3.7.1: A function 𝑜𝑜 ∶ 𝑋𝑋 → 𝑌𝑌 is 𝛼𝛼𝛼𝛼-continuous if and only if the inverse image of every open set in 𝑌𝑌 is 𝛼𝛼𝛼𝛼-
open in 𝑋𝑋. 
 
Proof: Let 𝑜𝑜 be 𝛼𝛼𝛼𝛼-continuous and 𝑉𝑉 be open set in 𝑌𝑌. Let 𝑥𝑥 ∈ 𝑜𝑜−1(𝑉𝑉). This implies 𝑜𝑜(𝑥𝑥) ∈ 𝑉𝑉. Hence by definition, 
there exists an 𝛼𝛼𝛼𝛼-open set 𝑈𝑈𝑥𝑥  in 𝑋𝑋 containing 𝑥𝑥 such that 𝑜𝑜(𝑈𝑈𝑥𝑥) ⊆ 𝑉𝑉. Therefore  𝑜𝑜−1(𝑉𝑉) = ∪ (𝑈𝑈𝑥𝑥). Since by Theorem 
(2.10), we have f−1(V) is 𝛼𝛼𝛼𝛼-open in 𝑋𝑋. 
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Conversely, let us assume that f−1(V) is 𝛼𝛼𝛼𝛼-open in 𝑋𝑋 for every open set 𝑉𝑉 in 𝑌𝑌. 
 
Let 𝑉𝑉 be open in 𝑌𝑌. By assumption, f−1(V) is 𝛼𝛼𝛼𝛼-open in 𝑋𝑋. Let 𝑈𝑈 = 𝑜𝑜−1(𝑉𝑉),  then 𝑜𝑜(𝑈𝑈) = 𝑜𝑜(𝑜𝑜−1(𝑉𝑉)) ⊆ 𝑉𝑉. Hence 𝑜𝑜 
is 𝛼𝛼𝛼𝛼-continuous. 
 
The following Theorem gives the characterization of αc-continuois function. 
 
Theorem 3.7.2: A function 𝑜𝑜 ∶ 𝑋𝑋 → 𝑌𝑌 is 𝛼𝛼𝛼𝛼-continuous if and only if 𝑜𝑜 is 𝛼𝛼-continuous and for each 𝑥𝑥 ∈ 𝑋𝑋 and each 
open set 𝑉𝑉 of 𝑌𝑌 containing 𝑜𝑜(𝑥𝑥), there exists a closed set 𝐹𝐹 of 𝑋𝑋 containig 𝑥𝑥 such that 𝑜𝑜(𝐹𝐹) ⊆ 𝑉𝑉. 
 
Proof: Let 𝑜𝑜 ∶ 𝑋𝑋 → 𝑌𝑌 is 𝛼𝛼𝛼𝛼-continuous, then it is 𝛼𝛼-continuous. Let 𝑥𝑥 ∈ 𝑋𝑋 and 𝑉𝑉 be any open set of 𝑌𝑌 containning 
𝑜𝑜(𝑥𝑥). By hypothesis, there exists an 𝛼𝛼𝛼𝛼-open set 𝑈𝑈 of 𝑋𝑋 containing 𝑥𝑥 such that 𝑜𝑜(𝑈𝑈) ⊆ 𝑉𝑉. Since 𝑈𝑈 is 𝛼𝛼𝛼𝛼-open set, then 
for each 𝑥𝑥 ∈ 𝑈𝑈, there exists a closed set 𝐹𝐹 of 𝑋𝑋 such that 𝑥𝑥 ∈ 𝐹𝐹 ⊆ 𝑈𝑈. Therefore, we have 𝑜𝑜(𝐹𝐹) ⊆ 𝑉𝑉.  
 
