International Journal of Mathematical Archive-2(7), July - 2011, Page: 1105-1113 Available online through www.ijma.info ISSN 2229 - 5046

Curvature Tensors of Relativistic Significance in a LP-Sasakian Manifold

Nutan Kumari*

Department of Mathematics, Faculty of Science, Banaras Hindu University, Varanasi-221005, INDIA

E-mail: nutanbhu@gmail.com

(Received on: 29-06-11; Accepted on: 10-07-11)

ABSTRACT

In this paper after deriving certain important identities for curvature and Ricci tensors in LP-Sasakian manifold V_n , the four curvature tensors ϕ_1 , ϕ_2 , ϕ_3 and ϕ_4 of relativistic significance defined by Pokhariyal in 1970, 1982 have been considered and certain useful results have been obtained.

Keywords: C^{∞} – manifold, LP-Sasakian manifold, ϕ_1 , ϕ_2 , ϕ_3 and ϕ_4 –curvature tensors.

Mathematics subject classification: [53].

1. INTRODUCTION

We consider a n-dimensional C^{∞} -manifold V_n . Let there exist in V_n , a tensor F of the type (1,1), a vector field U, a 1-form u and a Riemannian metric g satisfying

$$\bar{\bar{X}} = X + u(X)U, \tag{1.1}$$

$$u(\bar{X}) = 0, \tag{1.2}$$

$$g(\bar{X}, \bar{Y}) = g(X, Y) + u(X)u(Y), \tag{1.3}$$

$$g(X,U) = u(X), \tag{1.4}$$

$$(D_X F)(Y) = \{g(X,Y) + u(X)u(Y)\}U + \{X + u(X)U\}u(Y),\tag{1.5}$$

 $D_X U = \bar{X} \tag{1.6}$

where

$$F(X) \stackrel{\text{def}}{=} \bar{X}$$

for arbitrary vector fields X, Y. Then V_n satisfying (1.1), (1.2), (1.3), (1.4), (1.5) and (1.6) is called a Lorentzian para – Sasakian manifold [2] (in short LP-Sasakian manifold) while the set $\{F, U, u, g\}$ satisfying (1.1) to (1.6) is called a LP-Sasakian structure. It may be noted that D is the Riemannian connexion with respect to the Riemannian metric g. In a LP-Sasakian manifold, it is easy to calculate that

$$(U) = -1, (1.7a)$$

$$\overline{U} = 0 \tag{1.7b}$$

and

$$rank(F) = n - 1. (1.7c)$$

We define in V_n , a fundamental 2-form 'F as

$$F(X,Y) \stackrel{\text{def}}{=} g(\bar{X},Y) = g(X,\bar{Y}). \tag{1.8}$$

Then it is easy to calculate that

$${}^{\prime}F(X,Y) = {}^{\prime}F(Y,X) \tag{1.9}$$

and

$$F(\bar{X}, \bar{Y}) = F(X, Y). \tag{1.10}$$

It may be noted that (1.9) and (1.10) imply that 'F is symmetric and hybrid.

We also have

$$F(X,Y) = (D_X u)(Y).$$
 (1.11)

We know that [1]

$$K(X,Y,Z,T) = g(Y,Z)g(X,T) - g(X,Z)g(Y,T)$$
(1.12)

and

$$Ric(Y,Z) = (n-1)g(Y,Z).$$
 (1.13)

Replacing T by U in (1.12) and using (1.4), we get

$$'K(X,Y,Z,U) = g(Y,Z)u(X) - g(X,Z)u(Y).$$
 (1.14)

Replacing X by U in (1.14) and using (1.4) and (1.7a), we get

$$'K(U,Y,Z,U) = -g(Y,Z) - u(Y)u(Z).$$
 (1.15)

Replacing X by U in (1.12) and using (1.4), we get

$$'K(U,Y,Z,T) = g(Y,Z)u(T) - u(Z)g(Y,T).$$
 (1.16)

Putting Y equal to U in (1.12) and using (1.4), we get

$${}^{\prime}K(X,U,Z,T) = u(Z)g(X,T) - u(T)g(X,Z).$$
 (1.17)

