γ-OPEN SETS AND DECOMPOSITION OF CONTINUITY VIA GRILLS

C. Janaki*

*Asst. Professor, Dept. of Mathematics, L. R. G Govt. Arts College for Women, Tirupur-4

*E-mail: janakicsekar@yahoo.com

I. Arockiarani**

**Associate Professor, Dept. of Mathematics, Nirmala College for Women, Coimbatore-18

**E-mail: stell11960@yahoo.co.in

(Received on: 23-06-11; Accepted on: 04-07-11)

ABSTRACT

In this paper, we apply the notion of γ -open sets to define a new class of sets via grills and investigate their properties with the existing sets. This concept is further extended to define $G\gamma^*$ -sets to obtain a new decomposition of continuity.

Keywords: G- γ -open sets, G- γ -continuous functions, G- γ *-sets, G- γ *-continuous function.

AMS Subject classification: 54C10, 54C08, 54C05.

1. INTRODUCTION:

The idea of grill on a topological space was first introduced by Choquet [1] in 1947. The concept of grills has shown to be a powerful supporting and useful tool like nets and filters for many topological investigations. In [4] Roy and Mukerjee defined a new topology associated naturally to the existing topology and a grill on a given topological space. In [3], Ravi and Ganesan have defined and studied G- α -open sets and G- α -continuous functions in grill topological spaces. In this paper, we introduce G- γ -open sets, G- γ -continuous functions, $G\gamma^*$ -sets, $G\gamma^*$ -continuous functions and investigate the relation between such sets with other grill sets (functions) and obtain a decomposition of continuity.

2. PRELIMINARIES:

Throughout this paper, (X,τ) or X represent a topological space on which no separation axioms are assumed unless otherwise mentioned. For a subset A of a space X, Cl(A) and Int(A) denote the closure and the interior of A respectively. The power set of X will be denoted by $\wp(X)$. A collection G of a non-empty subsets of a space X is called a grill [1] on X if

(1) $A \in G$ and $A \subset B \Rightarrow B \in G$

(2) A, B \subset X and A \cup B \in G \Rightarrow A \in G or B \in G.

For any point x of a topological space (X,τ) , $\tau(x)$ denote the collection of all open neighborhoods of x.

Definition 2.1: [4] Let (X,τ) be a topological space and G be a grill on X. The mapping Φ : $\wp(X) \to \wp(X)$, denoted by $\Phi_G(A,\tau)$ for $A \in \wp(X)$ or simply $\Phi(A)$ called the operator with the grill G and the topology τ and is defined by

 $\Phi_G(A, \tau) = \{x \in X | A \cap U \in G, \forall U \in \tau(x)\}$

Result 2.2[4]: Let G be a grill on a space X. Then a map $\Psi: \wp(X) \to \wp(X)$ is defined by $\Psi(A) = A \cup \Phi$ (A), for all $A \in \wp(X)$. The map Ψ satisfies Kuratowski closure axioms. Corresponding to a grill G on a topological space (X,τ) , there exists a unique topology τ_G on X given by $\tau_G = \{U \subset X \mid \Psi(X-U) = X-U\}$,

Corresponding author: C. Janaki, *E-mail: janakicsekar@yahoo.com

where for any $A \subset X$, $\Psi(A) = A \cup \Phi(A) = \tau_G$ -Cl(A).

For any grill G on a topological space (X,τ) , $\tau \subset \tau_G$. If (X,τ) is a topological space and G is a grill on X, then (X,τ,G) denote a grill topological space.

Theorem 2.3: [4]

- (1)If G_1 and G_2 are two grills on a space X with $G_1 \subset G_2$, then $\tau_{G_1} \subset \tau_{G_2}$.
- (2)If G is a grill on a space X and B \notin G, then B is closed in (X,τ,G) .
- (3)For any subset A of a space X and any grill G on X, Φ (A) is τ_G -closed.

