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ABSTRACT 
A challenging problem faced by the Engineers and Mathematician is to find solutions of the governing equations 
representing physical systems. There could be nothing more desirable than to find exact closed form solutions of these 
equations. However due to non-linearity occurring in most of real life engineering problems one has to adopt 
numerical techniques to obtain the solution. The present manuscript deals with the finite difference method for the 
solution of non-linear boundary value problem. The attempt made to analyze heat transfer and thermal stress analysis 
of thin circular plate subjected to radiation. The thin circular plate is defined in the region 0 r a≤ ≤ , h z h− ≤ ≤  
under transient temperature distribution. The fixed circular boundary ( r a= ) is kept insulated. The upper surface of 
the circular plate is subjected to heat transfer due to radiation. The rate of radiation is calculated by Stefan 
Boltzmann’s law. At the lower boundary surface at z h= −  convection due to dissipation takes place. As a special 
case, the mathematical model of thermoelastic problem is constructed for aluminum plate. The results for temperature 
distribution, displacement and thermal stresses are illustrated graphically and interpreted technically.  
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1. INTRODUCTION 
 
The finite difference approximations for derivatives is one of the convenient and oldest methods to solve differential 
equations. It was already known by L. Euler 1768, in one dimension of space and was probably extended to dimension 
two by C. Runge 1908. The advent of finite difference techniques in numerical applications began in the early 1950’s 
and their development was stimulated by the emergence of computers that offered a convenient framework for dealing 
with complex problems of science and technology. Theoretical results have been obtained during the last five decades 
regarding the accuracy, stability and convergence of the finite difference method for partial differential equations. 
 
Roy Chaudhari [7] wrote a note on Quasi Static thermal deflection of a thin clamped circular plate due to ramp type 
heating of a concentric circular region of the upper face. Sheu Tony W. H. et al. [9] developed a two-dimensional 
finite-difference scheme for solving the convection- diffusion equation. Kim Chi-Kyung et al. [3] applied finite 
difference method for Thermoelastic Stress for Rectangular Thin Plate. Wang Haojie et al. [11] presented a finite 
difference method for studying thermal deformation in a thin film exposed to ultra short-pulsed lasers. Malec Marian   
et al. [4] used finite difference method for Nonlinear Parabolic-Elliptic systems of second-order Partial Differential 
Equations. Chu Hsin-Ping et al. [2] applied hybrid differential transformation-finite difference method to analyze 
nonlinear transient heat conduction problems. Shen Bin et al. [8] developed a finite difference model for heat transfer 
of grinding. Annor-Nyarko M. et al. [1] studied control volume finite difference analysis of the transient temperature 
distributions and associated induced thermal stresses in Ghana Research Reactor-1. Recently Verma Shubha et al. [10] 
did transient heat transfer and thermal stresses analysis in a circular plate due to radiation using finite element method. 
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2. FORMULATION OF PROBLEM 
 
Consider a thin circular plate of thickness 2h  occupying space D  defined by 0 r a≤ ≤ , h z h− ≤ ≤ . Initially the 
plate is kept at constant temperature iT . The upper surface of the circular plate is subjected to heat transfer due to 

radiation. The rate of radiation is calculated by Stefan Boltzmann’s law. At the lower boundary surface at z h= −  
convection due to dissipation takes place. The fixed circular boundary ( r a= ) is kept insulated.  Under these realistic 
boundary conditions the temperature change, displacement and thermal stresses are required to be determined.   

 
Figure-1: The geometry of heat conduction problem 

 
Following Roy Choudhuri [7], we assume that a circular plate of small thickness h is in a plane state of stress. In fact, 
“the smaller the thickness of the circular disk compared to its diameter, the nearer to a plane state of stress is the actual 
state”. The displacement equations of thermoelasticity have the form, 

1 1, 2 ,, 1 1
U e a Ti kk i t i

ν ν
ν ν

+ +   + =   − −   
                                (1) 

; , 1, 2,e U k ik k= = ,                                 (2) 

where,          

iU − displacement component, 
e −   dilatation,  
T −   temperature, 
and ν  and ta are respectively, the Poisson’s ratio and the linear coefficient of thermal expansion of the circular plate 
material. 
 