Replacing Y by T and T by U in (1.12) and using (1.14), we get

$$'K(X,T,Z,U) = g(T,Z)u(X) - g(X,Z)u(T).$$
 (1.18)

Replacing Y by Z, Z by T and T by U in (1.12), we get

$$K(X,Z,T,U) = g(Z,T)u(X) - g(X,T)u(Z).$$
 (1.19)

(1.12) implies

$$K(X,Y,Z) = g(Y,Z)X - g(X,Z)Y.$$
 (1.20)

Replacing Z by U in (1.13) and using (1.4), we get

$$Ric(Y, U) = (n-1)u(Y).$$
 (1.21)

Replacing X by U in (1.20) and using (1.4), we get

$$K(U,Y,Z) = g(Y,Z)U - u(Z)Y.$$
 (1.22)

Replacing Z by U in (1.20) and using (1.4), we get

$$K(X,Y,U) = u(Y)X - u(X)Y.$$
 (1.23)

Barring Y and Z in (1.13) and using (1.3), we get

$$Ric(\bar{Y}, \bar{Z}) = (n-1)[g(Y, Z) + u(Y)u(Z)].$$
 (1.24a)

Using (1.13) in (1.24a), we get

$$Ric(\bar{Y}, \bar{Z}) = Ric(Y, Z) + (n-1)u(Y)u(Z). \tag{1.24b}$$

Replacing Z by \bar{Z} in (1.24) and using (1.1) and (1.2), we get

$$Ric(\bar{Y}, Z + u(Z)U) = (n-1)\{g(Y,\bar{Z})\}\$$

which is equivalent to

$$Ric(\bar{Y}, Z) + u(Z)Ric(\bar{Y}, U) = (n-1)g(Y, \bar{Z}). \tag{1.25}$$

Barring Y in (1.21) and using (1.2), we get

$$Ric(\bar{Y}, U) = 0. \tag{1.26}$$

Barring Z in (1.13), we get

$$Ric(Y,\bar{Z}) = (n-1)g(Y,\bar{Z}). \tag{1.27}$$

From (1.25), (1.26) and (1.27), we get

$$Ric(\bar{Y}, Z) = Ric(Y, \bar{Z}).$$
 (1.28)

Let us consider in V_n the tensors ϕ_1 , ϕ_2 , ϕ_3 and ϕ_4 of the type (0, 4) [3] [4] defined as follow:

$$\phi_1(X, Y, Z, T) \stackrel{\text{def}}{=} {}'K(X, Y, Z, T) + \frac{1}{n-1} [g(X, T)Ric(Y, Z) - g(Y, T)Ric(X, Z)], \tag{1.29}$$

$$\phi_{1}(X,Y,Z,T) \stackrel{\text{def}}{=} {}'K(X,Y,Z,T) + \frac{1}{n-1} [g(X,T)Ric(Y,Z) - g(Y,T)Ric(X,Z)],$$

$$\phi_{2}(X,Y,Z,T) \stackrel{\text{def}}{=} {}'K(X,Y,Z,T) + \frac{1}{n-1} [g(X,Z)Ric(Y,T) - g(Y,Z)Ric(X,T)],$$
(1.29)

$$\phi_3(X, Y, Z, T) \stackrel{\text{def}}{=} {}'K(X, Y, Z, T) + \frac{1}{n-1} [g(Y, Z)Ric(X, T) - g(Y, T)Ric(X, Z)], \tag{1.31}$$

$$\phi_4(X, Y, Z, T) \stackrel{\text{def}}{=} {}'K(X, Y, Z, T) + \frac{1}{n-1} [g(X, Z)Ric(Y, T) - g(X, Y)Ric(Z, T)]. \tag{1.32}$$

It is obvious that for an empty gravitational field characterized by Ric(X,Y) = 0, the above tensors of the type (0,4) are identical.