Conversely, let 𝑉𝑉 be any open set of 𝑌𝑌. We have to show that 𝑜𝑜−1(𝑉𝑉) is 𝛼𝛼𝛼𝛼-open set in 𝑋𝑋. Since 𝑜𝑜 is 𝛼𝛼-continuous, then 
𝑜𝑜−1(𝑉𝑉) is 𝛼𝛼-open set in 𝑋𝑋. Let 𝑥𝑥 ∈ 𝑜𝑜−1(𝑉𝑉). Then 𝑜𝑜(𝑥𝑥) ∈ 𝑉𝑉. By hypothesis, there exists a closed set 𝐹𝐹 of 𝑋𝑋 containig 𝑥𝑥 
such that 𝑜𝑜(𝐹𝐹) ⊆ 𝑉𝑉, which implies that 𝑥𝑥 ∈ 𝐹𝐹 ⊆ 𝑜𝑜−1(𝑉𝑉). Therefore, 𝑜𝑜−1(𝑉𝑉) is 𝛼𝛼𝛼𝛼-open set in 𝑋𝑋. Thus, 𝑜𝑜 is 𝛼𝛼𝛼𝛼-
continuous. 
 
Theorem 3.7.3: Let 𝑜𝑜 ∶ 𝑋𝑋 → 𝑌𝑌 be an 𝛼𝛼𝛼𝛼-continuous and 𝑌𝑌 ⊆ 𝑍𝑍. If 𝑌𝑌 is an open subset of a topological space 𝑍𝑍, 
then 𝑜𝑜 ∶ 𝑋𝑋 → 𝑍𝑍 is  𝛼𝛼𝛼𝛼-continuous. 
 
Proof: Let 𝑉𝑉 be an open set in 𝑍𝑍. Then 𝑉𝑉 ∩ 𝑌𝑌 is open in 𝑌𝑌. Since 𝑜𝑜 is 𝛼𝛼𝛼𝛼-continuous, by Theorem (3.7.1), f−1(V ∩ Y) is 
𝛼𝛼𝛼𝛼-open set in 𝑋𝑋. But 𝑜𝑜(𝑥𝑥) ∈ 𝑌𝑌 for each 𝑥𝑥 ∈ 𝑋𝑋, and thus 𝑜𝑜−1(𝑉𝑉) = 𝑜𝑜−1(𝑉𝑉 ∩ 𝑌𝑌) is an 𝛼𝛼𝛼𝛼-open subset of 𝑋𝑋. Therefore, 
by Theorem (3.7.1),  𝑜𝑜 ∶ 𝑋𝑋 → 𝑍𝑍 is  𝛼𝛼𝛼𝛼-continuous. 
 
Theorem 3.7.4: Let 𝑜𝑜,𝛼𝛼 ∶ 𝑋𝑋 → 𝑌𝑌 be functions and 𝑌𝑌 is Hausdorff. If 𝑜𝑜 is 𝛼𝛼𝛼𝛼-continuous, and 𝛼𝛼 is clopen continuous, 
then the set 𝐸𝐸 = {𝑥𝑥 ∈ 𝑋𝑋 ∶ 𝑜𝑜(𝑥𝑥) = 𝛼𝛼(𝑥𝑥)} is 𝛼𝛼𝛼𝛼-closed in 𝑋𝑋. 
 
Proof: Let 𝑥𝑥 ∉ 𝐸𝐸. Then 𝑜𝑜(𝑥𝑥) ≠ 𝛼𝛼(𝑥𝑥). Since 𝑌𝑌 is Hausdorff, there exist open sets 𝑉𝑉1and V2 of 𝑌𝑌 such that 𝑜𝑜(𝑥𝑥) ⊆ 𝑉𝑉1, 
𝛼𝛼 (𝑥𝑥)  ⊆ 𝑉𝑉2, and 𝑉𝑉1 ∩ 𝑉𝑉2 = ∅. Since 𝑜𝑜 is 𝛼𝛼𝛼𝛼-continuous, there exists an 𝛼𝛼𝛼𝛼-open set 𝑈𝑈1 of 𝑋𝑋 containing 𝑥𝑥 such 
that 𝑜𝑜(𝑈𝑈1)  ⊆ 𝑉𝑉1. Since 𝛼𝛼 is clopen continuous, there exists a clopen set 𝑈𝑈2 of 𝑋𝑋 containing 𝑥𝑥 such that 𝑜𝑜(𝑈𝑈2)  ⊆ 𝑉𝑉2. 
Put 𝑈𝑈 = 𝑈𝑈1 ∩ 𝑈𝑈2 is an αc-open set of X containing x, By definition (3.4.2), 𝑈𝑈 ∩ 𝐸𝐸 = ∅. Therefore, we obtain 𝑥𝑥 ∉
𝛼𝛼𝛼𝛼𝐶𝐶𝑐𝑐(𝐸𝐸).  This shows that 𝐸𝐸 is 𝛼𝛼𝛼𝛼-closed in 𝑋𝑋. 
  
