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ABSTRACT 
The vertices and edges of a graph G are called the elements of G. A set X of elements in G is an entire dominating set 
if every element not in X is an entire dominating set if every element not in X is either adjacent or incident to at least 
one element in X. An entire dominating set X of G is a connected entire dominating set if the induced subgraph 〈X〉 is 
connected. The connected entire domination number εc(G) of G is the minimum cardinality of a connected entire 
dominating set in G. In this paper, we initiate a study of this parameter and present some bounds and some exact 
values for εc(G). Also Nordhaus Gaddum type results are obtained. 
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1. INTRODUCTION 
 
All graphs considered here are finite, undirected without loops and multiple edges. Any undefined term in this paper 
may be found in Kulli [1].  
 
Let G = (V, E) be a graph with |V|= p vertices and |E| = q edges. A set D of vertices in a graph G is a dominating set if 
every vertex in V – D is adjacent to some vertex in D. The domination number γ(G) of G is the minimum cardinality of 
a dominating set. Recently many new domination parameters are given in the books by Kulli [2, 3, 4]. 
 
The vertices and edges of a graph G are called the elements of G. A set X of elements in G is an entire dominating set if 
every element not in X is either adjacent or incident to at least one element of X. The entire domination number ε(G) of 
G is the minimum cardinality of an entire dominating set in G. This concept was introduced by Kulli [5] and was 
studied, for example, in [6, 7, 8, 9]. Many other domination parameters in dominating theory were studied, for example, 
in [10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26]. 
 
Let D be a subset of the vertex set of G. The induced subgraph 〈D〉 is the maximal subgraph of G with the vertex set D. 
A dominating set D of G is a connected dominating set if the induced subgraph 〈D〉 is connected. The connected 
domination number γc(G) of G is the minimum cardinality of a connected dominating set in G. Many other connected 
domination parameters in domination theory were studied, for example, in [27, 28, 29, 30]. 
 
Let F be a subset of the edge set of G. The induced subgraph 〈F〉 is the subgraph of G with the vertex set V1 and edge 
set F, where V1 is the set of all vertices incident with the edges of F. An edge dominating set F of G is a connected edge 
dominating set if the induced subgraph 〈F〉 is connected. The connected edge domination number γ'c(G) of G is the 
minimum cardinality of a connected edge dominating set in G. This concept was introduced by Kulli and Sigarkanti in 
[31] and was studied, for example, in [32]. 

 
Let x    denote the least integer less than as equal to x. Let G  be the complement of G. 
 
In [33], Kulli and Sigarkanti introduced the concept of connected entire domination. In this paper, we study this 
parameter. 
 
We note that εc(G) is defined only for connected graphs G. 
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2. CONNECTED ENTIRE DOMINATION NUMBER 
 
We need the following definition. 
 
Definition 1 [32]: Let G = (V, E) be a graph. Let D ⊆ V and F ⊆ E. The subgraph 〈X〉 induced by X = D ∪ F is the 
subgraph of G with the vertex set D ∪ D1 where D1 is the set of all vertices incident with the edges in F and the edge set 
F ∪ F1 where F1 = E(〈D〉). 
 
We now define the concept of connected entire domination in graphs. 
 
Definition 2: An entire dominating set X of G is a connected entire dominating set if the induced subgraph 〈X〉 is 
connected. The connected entire domination number εc(G) of G is the minimum cardinality of a connected entire 
dominating set in G. 

 
3. EXACT VALUES 
 
We obtain exact values of εc(G) for some standard graphs. 
 
Proposition 3: For any complete graph Kp with p ≥ 2 vertices, εc(Kp) = p – 1.  
 
Proof: Let V be the vertex set of Kp and v be a vertex of Kp. Then V – {v} is a minimum connected entire dominating 
set of Kp. Thus εc(Kp) = | V – {v}| =  p – 1. 
 
Proposition 4: For any cycle Cp with p≥3 vertices, εc(Cp) = p – 1. 
 
Proof: Let V be the vertex set of Cp and v∈V. Then V – {v} is a minimum connected entire dominating set of Cp. Thus 
  εc(Cp) = |V – {v}| 
            = p – 1. 
 
Proposition 5: For any complete bipartite graph Km,n with m ≤ n, 
  εc(Km, n)  = 1, if m = 1, 
   = m+1 if m ≥ 1. 
 
Proof: Let V=V1∪V2 be the vertex set of Km,n such that |V1| = m and |V2| = n. If m=1, then V1={v} and {v} is the 
minimum connected entire dominating set of Km, n. Thus 
  εc(Km, n)  = 1, if m = 1. 
If m ≥ 2, then for any vertex v∈V2, the set V1 ∪ {v} is a minimum connected entire dominating set of Km, n. Thus 

  εc(Km, n) = |V1 ∪ {v}| 
                = m + 1,  if m ≥ 2. 
 
