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ABSTRACT 

In the present paper, we introduce and study a new subclass of analytic bi-univalent functions defined in the open unit 
disc using convolution. We determine estimates of the general Taylor-Maclaurin coefficients of the functions in this 
class subject to certain gap series as well as providing bounds for coefficients |a2| and |a3|. For this purpose, we use 
the Faber polynomial approach. Also connections to earlier well-known results are briefly indicated. 
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1. INTRODUCTION AND DEFINITIONS 
 
Let A denote the class of functions of the form: 

                        ∑+=
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n
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which are analytic in the open unit disc U = { }z : | | 1z C and z∈ <  and satisfy the normalization conditions 

1)0()0( =′= ff . 
 
Let S be the class of A consisting of the functions of the form (1.1) which are also univalent in U. It is well known that 
every function f  ∈  S has an inverse ,1−f  which is defined by 

                    )())((1 Uzzzff ∈=−  and wwff =− ))(( 1  for |w| < 1/4, according to Koebe  one quarter theorem[14]. 
 
A function Azf ∈)(  is said to be bi-univalent in U if both )(zf  and  )(1 zf −  are univalent in U. Let Ʃ  denote the 
class of all bi-univalent functions in U given by the Taylor-Maclaurin series expansion (1.1). 
 
In 1967, Lewin [12] first investigated the bi-univalent function classΣ  and showed that |a2| < 1.51. Subsequently, 

Brannan and clunie [3] conjectured that |a2| ≤ 2 .However Netanyahu [4] showed that 
3
4||max 2 =

Σ
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fe
. Also, Ali et.al 

[15] remarked that finding the bounds for |an| when n ≥ 4 is an open problem. This is because the bi-univalency 
condition imposed on the functions Azf ∈)(  makes the behaviour of their coefficients unpredictable. 
 
Recently, several researchers such as ([1, 2, 9, 16, 20]) obtained the coefficients |a2| and |a3| of bi-univalent functions 
for the various subclasses of the function class Ʃ.  
 
S.G.Hamidi and J.M.Jahangiri [10] used Faber polynomial coefficient for finding the estimates on the coefficient 
bounds for the classes of bi-univalent functions. These bounds prove to be better than those estimates provided by 
Srivastava et al [9] and Frasin and Aouf [2]. Motivated by their work, we have used Faber polynomial approach to 
obtain the coefficient estimates of our new subclass of bi-univalent functions. 
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The object of the present paper is to introduce a new subclass of the function class Σ  and use the Faber polynomial 
approach to determine estimates for the general coefficient bounds. We also obtain estimates for the first two 
coefficients |a2| and |a3| of these functions.  
 

Definition  1.1: Given a real α (0 ≤  α  < 1), 1≥λ  and functions  ϕ(z) = ∑+
∞

=2n

n
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in U , such that  0≥nφ , 0≥nψ  , we say that Σ∈)(zf  is in ),;,( λαψφΣH   if  

                          αψλφλ
>
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z
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Remark 1.1:  The class ),;,( λαψφΣH , for suitable choices of φ  and ψ lead to the following  known classes  of 
analytic bi-univalent functions studied earlier in the literature. 

i) For φ (z) = h(z)= ∑+
∞
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=ψ  we obtain the class ),( αλ hQ defined and studied by 

R.M.El-Ashwah [16]. 
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nznzz δψ we obtain the bi-univalent function class  Q(δ,λ,α)  studied by 

Saurabh Porwal, M.Darus[17].  

iii) If we choose φ (z) =
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subclass Q(n,δ,α,λ) studied by A.G.Alamoush and M.Darus[1]. 

iv) For φ (z) = 
z

z
−1

 and ψ (z) = 2)1( z
z
−

we obtain the bi-univalent function class Qλ(α) introduced by Ding et al 

[18].  
 
The estimates for the coefficents |a2| and |a3| for this class of functions were obtained by B.A.Frasin and M.K.Aouf [2] 
employing the techniques used earlier by Srivastava et al [9] and also by Jay.M.Jahangiri and Samaneh G.Hamidi[10] 
using Faber Polynomial expansions. 
 