Theorem 3.7.5: Let 𝑜𝑜 ∶ 𝑋𝑋 → 𝑌𝑌 and 𝛼𝛼 ∶ 𝑌𝑌 → 𝑍𝑍 be two functions in which 𝑜𝑜 is 𝛼𝛼𝛼𝛼-continuous and 𝛼𝛼 is continuous. Then 
the composition function 𝛼𝛼 ∘ 𝑜𝑜: 𝑋𝑋 → 𝑍𝑍 is 𝛼𝛼𝛼𝛼-continuous.  
 
Proof:  Let 𝑊𝑊 be any open subset of 𝑍𝑍. Since 𝛼𝛼 is continuous g−1(W) is open subset of 𝑌𝑌. Since 𝑜𝑜 is 𝛼𝛼𝛼𝛼-continuous, 
then by Theorem(3.7.1), (g ∘ f)−1(𝑊𝑊) = 𝑜𝑜−1(𝛼𝛼−1(𝑊𝑊)) is αc-open subset set in X. Therefore, by Theorem(3.7.1), 𝛼𝛼 ∘ 𝑜𝑜 
is 𝛼𝛼𝛼𝛼-continuous. 
 
Theorem 3.7.6: Let 𝑜𝑜 ∶ 𝑋𝑋1 → 𝑌𝑌 and 𝛼𝛼 ∶ 𝑋𝑋2 → 𝑌𝑌 be two 𝛼𝛼𝛼𝛼-continuous. If 𝑌𝑌 is Hausdroff, then the set 𝐸𝐸 = {(𝑥𝑥1, 𝑥𝑥2) ∈ 
X1 × X2 : f(𝑥𝑥1) = 𝛼𝛼(𝑥𝑥2)} is 𝛼𝛼𝛼𝛼-closed in the product space 𝑋𝑋1 × 𝑋𝑋2. 
 
Proof: Let (𝑥𝑥1, 𝑥𝑥2) ∉ 𝐸𝐸. Then 𝑜𝑜(𝑥𝑥1) ≠ 𝛼𝛼(𝑥𝑥2). Since 𝑌𝑌 is Hausdorff, there exist open sets 𝑉𝑉1and V2 of 𝑌𝑌 such that 
𝑜𝑜(𝑥𝑥1) ⊆ 𝑉𝑉1, 𝛼𝛼(𝑥𝑥2) ⊆ 𝑉𝑉2, and 𝑉𝑉1 ∩ 𝑉𝑉2 = ∅. Since 𝑜𝑜 and 𝛼𝛼 are 𝛼𝛼𝛼𝛼-continuous, there exists an 𝛼𝛼𝛼𝛼-open set 𝑈𝑈1 and  𝑈𝑈2 of 
 X1 and X2 containing 𝑥𝑥1 and 𝑥𝑥2 such that 𝑜𝑜(𝑈𝑈1)  ⊆ 𝑉𝑉1 and 𝛼𝛼(𝑈𝑈2) ⊆ 𝑉𝑉2, respectively. Put 𝑈𝑈 = 𝑈𝑈1 × 𝑈𝑈2,  then            
(𝑥𝑥1, 𝑥𝑥2) ∈ 𝑈𝑈 and by Theorem(2.15 ), 𝑈𝑈 is 𝛼𝛼𝛼𝛼-open set in 𝑋𝑋1 × 𝑋𝑋2 with 𝑈𝑈 ∩ 𝐸𝐸 = ∅.  
 
Therefore, we obtain (𝑥𝑥1, 𝑥𝑥2) ∉ 𝛼𝛼𝛼𝛼𝐶𝐶𝑐𝑐(𝐸𝐸). Hence 𝐸𝐸 is 𝛼𝛼𝛼𝛼-closed in the product space 𝑋𝑋1 × 𝑋𝑋2. 
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