Introducing 

,,Ui i= Ψ  1, 2,i =  

One gets 
( )2

1 1 ta Tν∇ Ψ = + ,                                 (3) 

2 2
2
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1 2x x

∂ ∂
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∂ ∂
  

2 , ,ij ij ij kkσ µ δ = Ψ − Ψ 
 

,   , , 1, 2,i j k =                                   (4) 

where µ  is the Lamé constant and ijδ  is the Kronecker symbol. 
 
In the axially-symmetric case  

( ), ,r tΨ = Ψ  ( ), ,T T r z t=   

and the differential equation governing the displacement potential function ( , )r tΨ  is given as 

( )
2

2

1 1 ta T
r r r

ν∂ Ψ ∂Ψ
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∂ ∂  ,                                                                         (5)                                                  

0
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∂Ψ
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∂
 at r a=  for all time t.                                       (6) 
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The stress functions rrσ  and θθσ  are given by  

2
rr r r

µσ − ∂Ψ
=

∂                                                                                                           (7)                                             

2
2 2r

σ µθθ
∂ Ψ

= −
∂

                                                                                                         (8) 

 
The surfaces of the thin circular plate at ar =  are assumed to be traction free. The boundary condition can be taken 
as  

0rrσ =  at r a= .                            (9) 
 
Also in the plane state of stress within the circular plate  

0rz zz zσ σ σθ= = = .                                     (10) 
 
The one dimensional equilibrium equation in radial direction is given by 

0rrrr
r r

σ σσ θθ−∂  
+ =  ∂  

                                                                                                                                       (11)  

 
The governing heat conduction is given by 

2 21 1
2 2
T T T T

r r tr z α
∂ ∂ ∂ ∂

+ + =
∂ ∂∂ ∂                                                                   (12)

                
with the boundary conditions,  

 0T
r

∂
=

∂
                                                         at ar = , 0>t ,                                                                         (13)                                                

( )4 4Tk q Tbz
σε θ∂

+ = −
∂

                      at hz = , 0>t ,                                                                            (14)                                                

0T h Tsz
∂

− =
∂

                                 at hz −= , 0>t                                                                         (15)              

and the initial condition 
T Ti=                                                 at  0=t , ar ≤≤0  .                       (16) 

where  
 k   thermal conductivity , 
α   thermal diffusivity , 
θ    temperature of surrounding media, 
σ   Stefans-Boltzmans constant , 
ε    emissivity of surface,  

bq   heat generation per unit area per time on the boundary surface, 
µ    Lamé constant, 

sh    heat transfer coefficient . 
 
Equations (1) to (16) constitute the mathematical formulation of the problem. 
 
3. SOLUTION OF PROBLEM 
 
3.1 Heat Transfer Analysis 
 
The finite difference method is applied [6] to solve the boundary value problem defined by (12) to (16). One can divide 
the ,  ,  r z t domain into small intervals ,  ,  r z t∆ ∆ ∆  such that      
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The temperature at the nodal point ( ,  j ) i r z∆ ∆ at the time .n t∆ is denoted by 

( . , . ) ,
nT i r j z Ti j∆ ∆ =  

 
Using the forward difference in time domain, time derivative of temperature is given as 

1
, ,
n nT TT i j i j

t t

+ −∂
=

∂ ∆  
 
Finite difference expressions for the partial derivatives with respective to the space variables are given as, 
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2 2( )
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z z

+ −∂ − +=
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Figure-2: A ( , )r z network in the cylindrical coordinate system 
 

For square grids r z∆ = ∆ , substituting these values in the two dimensional heat equation, one gets the recursive 
relation as, 