2. COEFFICIENT BOUNDS FOR THE CLASS ),;,( λαψφΣH    
 
Using the Faber Polynomial expansion of functions Azf ∈)(  of the form (1.1), the coefficients of its inverse map 

1−= fg  may be expressed as [5], 
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such that Vi with 7 ≤ i ≤ n is a homogenous polynomial in the variables a2,a3,...an[6]. 
 
In particular, the first three terms of n

nK −
−1  are [see, 5] 
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In general, for any p ∈  N, an expansion of p

nK is as, [5, page183] 

,...),(

!)!(
!...

!3)!3(
!

2
)1(

32

32

aaDD

where

D
nnp

pD
p

pDpppaK

p
n

p
n

n
nnnn

p
n

=

−
++

−
+

−
+=

 

and by [13] or [8], 
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while a1=1, and the sum is taken over all non negative integers μ1,..., μn satisfying 
μ1+ μ2+...+ μn  = m, 
μ1+2μ2+...+ nμn = n 
 
It is clear that  

n
n

n
n aaaaD 121 ),...,( =  [7]. 

 
Theorem 2.1:  For (0 ≤ α < 1) and  λ ≥ 1  let ),;,()( λαψφΣ∈Hzf ) and ),;,()( λαψφΣ∈Hzg  

 If ak = 0; 2 ≤ k ≤ n-1, then  
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Proof: For the function ),,,()( λαψφΣ∈Hzf of the form (1.1) we have 
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and for its inverse map, g = f-1, we have 
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On the other hand, since ),;,()( λαψφΣ∈Hzf and ),;,()()( 1 λαψφΣ

− ∈= Hzfzg , by definition, there exist two 
positive real part functions 
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Comparing the corresponding coefficients of (2.2) and (2.4) yields 
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and similarly, from (2.3) and (2.5) we obtain 
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Note that for ak = 0; 2 ≤ k ≤ n-1 we have bn = -an and so 
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1)1(])1[( −−=+−− nnnn da αλψφλ .                                                                                                                             (2.8) 
 
Taking the absolute values of the above equalities, we obtain 
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By applying the Caratheodory Lemma [14], (n ∈N) we have, 
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Theorem 2.2: For (0 ≤ α < 1) and λ ≥ 1 let ),,,()( λαψφΣ∈Hzf and ),,,()( λαψφΣ∈Hzg . Then one has the following 
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Proof: If we set n = 2 and n = 3 in (3.6) and (3.7) respectively, we get  

1222 )1(])1[( ca αλψφλ −=+−  ,                                                                                                                                 (2.11) 
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Dividing (2.11) or (2.13) by ])1[( 22 λψφλ +−  ,taking their absolute values and applying the Cartheodory lemma [14], 
we have 
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Adding (2.12) to (2.14) implies 

2
3 3 2 2 2[(1 ) ](2 ) (1 )( )a c dλ ϕ λψ α− + = − +  

])1[(2
))(1(

33

222
2 λψφλ

α
+−
+−

=
dc

a                                                                                                                                              (2.16) 

 
Using the caratheodory lemma [14], followed by taking the square roots yields 
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and combining this with the inequality (2.15) we obtain the desired estimate on the coefficient |a2| as asserted in (2.10). 
Dividing (2.12) by ])1[( 33 λψφλ +− , taking the absolute value on both sides and applying the caratheodory lemma 
 [14] yield 
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Dividing (2.14) by 33)1( λψφλ +− , taking the absolute values on both sides and applying the caratheodory lemma[14], 
we obtain 
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Remark 2.1: By taking special values in the above theorems for the functions  )(zφ and )(zψ , as mentioned in 
Remark 1.1, we obtain the results due to R.M.El-Ashwah[16], Saurath Porwal and M.Darus[17], A.G.Alamoush and 
M.Darus[1], B.A.Frasin and M.K.Aouf[2] , J.M.Jahangiri and G.Hamidi[10]. 
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