Theorem2.4: [4] Let (X,τ) be a topological space and G be any grill on X. Then

- $(1) \ A \subseteq B \ (\subseteq X) \Rightarrow \ \Phi \ (A) \subseteq \ \Phi \ (B) \ ;$
- (2) $A \subseteq X$ and $A \notin G \Rightarrow \Phi(A) = \phi$;
- (3) Φ (Φ (A)) \subseteq Φ (A) = Cl(Φ (A)) \subseteq Cl(A), for any A \subseteq X;
- (4) Φ $(A \cup B) = Φ (A) \cup Φ (B);$
- $(5) \ A \subseteq \Phi \ (A) \Rightarrow Cl(A) = \tau_{G^{-}} \ Cl(A) = Cl(\Phi \ (A)) = \Phi \ (A);$
- $(6) \ U \in \tau \ \text{and} \ \tau \setminus \{\phi\} \subseteq G \Rightarrow U \subseteq \ \Phi \ (U);$
- (7) If $U \in \tau$ then $U \cap \Phi(A) = U \cap \Phi(U \cap A)$, for any $A \subseteq X$.

Theorem2.5: [4] Let (X,τ) be a topological space and G be any grill on X. Then for any A, B $\subseteq X$,

- (1) $A \subseteq \Psi(A)$;
- (2) $\Psi(\phi) = \phi$;
- (3) $\Psi(A \cup B) = \Psi(A) \cup \Psi(B)$;
- (4) $Int(A) \subseteq Int(\Psi(A))$;
- (5) $Int(\Psi(A \cap B)) \subseteq Int(\Psi(A))$;
- (6) $Int(\Psi(A \cap B)) \subseteq Int(\Psi(B))$;
- (7) $Int(\Psi(A)) \subseteq \Psi(A)$;
- $(8) A \subseteq B \Rightarrow \Psi(A) \subseteq \Psi(B).$

Theorem 2.6:[4] Let (X,τ) be a topological space and G be any grill on X. Then for any A, B $\subseteq X$,

- (1) Φ (A) $\subseteq \Psi$ (A) = τ_{G^-} Cl(A) \subseteq Cl(A);
- (2) $A \cup \Psi (Int(A)) \subseteq Cl(A)$;
- (3) $A \subseteq \Phi(A)$ and $B \subseteq \Phi(B) \Rightarrow \Psi(A \cap B) \subseteq \Psi(A) \cap \Psi(B)$.

Definition 2.7: Let (X,τ) be a topological space and G be any grill on X. A subset A in X is said to be

- (1) Φ -open set [2] if $A \subseteq Int(\Phi(A))$;
- (2) g-set [2] if $Int(\Psi(A)) = Int(A)$;
- (3) G-preopen set [2] if $A \subseteq Int(\Psi(A))$;
- (4) G- α -open set [3] if $A \subseteq Int(\Psi(Int(A)))$;
- (5) G-semiopen set if $A \subseteq \Psi$ (IntA).

Definition 2.8: [2] Let (X,τ,G) be a grill topological space and $A\subseteq X$ is called G-set if $A=U\cap V$ where $U\in\tau$ and V is a g-set in (X,τ,G) .

Definition 2.9:[2] A function $f: (X,\tau,G) \rightarrow (Y,\sigma)$ is said to be G-continuous function(resp. G-precontinuous, G- α -continuous function, G-semicontinuous function) if for each open set V in Y, $f^1(V)$ is G-open set(resp. G-preopen, G- α -open, G-semiopen)

3. G-y-OPEN SETS:

Definition 3.1: Let G be a grill on a topological space (X,τ) . A set $A \subseteq X$ is called G- γ -open set if $A \subseteq Int(\Psi(A)) \cup \Psi(Int(A))$. The complement of such a set is called G- γ -closed set.

Proposition 3.2: Let G be a grill on a topological space (X,τ) . If $\tau \setminus \{\phi\} \subseteq G$ then

- (1) Every G-open set is G-γ-open.
- (2) Every G-preopen set is G-γ-open
- (3) Every G- α -open set is G- γ -open.
- (4) Every G-semiopen set is G-γ-open.
- (5) Every G- γ -open set is γ -open.