2. ϕ_1 – CURVATURE TENSOR

We observe that ϕ_1 is skew-symmetric in X and Y. Therefore breaking ϕ_1 into symmetric and skew-symmetric parts with respect to Z and T, we have

$$\alpha_1(X, Y, Z, T) \stackrel{\text{def}}{=} \frac{1}{2} [\phi_1(X, Y, Z, T) + \phi_1(X, Y, T, Z)]$$
 (2.1)

$$=\frac{1}{2(n-1)}[g(X,T)Ric(Y,Z)-g(Y,T)Ric(X,Z)+g(X,Z)Ric(Y,T)-g(Y,Z)Ric(X,T)]$$

and

$$\beta_1(X, Y, Z, T) \stackrel{\text{def}}{=} \frac{1}{2} [\phi_1(X, Y, Z, T) - \phi_1(X, Y, T, Z)] \tag{2.2}$$

$$= 'K(X,Y,Z,T) + \frac{1}{2(n-1)}[g(X,T)Ric(Y,Z) - g(Y,T)Ric(X,Z) - g(X,Z)Ric(Y,T) + g(Y,Z)Ric(X,T)]$$

where α_1 and β_1 are the symmetric and skew-symmetric parts of ϕ_1

Theorem (2.1): In V_n , we have

$$\phi_1(X, Y, Z, U) = 2(u(X)g(Y, Z) - u(Y)g(X, Z)) = \beta_1(X, Y, Z, U), \tag{2.3a}$$

$$\phi_1(U, Y, Z, T) = 2(u(T)g(Y, Z) - u(Z)g(Y, T)) = \beta_1(U, Y, Z, T), \tag{2.3b}$$

$$\phi_1(U, Y, Z, U) = -2g(\bar{Y}, \bar{Z}) = \beta_1(U, Y, Z, U) \tag{2.3c}$$

and

$$\alpha_1(X, Y, Z, U) = 0 = \beta_1(U, Y, Z, T).$$
 (2.3d)

Proof: Replacing T by U in (1.29) and using (1.13), (1.16), we get

$$\phi_1(X, Y, Z, U) = 2(u(X)g(Y, Z) - u(Y)g(X, Z)). \tag{2.4}$$

Replacing T by U in (2.2) and using (1.4), (1.13) and (1.14), we get

$$\beta_1(X, Y, Z, U) = 2(u(X)g(Y, Z) - u(Y)g(X, Z)). \tag{2.5}$$

From (2.4) and (2.5), we get (2.3a).

Replacing X by U in (1.29) and using (1.4), (1.13) and (1.14), we get

$$\phi_1(U, Y, Z, T) = 2(g(Y, Z)u(T) - u(Z)g(Y, T)). \tag{2.6}$$

Replacing X by U in (2.2) and using (1.4), (1.13) and (1.16), we get

$$\beta_1(U, Y, Z, T) = 2(u(T)g(Y, Z) - u(Z)g(Y, T)). \tag{2.7}$$

From (2.6) and (2.7), we get (2.3b).

Replacing X by U in (2.3a) and using (1.3) and (1.7a), we get (2.3c).

Replacing *T* by *U* in (2.1) and using (1.4), (1.13) and (1.21), we get
$$\alpha_1(X, Y, Z, U) = 0. \tag{2.8}$$

Replacing *X* by *U* in (2.1) and using (1.4), (1.14) and (1.21), we get
$$\alpha_1(U, Y, Z, T) = 0. \tag{2.9}$$

From (2.8) and (2.9), we get (2.3d).

Theorem (2.2): In V_n , we have

$$\phi_1(X, U, Z, T) = 2(u(Z)g(X, T) - u(T)g(X, Z)), \tag{2.10a}$$

$$u(Z) \phi_1(U, Y, T, U) - u(T) \phi_1(U, Y, Z, U) = 2(g(Y, Z)u(T) - g(Y, T)u(Z)), \tag{2.10b}$$

$$\phi_1(X, U, Z, T) + \phi_1(X, T, Z, U) + \phi_1(X, Z, T, U) = 4(g(Z, T)u(X) - g(Z, X)u(T)). \tag{2.10c}$$

Proof: Replacing Y by U in (1.29) and using (1.4), we get

$$\phi_1(X, U, Z, T) = {}'K(X, U, Z, T) + \frac{1}{n-1} [g(X, T)Ric(U, Z) - u(T)Ric(X, Z)]. \tag{2.11}$$

Using (1.17), (1.18) and (1.21) in above, we get (2.10a).