Proposition 6: For any wheel Wp with p ≥ 4 vertices,  

εc(Wp) = 1.
2
p  +  

 

 
Proof: Let v(Wp) = {v1, v2, ... , vp} and let deg vp = p – 1 and deg vi = 3, 1 ≤ i ≤ p – 1. We consider the following two 
cases. 
 
Case-1: Suppose p is odd. Then X = {v2, v4, ... , vp – 1} ∪ {vp} is a minimum connected entire dominating set of Wp. 
Thus 
  εc(Wp) = | X | 

                                        = 1 1
2

p −
+  

                                        = 1.
2
p  +  

 

 
Case-2: Suppose p is even. Then Y = {v1, v3, ... , vp – 3, vp – 2} ∪ {vp} is a minimum connected entire dominating set of 
Wp. Thus 
  εc(Wp) = | Y | 

                                        = 1
2
p

+  
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From Case 1 and Case 2, we have 

εc(Wp) = 1.
2
p  +  

   

 
Proposition 7: For any tree T with p ≥ 3 vertices, 

εc(T) = p – n   
where n is the number of endvertices in T. 
 
Proof: Clearly the set of all nonend vertices is a minimum connected entire dominating set of T. Hence 

εc(T) = p – n.  
 
Corollary 8: For any path Pp with p ≥ 3 vertices, 

εc(Pp) = p – 2.   
 
Proof: This follows from Proposition 7. 
 
4. BOUNDS 
 
Theorem 9: For any connected graph G with p ≥ 2 vertices, 

ε(G) ≤ εc(G)                                                                                                                                  (1) 
and this bound is sharp. 
 
Proof: Clearly every connected entire dominating set is an entire dominating set. Thus (1) holds.  
 
The graphs K1, p , p ≥ 2 and K3 achieve this bound. 
 
Theorem 10: For any connected graph G with p ≥ 2 vertices, 

εc(G) ≤ p – 1                                                                              (2) 
and this bound is sharp. 
 
Proof: Let v ∈ V be a noncutvertex of G. Then V – {v} is a connected entire dominating set of G. Hence 

εc(G) ≤ | V – {v}|= p – 1. 
 
Equality holds in (2) if G = Kp or Cp. 
 
We obtain another upper bound on εc(G). 
 
Theorem 11: For any connected graph G with p ≥ 2 vertices, 

εc(G) ≤ p – min(n)+1 
where n is the number of endvertices in a spanning tree T of G. 
 
Proof: Let T be a spanning tree of G with minimum number of endvertices. If no two endvertices of T are adjacent in 
G, then the set of all nonendvertices of T is a connected entire dominating set of G. If for every spanning tree T, there is 
an edge uv in G joining two endvertices u and v of T, then the set of all nonendvertices together with u is a connected 
entire dominating set of G. Thus 

εc(G) ≤ p – min(n)+1. 
 
We now obtain a lower bound and an upper bound of εc(G) in terms of γc(G) and γ'c(G). 
 
Theorem 12: For any nontrivial connected graph G, 

( ) ( ) ( ) ( ) ( )' 2 ' .c c c c cG G G G Gγ γ ε γ ε+ ≤ ≤ +    
 
Proof: We obtain the upper bound. Let D be a minimum connected dominating set of G and F be a minimum 
connected edge dominating set of G. Then D ∪ F is a connected entire dominating set of G. Thus 

εc(G) ≤ | D ∪ F | 
 or εc(G) ≤ γc(G) + ε'c(G). 
 
We now establish the lower bound. Let D ∪ F be a minimum connected entire dominating set of G where D ⊆ V and    
F ⊆ E. For each edge e = uv in F, choose a vertex either u or v or both. Let F ' denote the set of all such vertices such 
that 〈D ∪ F'〉 is connected. Then D ∪ F' is a connected dominating set of G. 
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Thus 

γc(G) ≤ | D ∪ F' | 
 or γc(G) ≤ | D ∪ F | 
 or γc(G) ≤ εc(G).                                                                             (3) 
 
Similarly, for each vertex v in D, choose exactly one edge e = uv. Let D' denote the set of all such edges such that 
〈D'∪F〉 is connected. Then D' ∪ F is a connected edge dominating set of G. Thus 

γ'c(G) ≤ | D' ∪ F | 
 or γ'c(G) ≤ | D ∪ F | 
 or γ'c(G) ≤ εc(G).                                                                             (4) 
 
From (3) and (4) we have 

( ) ( ) ( )' 2 .c c cG G Gγ γ ε+ ≤    
 
Theorem 13: Let D be a maximal independent set of G. If every vertex of V – D is a cutvertex and 〈V – D〉 is 
connected, then γc(G) = εc(G). 
 