Remark 3.3: Converse of the above need not be true as seen in the following examples.

Example3.4: Let $X = \{a, b, c\}$ and $\tau = \{\phi, X, \{a\}, \{b, c\}\}$. If $G = \{X, \{a\}, \{b\}, \{a, b\}, \{b, c\}\}$, then G is a grill on X such that $\tau \setminus \{\phi\} \subset G$. Let $A = \{a, b\}$. Then A is $G \rightarrow G$ open but not G-semiopen set, $G \rightarrow G$ open set.

Example 3.5: Let $X = \{a, b, c\}$ and $\tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$. If $G = \{X, \{a\}, \{b\}, \{a, b\}, \{b, c\}\}$, then G is a grill on X such that $\tau \setminus \{\phi\} \subset G$. Let $A = \{a, c\}$. Then A is $G - \gamma$ -open but not G-preopen set, G-open set.

Example 3.6: Let $X = \{a, b, c, d\}$ and $\tau = \{\phi, X, \{d\}, \{a, c\}, \{a, c, d\}\}$. If $G = \{X, \{a\}, \{d\}, \{a, c\}, \{a, c, d\}\}$, then G is a grill on X such that $\tau \setminus \{\phi\} \subset G$. Let $A = \{a, b, c\}$. Then A is γ-open but not G-γ-open set.

Proposition 3.7: Let A be G- γ -open set such that Int(A) = ϕ . Then A is G-preopen set.

Proof: Since $A \subseteq Int(\Psi(A)) \cup \Psi(IntA) \subseteq Int(\Psi(A))$ it follows A is G-preopen set.

Proposition3.8: Let G be a grill on a topological space (X,τ) . If $\tau \setminus \{\phi\} \subseteq G$, then every open set is G- γ -open set.

Proof: $U \in \tau$ and $\tau \setminus \{\phi\} \subseteq G \Rightarrow U \subseteq \Phi(U)$. Hence $U \subseteq Int(\Phi(U)) \subseteq Int(\Psi(U)) \subseteq Int(\Psi(U)) \cup \Psi(Int(U))$ is $G-\gamma$ -open set.

Proposition 3.9: Each G- γ -open set which is τ_G -closed is G-semiopen set.

Proof: Let A be G- γ -open set and τ_G -closed. Then $A \subseteq Int(\Psi(A)) \cup \Psi(IntA)$. Since A is τ_G -closed $\Psi(A) = A$. Hence $A \subseteq Int(A) \cup \Psi(Int(A)) \subseteq \Psi(Int(A))$ implies A is G-semiopen set.

Proposition 3.10: Let (X,τ,G) be a grill topological space and A,B be subsets of X.

- (i) If $A_i \in G$ - γ -open set for each $i \in \Delta$ then $\bigcup \{A_i : i \in \Delta\}$ is G- γ -open set.
- (ii) If A is G- γ -open set and $U \in \tau$ then $A \cap U$ is G- γ -open set.

Proof:

(i) Let A_i be G- γ -open set. then $A_i \subseteq Int(\Psi(A_i)) \cup \Psi(Int(A_i)) \ \forall \ i \in \Delta$

```
\begin{split} Thus & \cup_{i \in \Delta} A_i \subseteq \cup_{i \in \Delta} \ \big( \ Int(\Psi \left( A_i \right)) \cup \Psi \left( Int(A_i) \right) \big) \\ & \subseteq Int((\cup_{i \in \Delta} A_i \ ) \cup \Phi(\cup_{i \in \Delta} \left( A_i \right) \ ) \big) \cup Int((\cup_{i \in \Delta} \ A_i) \cup \Phi(Int(\cup_{i \in \Delta} A_i \ )) \\ & \subseteq Int(\Psi(\cup_{i \in \Delta} A_i \ )) \cup \Psi(Int(\cup_{i \in \Delta} A_i \ )). \end{split}
```