Replacing T by U in (2.3b) and using (1.4) and (1.7a), we get

$$\phi_1(U, Y, Z, U) = -2(g(Y, Z) + u(Y)u(Z)). \tag{2.12}$$

Interchanging T and Z in (2.3b), we get

$$\phi_1(U,Y,T,Z) = 2(u(Z)g(Y,T) - u(T)g(Y,Z)).$$

Replacing Z by U in above and using (1.4) and (1.7a), we get

$$\phi_1(U, Y, T, U) = -2(g(Y, T) + u(T)u(Y)). \tag{2.13}$$

Multiply (2.13) by u(Z) and (2.12) by u(T) and then subtracting, we get (2.10b).

Replacing Y by T in (2.3a), we get

$$\phi_1(X, T, Z, U) = 2(u(X)g(T, Z) - u(T)g(X, Z)). \tag{2.14}$$

Replacing Y by Z and Z by T in (2.3a), we get

$$\phi_1(X, Z, T, U) = 2(u(X)g(Z, T) - u(Z)g(X, T)). \tag{2.15}$$

Adding (2.10a), (2.14) and (2.15), we get (2.10c).

Corollary (2.1): In V_n , we have

$$\phi_1(\bar{X}, \bar{Y}, Z, U) = 0 = \phi_1(U, Y, \bar{Z}, \bar{T}),$$
(2.16a)

$$\phi_1(U, \bar{Y}, Z, U) - \phi_1(U, Y, \bar{Z}, U) = 0, \tag{2.16b}$$

$$\phi_1(U, Y, \bar{Z}, U)u(T) + \phi_1(U, Y, \bar{Z}, T) = 0. \tag{2.16c}$$

Proof: Barring X and Y in (2.3a) and using (1.2), we get

$$\phi_1(\bar{X}, \bar{Y}, Z, U) = 0. \tag{2.17}$$

Barring Z and T in (2.3b) and using (1.2), we get

$$\phi_1(\bar{U}, Y, \bar{Z}, \bar{T}) = 0. \tag{2.18}$$

From (2.17) and (2.18), we get (2.16a).

Barring Y in (2.3c) and using (1.1), (1.2), (1.4) and (1.8), we get

$$\phi_1(U, \bar{Y}, Z, U) = -2g'F(Y, Z). \tag{2.19}$$

Barring Z in (2.3c) and using (1.1), (1.2), (1.4) and (1.8), we get

$$\phi_1(U, Y, \bar{Z}, U) = -2 F(Y, Z). \tag{2.20}$$

Subtracting (2.20) from (2.19), we get (2.16b).

Barring Z in (2.3b) and using (1.2) and (1.8), we get

$$\phi_1(U, Y, \bar{Z}, T) = 2u(T)'F(Y, Z). \tag{2.21}$$

Multiplying (2.20) by u(T) and then adding (2.21), we get (2.16c).

Theorem (2.3): In V_n , we have

$$\alpha_1(U, Y, Z, U) = 0,$$
 (2.22a)

$$\alpha_1(U, Y, Z, T) = 0,$$
 (2.22b)

$$\beta_1(U, Y, \bar{Z}, \bar{T}) = 0.$$
 (2.22c)

Proof: Replacing X and T both by U in (2.1), we get

$$\alpha_1(U,Y,Z,U) = \frac{1}{2(n-1)} [g(U,U)Ric(Y,Z) - g(Y,U)Ric(U,Z) + g(U,Z)Ric(Y,U) - g(Y,Z)R(U,U)].$$

Using (1.4), (1.7a), (1.13) and (1.21) in above, we get (2.22a).

$$\begin{aligned} \text{Replacing X by U in (1.29), we get} \\ \alpha_1(U,Y,Z,T) &= \frac{1}{2(n-1)} \big[u(T)Ric(Y,Z) - g(Y,T)Ric(U,Z) + g(U,Z)Ric(Y,T) - g(Y,Z)Ric(U,T) \big]. \end{aligned}$$

Using (1.4), (1.13) and (1.21) in above, we get (2.22b).