Proof: Let D be a maximal independent set in G. Then every vertex of D is adjacent to at least one vertex in V – D. 
Hence V – D is a minimum connected dominating set of G. Since D is independent, it implies that V – D is a connected 
entire dominating set of G. Thus εc(G) ≤ γc(G) and since by (3), γc(G) ≤ εc(G), it implies that γc(G) = εc(G). 
 
Theorem 14: Let G be a connected graph with p≥3 vertices. If εc(G) = p – 1, then G is hamiltonian. 
 
Proof: Suppose G is a tree. Then by Proposition 7, 

εc(G) = p – n ≤ p – 2 
 
which is a contradiction. Thus G contains at least one cycle. We now prove that G does not contain a cutvertex. On the 
contrary, assume G has a cutvertex v. Without loss of generality, let G1 and G2 be the components of G – v. If both      
G1 and G2 are nontrivial, then X = X1 ∪ X2 ∪ {v} is a connected entire dominating set of G, where X1 and X2 are 
minimum connected entire dominating sets of G1 and G2 respectively. Thus 

εc(G) ≤ | X | 
or  εc(G) ≤ | X1 ∪ X2 ∪ {v}| 
or  εc(G) ≤ p – 2 
 
which is a contradiction. 
 
Since G contains at least one cycle, it implies that at least one of G1 and G2 is nontrivial. Suppose G1 is nontrivial and 
G2 is trivial. Then X = X1 ∪ {v} is a connected entire dominating set of G, where X1 is a minimum connected entire 
dominating set of G1. 
 
Thus 

εc(G) ≤ | X | 
or  εc(G) ≤ | X1 ∪ {v}| 
or  εc(G) ≤ p – 2 
 
which is a contradiction. Hence G contains no cutvertices. 
 
Let Ck be a largest cycle in G. Suppose Ck contains fewer than p vertices. Since G contains no cutvertices, it implies 
that there exists a cycle Cn having at least two vertices in common with Ck. Let u ∈ V(Ck) and v ∈ V(Cn) for some         
u, v ∈ V(G). Then  these two vertices u, v are nonadjacent. If for each u and v, there is an edge uv ∈ E(G), then Ck ∪ Cn 
contains a cycle of order greater than the order of Ck, which is a contradiction. Thus for some u ∈ V(Ck) and v ∈ V(Cn), 
uv ∉ E(G). Therefore V(G) – {u, v} is a connected entire dominating set of G, which is a contradiction. Thus Ck 
contains all the vertices of G. Hence G is hamiltonian. 
 
5. NORDHAUS-GADDUM TYPE RESULTS 
 
Nordhaus-Gaddum type results were obtained for many dominating parameters, for example, in [34, 35, 36, 37]. 
 
We now obtain Nordhaus-Gaddum type results. 
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Theorem 15: For connected graphs G and G , 

( ) ( ) ( )2 1c cG G pε ε+ ≤ −                                                               (5) 

( ) ( ) ( )2. 1 .c cG G pε ε ≤ −                                                               (6) 
Further the bounds are attained if G = C5.  
 
Proof: By Theorem 10, εc(G) ≤ p – 1. Since G is connected and by Theorem 10, ( ) ( )1 .c G pε ≤ − Therefore the 
inequalities (5) and (6) hold. 
 
Clearly if G = C5, then εc(G) = 4 and ( ) 4c Gε = . Therefore both bounds in (5) and (6) are attained. 
 
Theorem 16: For connected trees T and T ,  

( ) ( ) ( )3 .c cT T p pε ε+ ≤ −                                                                            (7) 
Furthermore the equality in (7) holds if and only if T=P4. 
 
Proof: By Proposition 7, εc(T) ≤ p – 2 = 2(p – 1) – p = 2q – p. Similarly, ( ) 2 .c T q pε ≤ −  Thus 

( ) ( ) ( )2 2c cT T q q pε ε+ ≤ + − = p(p – 1) – 2p = p(p – 3). 
 
Suppose equality in (7) holds. Thus it implies that εc(T) = 2p – p and ( ) 2c T q pε = − . This implies that q, q p< . Thus 
G = P4. 
 
Theorem 17: For connected trees T and T , 

( ) ( ) ( )2. 2 .c cT T pε ε ≤ −                                                                             (8) 
Furthermore, equality holds if T=P4. 
 
Proof: By Proposition 7, ( ) 2,c T pε ≤ − and also ( ) 2.c T pε ≤ − Therefore equality (8) holds. 
 
Clearly if T = P4, then εc(T) = 2 and ( ) 2.c Tε =  Therefore equality in (8) holds. 
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