1 11 (1 4 ) (1 )  + (1 )  +, , 1, 1, , 1 , 12 2
n n n n n nT T T T T Ti j i j i j i j i j i ji i
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1, 2,....., 1, 2,..........., 0,1, 2,.....i j n= = =                                   (17) 
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At 0r = ,
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One get the scheme (17) for 0r = , 

1 (1 6 ) 4  +  +0, 0, 1, 0, 1 0, 1
n n n n nT T T T Tj j j j jλ λ λ λ+ = − + − +                                       (18) 

 
Initially at 0t =  

0
,T Ti j i=                                            (19)  

at lower boundary surface ( z h= − ) 

2i, 1 i, 1 i,
n n nT T zTj j jλ= − ∆− +                                         (20) 

at upper boundary surface ( z h= ) the boundary condition is not linear function in temperature, so this condition offers 
some difficulty during the solution of the equation. If the difference between the temperature T and θ is not large, it 
may be approximated to linear form. Thus       

( )4 4
b

Tk q T
z

σε θ∂
+ = −

∂
 

is approximated to 

( )34b
Tk q T
z

σεθ θ∂
+ = −

∂  
 
The finite difference approximation is    

32 2
, 1 , 1 ,

zq zn n nbT T Ti j i j i jk k
εσθ θ

∆ ∆  = − + − + −     
                                    (21) 

at the fixed circular boundary ( r a= ) 

, , 1
n nT Ti j i j= −                                                                         (22) 

 
Equation (19) gives the initial temperature at each grid point of the plate (at 0t = ).  
 
Equation (18) gives the temperature at 0r = , Equation (17) gives the temperature at each internal node and equations 
(20) to (22) gives the temperature at all the boundary points. 
 
The MATLAB Programming has been used to determine the temperature at all the nodal points for different time 
intervals.   
 
3.2 Convergence and Stability Analysis  
 
Theorem 1: According to Thomas J.W. [12], the finite difference scheme equation (17) and equation (18) are stable for 

10 62( )

t

r

αλ ∆
≤ = ≤

∆
  

and 
 
Theorem 2: Due to Lax [12], a consistent difference scheme for a well posed linear initial boundary value problem is 
convergent if and only if it is stable. 
 
The above theorems have been used for the stability and convergence of solution obtained.   
 
3.3 Thermal Stress Analysis 
 
The finite difference scheme for equation (5) and (6) is given by  

1 1(1 )  (1 ) 2 (1 )1, 1, , ,2 2
na Ti j i j i j t i ji i

ν+ Ψ + − Ψ − Ψ = ++ −
 

1, 2,....., 1, 2,...........i j= =                                          (23) 
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At 0r = ,

 
(6) becomes

 2 2lim 1 22 20
(0, )
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   ∂ Ψ ∂Ψ ∂ Ψ   + =
   → ∂∂ ∂   

 

 
One get the difference scheme (16) for 0r = , 

1, 0,4 (1 ) 0,2
j j na Tt jr

ν
Ψ −Ψ

= +
∆       

                                              (24) 

at the circular boundary ( r a= )                   

i 1, 1,j i jΨ = Ψ+ −                                                       (25) 

 
The set of simultaneous linear equations formed by (23) to (25) gives the displacement at all the nodal points. The 
coefficient matrix for these simultaneous linear equations is irreducible and diagonally dominant for at least one row 
hence it is invertible, one gets unique solution.  
 
The finite difference scheme for equation (8) and (9) is given by  

( ) 1, 1,2,rr i j i ji j i r

µσ −  = Ψ −Ψ + − ∆                                          
(26) 

and 

2 21, 1, ,2
,

i j i j i ji ri j

µσ
θθ

  −  = Ψ +Ψ − Ψ     + − ∆    
                                       (27)  

At 0r =                                          

( ) 1, 0,4 20,
j j

rr j r
σ µ

Ψ −Ψ
= −

∆
                                                                                 (28) 

 
The finite difference scheme (26) to (28) gives the thermal stresses at all the nodal points. 
 