Barring Z and T in (2.7) and using (1.2), we get (2.22c).

Corollary (2.2): In V_n , we have

$$2\alpha_1(X,Y,Z,U) + \phi_1(X,Y,Z,U) = 2(u(X)g(Y,Z) - u(Y)g(X,Z)), \tag{2.23a}$$

$$2\alpha_1(\bar{X}, Y, Z, U) + \phi_1(\bar{X}, Y, Z, U) = -2u(Y)g(X, Z), \tag{2.23b}$$

$$2\alpha_1(X, \bar{Y}, Z, U) + \phi_1(X, \bar{Y}, Z, U) = 2u(X)g(Y, Z). \tag{2.23c}$$

Proof: From (2.3a) and (2.3d), we get (2.23a).

Barring X in (2.23a) and using (1.2), we get (2.23b).

Further barring Y in (2.23a) and using (1.2), we get (2.23c).

3. ϕ_{2} -CURVATURE TENSOR

We observe that $\phi_2(X,Y,Z,T)$ is skew-symmetric in (X,Y). Therefore breaking ϕ_2 into symmetric and skew-symmetric parts with respect to Z and T, we get

$$\alpha_2(X, Y, Z, T) \stackrel{\text{def}}{=} \frac{1}{2} [\phi_2(X, Y, Z, T) + \phi_2(X, Y, T, Z)] \tag{3.1}$$

$$=\frac{1}{2(n-1)}\left[g(X,Z)Ric(Y,T)-g(Y,Z)Ric(X,T)+g(X,T)Ric(Y,Z)-g(Y,T)Ric(X,Z)\right]$$

$$\beta_2(X, Y, Z, T) \stackrel{\text{def}}{=} \frac{1}{2} [\phi_2(X, Y, Z, T) - \phi_2(X, Y, T, Z)] \tag{3.2}$$

 $= {^\prime}K(X,Y,Z,T) + \frac{1}{n-1}[g(X,Z)Ric(Y,T) - g(Y,Z)Ric(X,T) - g(X,T)Ric(Y,Z) + g(Y,T)Ric(X,Z)]$ where α_2 and β_2 are the symmetric and the skew-symmetric parts of ϕ_2 .

Theorem (3.1): In V_n , we have

$$\phi_2(X, Y, Z, U) = 0, (3.3a)$$

$$\phi_2(X, U, Z, T) + \phi_2(X, T, Z, U) + \phi_2(X, Z, T, U) = 0.$$
(3.3b)

Proof: Replacing T by U in (1.30), we get

$$\phi_2(X, Y, Z, U) = {}'K(X, Y, Z, U) + \frac{1}{n-1} [g(X, Z)Ric(Y, U) - g(Y, Z)Ric(X, U)].$$

Using equations (1.14) and (1.21) in above, we get (3.3a).

Replacing Y by U in (1.30), we get

$$\phi_2(X, U, Z, T) = {}'K(X, U, Z, T) + \frac{1}{n-1} [g(X, Z)Ric(U, T) - g(U, Z)Ric(X, T)].$$

Using (1.4), (1.17) and (1.21) in above, we get

$$\phi_2(X, U, Z, T) = 0. (3.4)$$

Replacing Y by T and T by U in (1.30), we get

$$\phi_2(X, T, Z, U) = {'}K(X, T, Z, U) + \frac{1}{n-1} [g(X, Z)Ric(T, U) - g(T, Z)Ric(X, U)].$$

Using (1.18) and (1.21) in above, we get

$$\phi_2(X, T, Z, U) = 0. (3.5)$$

Replacing Y by Z, Z by T and T by U in (1.30), we get

$$\phi_2(X, Z, T, U) = {}'K(X, Z, T, U) + \frac{1}{n-1} [g(X, T)Ric(Z, U) - g(Z, T)Ric(X, U)].$$

Using (1.19) and (1.21) in above, we get

$$\phi_2(X, Z, T, U) = 0. (3.6)$$

Adding (3.4), (3.5) and (3.6), we get (3.3b).

Theorem (3.2): In V_n , we have

$$\alpha_2(X, Y, Z, U) = 0, \tag{3.7a}$$

 $\alpha_2(X, Y, Z, U) + \phi_2(X, Y, Z, U) = 0$ (3.7b)

and

$$\beta_2(X, Y, Z, U) = u(Y)g(X, Z) - u(X)g(Y, Z).$$
 (3.7c)

Proof: Replacing
$$T$$
 by U in (3.1), we get
$$\alpha_2(X,Y,Z,U) = \frac{1}{2(n-1)} [g(X,Z)Ric(Y,U) - g(Y,Z)Ric(X,U) + g(X,U)Ric(Y,Z) - g(Y,U)Ric(X,Z)].$$

Using (1.4), (1.13) and (1.21) in above, we get (3.7a).

From (3.3a) and (3.7a), we get (3.7b).

Replacing T by U in (3.2), we get

$$\beta_{2}(X,Y,Z,U) = {}^{\prime}K(X,Y,Z,U) + \frac{1}{n-1}[g(X,Z)Ric(Y,U) - g(Y,Z)Ric(X,U) - g(X,U)Ric(Y,Z) + g(Y,U)Ric(X,Z)].$$

Using (1.4), (1.13), (1.14) and (1.21) in above, we get (3.7c).

Corollary (3.1): In V_n , we have

$$\beta_2(\bar{X}, Y, Z, U) = u(Y)g(X, Z), \tag{3.8a}$$

$$\beta_2(X, \bar{Y}, Z, U) = -u(X)g(Y, Z), \tag{3.8b}$$

$$\beta_2(\bar{X}, \bar{Y}, Z, U) = 0, \tag{3.8c}$$

$$\beta_2(\bar{X}, Y, \bar{Z}, U) = u(Y)'F(X, Z),$$
 (3.8d)

$$\beta_2(X, \bar{Y}, \bar{Z}, U) = -u(X)' F(Y, Z)$$
 (3.8e)

and

$$\beta_2(\bar{X}, Y, Z, U) + \beta_2(X, \bar{Y}, Z, U) = -K(X, Y, Z, U). \tag{3.8f}$$

Proof: Replacing X by \overline{X} in (3.7c) and using (1.2), we get (3.8a).

Replacing Y by \overline{Y} in (3.8a) and using (1.2), we get (3.8b).

Barring X in (3.8b) (or Y in (3.8a)) and using (1.7b), we get (3.8c).

Barring Z in (3.8a) and using (1.8), we get (3.8d).

Barring Z in (3.8b) and using (1.8), we get (3.8e).

Adding (3.8a) and (3.8b) and using (1.14), we get (3.8f).

4. ϕ_{3} CURVATURE TENSOR

Breaking ϕ_3 into the symmetric and skew-symmetric parts with respect to X and Y, we get

$$\alpha_3(X, Y, Z, T) \stackrel{\text{def}}{=} \frac{1}{2} [\phi_3(X, Y, Z, T) + \phi_3(Y, X, Z, T)] \tag{4.1}$$

$$=\frac{1}{2(n-1)}[g(X,Z)Ric(Y,T)-g(Y,T)Ric(X,Z)+g(Y,Z)Ric(X,T)-g(X,T)Ric(Y,Z)]$$

$$\beta_3(X, Y, Z, T) \stackrel{\text{def}}{=} \frac{1}{2} [\phi_3(X, Y, Z, T) - \phi_3(Y, X, Z, T)] \tag{4.2}$$

$$= {}^{\prime}\!K(X,Y,Z,T) + \frac{1}{2(n-1)}[g(Y,Z)Ric(X,T) - g(Y,T)Ric(X,Z) - g(X,Z)Ric(Y,T) + g(X,T)Ric(Y,Z)]$$

where α_3 and β_3 are the symmetric and skew-symmetric parts of ϕ_3 with respect to X,Y.