4. NUMERICAL CALCULATIONS  
 
The plate is divided in equal grids of r z∆ = ∆ =0.025 meters. Fifty iterations has been performed for each time step of 

t∆ =1.11368 seconds. For convergence and stability we have used λ=0.15. 
 
The simultaneous equations formed by equation (23) to (25) are solved by using MATLAB programming up to 20 
iterations. 
 
4.1 Dimensions  
 
Radius of a thin circular plate 1 ,a m=  
Height of circular plate 2 0.1h m=  .  
 
4.2 Material properties 
 
The numerical calculation has been carried out for an Aluminum (Pure) circular disc with the material properties as, 
Thermal conductivity k =204.2 W/mK, 
Thermal diffusivity 284.18 / smα = , 
Poisson ratio 35.0=ν , 

Coefficient of linear thermal expansion 6 122.2 10ta
K

−= × , 

Lamé constant 67.26=µ , 

Heat generation per unit area per time on the boundary surface 4 2353.6379 /bq T W m sσε= =   
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Temperature of surrounding media 300Kθ =   
Stefans-Boltzman’s constant 8 2 45.67x10 /W m Kσ −= , 

Emissivity of surface 0.77ε = . 
Temperature, Displacement and Stresses in radial and axial direction at grid points equally spaced with 

r z∆ = ∆ =0.025 meters and at time t = 50x1.11368=50.6842 seconds.  
 

 
Figure-3: Temperature T  disrtibuion in radial direction  

  

 
Figure-4: Temperature T  disrtibuion in axial direction  

 

 
Figure-5: Displacement Ψ  in radial direction 
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Figure-6: Displacement Ψ  in axial direction  

 

 
Figure-7: Thermal stresses rrσ  in radial direction  

 

 
Figure-8: Thermal stresses rrσ  in axial direction 
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Figure-9: Thermal stresses θθσ  in radial direction 

 

 
Figure-10: Thermal stresses θθσ in axial direction 

 
5. CONCLUDING REMARKS  
 
In this manuscript a thin circular plate is considered which is free from traction. The thermoelastic behavior due to 
radiation under transient temperature conditions is discussed. As a special case mathematical model is constructed for 
thin aluminum plate and performed numerical calculations for temperature change, displacement and thermal stresses 
in radial direction. In plane state the thermal stresses along axial direction is zero.  
 
For the solution non-linear boundary value problem in thermoelsaticity, the finite difference method has been used. For 
better accuracy of results the more number of iterations are performed. 
 
From figure 3 and 4, the temperature variation can be seen along radial and axial direction of circular plate. The 
increase in the temperature can be observed from centre 0r = to the outer circular boundary 1,r = whereas 
dissipation due to convection takes place at  0.05.z = −  
 
From figure 5 and 6, it appears that the radial displacement function ru  increases from upper surface to lower surface 
in axial direction where as in radial direction it increases from centre 0r = to outer circular boundary 1r = . 
 
From figure 7 and 8, it can be seen that the radial stress function σrr develops tensile stresses around the center 

0r = and it decreases towards the outer circular boundary 1r = . On the traction free surface 1r =  the radial stress 
function vanishes. In the axial direction, σrr increases from upper surface 0.05z = to lower surface 0.05.z = − .   
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From figure 9 and 10, the stress function σθθ decreases from lower surface to upper surface where as it develops 
tensile stresses at outer circular boundary 1.r = .  
 
One observed that, the process of heat transfer due to radiation takes place from upper surface to lower surface of 
circular plate. The displacement and stress components occur on the radiated surface. Radial stresses develop tensile 
stresses at the centre where as angular stress develops tensile stresses at outer circular boundary. From figures of radial 
and axial displacements, it may be concluded that due to radiation applied on upper surface under transient temperature 
conditions, the circular plate expands in the axial direction.  
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