Theorem (4.1): In V_n , we have

$$\phi_3(X, Y, Z, T) = \phi_1(X, Y, Z, T). \tag{4.3}$$

Proof: Using (1.12), (1.13) in (1.29), we get

$$\phi_1(X, Y, Z, T) = 2(g(Y, Z)g(X, T) - g(X, Z)g(Y, T)). \tag{4.4}$$

Using (1.12), (1.13) in (1.31), we get

$$\phi_3(X, Y, Z, T) = 2(g(Y, Z)g(X, T) - g(X, Z)g(Y, T)). \tag{4.5}$$

From (4.4) and (4.5), we get (4.3).

Remark (4.1): In view of (4.3) the study of curvature tensors ϕ_1 and ϕ_3 are identical in V_n .

5. ϕ_{4-} CURVATURE TENSOR

Breaking ϕ_4 into symmetric and skew-symmetric parts with respect to X and Y, we get $\alpha_4(X,Y,Z,T) \stackrel{\text{def}}{=} [\phi_4(X,Y,Z,T) + \phi_4(Y,X,Z,T)]$

$$= \frac{1}{2(n-1)} [g(X,Z)Ric(Y,T) + g(Y,Z)Ric(X,T) - 2g(X,Y)Ric(Z,T)]$$

and

$$\beta_4(X, Y, Z, T) \stackrel{\text{def}}{=} \frac{1}{2} [\phi_4(X, Y, Z, T) - \phi_4(Y, X, Z, T)]. \tag{5.2}$$

$$= {}^{\prime}K(X,Y,Z,T) + \frac{1}{2(n-1)}[g(X,Z)Ric(Y,T) - g(Y,Z)Ric(X,T)].$$

Theorem (5.1): In V_n , we have

$$\phi_4(X, Y, Z, U) = u(X)g(Y, Z) - g(X, Y)u(Z), \tag{5.3a}$$

© 2011, IJMA. All Rights Reserved

1111

(5.1)

$$\phi_4(U, Y, Z, T) = g(Y, Z)u(T) - u(Y)g(Z, T), \tag{5.3b}$$

$$\phi_4(U, Y, Z, U) = -g(Y, Z) - u(Y)u(Z). \tag{5.3c}$$

Proof: Replacing T by U in (1.32), we get

$$\phi_4(X, Y, Z, U) = {}'K(X, Y, Z, U) + \frac{1}{n-1} [g(X, Z)Ric(Y, U) - g(X, Y)Ric(Z, U)].$$

Using (1.14) and (1.21) in above, we get (5.3a).

Replacing X by U in (5.3a) and using (1.4) and (1.7a), we get (5.3c).

Replacing X by U in (1.32), we get

$$\phi_4(U, Y, Z, T) = {'}K(U, Y, Z, T) + \frac{1}{n-1} [g(U, Z)Ric(Y, T) - g(U, Y)Ric(Z, T)].$$

Using (1.3), (1.4) and (1.16) in above, we get (5.3b).

Theorem (5.2): In V_n , we have

$$\phi_4(X, U, Z, T) = u(Z)g(X, T) - u(X)g(Z, T), \tag{5.4a}$$

$$u(Z) \phi_4(U, Y, T, U) - u(T) \phi_4(U, Y, Z, U) = u(T)g(Y, Z) - u(Z)g(Y, T), \tag{5.4b}$$

$$\phi_4(X, U, Z, T) + \phi_4(X, T, Z, U) + \phi_4(X, Z, T, U) = u(X)g(Z, T) - u(T)g(X, Z). \tag{5.4c}$$

Proof: Replacing Y by U in (1.32), we get

$$\phi_4(X, U, Z, T) = {}'K(X, U, Z, T) + \frac{1}{n-1} [g(X, Z)Ric(U, T) - g(X, U)Ric(Z, T)].$$

Using (1.4), (1.17) and (1.21) in above, we get (5.4a).

Replacing Z by T in (5.3c), we get

$$\phi_4(U, Y, T, U) = -g(Y, T) - u(Y)u(T).$$

Multiplying by u(Z) in above, we get

$$u(Z) \phi_4(U, Y, T, U) = -u(Z) (g(Y, T) + u(Y)u(T)). \tag{5.5}$$

Multiplying by u(T) in (5.3c), we get

$$u(T) \phi_4(U, Y, Z, U) = -u(T) (g(Y, Z) + u(Y)u(Z)). \tag{5.6}$$

Subtracting (5.6) from (5.5), we get (5.4b).

Replacing Y by T and T by U in (1.32), we get

$$\phi_4(X, T, Z, U) = {}'K(X, T, Z, U) + \frac{1}{n-1} [g(X, Z)Ric(T, U) - g(X, T)Ric(Z, U)].$$

Using (1.18) and (1.21) in above, we get

$$\phi_4(X, T, Z, U) = u(X)g(T, Z) - u(Z)g(X, T). \tag{5.7}$$

Replacing Y by Z, Z by T and T by U in (1.32), we get

$$\phi_4(X, Z, T, U) = {}'K(X, Z, T, U) + \frac{1}{n-1} [g(X, T)Ric(Z, U) - g(X, Z)Ric(T, U)].$$

Using (1.19) and (1.21) in above, we get

$$\phi_4(X, Z, T, U) = g(Z, T)u(X) - g(X, Z)u(T). \tag{5.8}$$

Adding (5.4a), (5.7) in above, we get (5.4c).

Theorem (5.3): In V_n , we have

$$\alpha_4(U, Y, Z, U) = -\frac{1}{2} [g(Y, Z) + u(Y)u(Z)], \tag{5.9a}$$

$$\alpha_4(X, Y, Z, U) = \frac{1}{2} [g(X, Z)u(Y) - 2g(X, Y)u(Z) + g(Y, Z)u(X)]$$
(5.9b)

and

$$\alpha_4(U, Y, Z, T) = \frac{1}{2} [u(Z)g(Y, T) - 2u(Y)g(Z, T) + g(Y, Z)u(T)]. \tag{5.9c}$$

Proof: Replacing X and T both by U in (5.1) and using (1.4), (1.7a) and (1.21), we get (5.9a).

Replacing T by U in (5.1) and using (1.21), we get (5.9b).

Further replacing X by U in (5.1) and using (1.4) and (1.21), we get (5.9c).

Theorem (5.4): In V_n , we have

$$\beta_4(X, Y, Z, U) = \frac{1}{2} [g(Y, Z)u(X) - u(Y)g(X, Z)], \tag{5.10a}$$

$$\beta_4(U, Y, Z, T) = \frac{1}{2} [g(Y, Z)u(T) - u(Z)g(Y, T)], \tag{5.10b}$$

$$\beta_4(U, Y, Z, U) = -\frac{1}{2} [g(Y, Z) + u(Y)u(Z)]. \tag{5.10c}$$

Proof: Replacing T by U in (5.2) and using (1.14) and (1.21), we get (5.10a).

Replacing X by U in (5.2) and using (1.4), (1.13), (1.16) and (1.21), we get (5.10b).

Replacing X by U in (5.10a) and using (1.7a), we get (5.10c).

REFERENCES

- [1] Kumari, Nutan, Some properties of a quarter-symmetric non-metric connexion in a LP-Sasakian manifold (accepted in International Journal of Mathematical Archive, July 2011).
- [2] Matsumoto, K., On Lorentzian para-contact manifolds, Bull. Yamagata University Nat. Sci., 12, (1989), 151-156.
- [3] Pokhariyal, G.P. and Mishra, R.S., The curvature tensor and their relativistic significance. Yokohoma Math. J. 18 (1970). 105-108.
- [4] Pokhariyal, G.P., Study of a new curvature tensor in a Sasakian manifold. Tensor N.S., 36 (1982), 222-225.