(ii) Let A be G- γ -open set and U $\in \tau$. Then A $\subseteq Int(\Psi(A)) \cup \Psi(Int(A))$.So

 $A \cap U \ \subset \ (\Psi \ (Int(A)) \cup \ Int(\Psi \ (A))) \cap U \ \ \subset \ (U \cap (Int(A) \cup \Phi (\ Int(A))) \cup \ (\ U \cap Int(A \cup \Phi (A)))$

- $\subset ((U \cap Int(A)) \cup (U \cap \Phi(Int(A))) \cup (Int(U \cap (A \cup \Phi(A))))$
- $\subset \left(Int(U \cap A) \right) \cup \left(U \cap \Phi (\ Int(A) \cap U\) \right) \cup \left(Int((U \cap A) \cup (U \cap \Phi (A)) \right)$
- $\subset (Int(U \cap A) \cup (U \cap \Phi(Int(A \cap U))) \cup Int((U \cap A) \cup (U \cap \Phi(A \cap U)))$
- \subset ($Int(U \cap A) \cup \Phi$ ($Int(A \cap U)$)) \cup $Int((U \cap A) \cup (\Phi(A \cap U))$)
- $\subset \Psi(\operatorname{Int}(U \cap A)) \cup \operatorname{Int}(\Psi(U \cap A))$. Hence $A \cap U$ is $G \gamma$ -open set.

Remark 3.11: Intersection of two G-γ-open sets is not G-γ-open set.

Example 3.12: Let $X = \{a, b, c, d\}$ and $\tau = \{\phi, X, \{a, b, d\}\}$. If $G = \{X, \{a, b, d\}, \{a\}, \{a, d\}\}$, then G is a grill on X such that $\tau \setminus \{\phi\} \subset G$. Then $\{a, b, d\}$ and $\{a, b, c\}$ are G- γ -open sets but $\{a, b\}$ is not G- γ -open set.

Definition 3.13: Let (X,τ,G) be a grill topological space and $A \subset X$ is called $G\gamma^*$ -set if $A = U \cap V$ where $U \in \tau$ and V is a g-set in (X,τ,G) and $Int(\Psi(V)) = \Psi(Int(V))$.

Remark 3.14: Every open set is $G\gamma^*$ -set.

Converse need be true as seen in the following example

Example 3.15: Let $X = \{a, b, c\}$ and $\tau = \{\phi, X, \{a\}, \{b, c\}\}$. If $G = \{X, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{b, c\}\}$, then G is a grill on X such that $\tau \setminus \{\phi\} \subset G$. Take $A = \{a, c\}$, then A is a $G\gamma^*$ -set but not an open set.

Remark 3.16: G- γ -open set and G γ *-set are independent of each other.

Example 3.17: In example 3.15, $A = \{a, c\}$ is a $G\gamma^*$ -set but not a G- γ -open set and in example 3.4 $A = \{a, b\}$ is G- γ -open set but not an $G\gamma^*$ -set.

Proposition 3.18: For a subset $A \subset (X, \tau, G)$ the following conditions are equivalent:

- (a) A is open
- (b) A is G- γ -open set and G γ *-set .

Proof: a ⇒b Obvious

b \Rightarrow **a:** Let A be G-γ-open set and Gγ*-set . Since A is Gγ*-set and G-γ-open set we have

 $A = U \cap V \subset \Psi(Int(U \cap V)) \cup Int(\Psi(U \cap V))$ where U is open and V is a g-set and $Int(\Psi(V)) = \Psi(Int(V))$.

Hence A is open.

Proposition 3.19:If A is both regular open and G- γ -open set then it is closed.

 $\textbf{Proof:} \ A \subseteq Int(\Psi(A)) \cup \Psi(IntA) \subseteq Int(A \cup \Phi(A)) \cup \Psi(A) \subseteq Int(A \cup Cl(A)) \cup Cl(A) \subseteq Int(Cl(A)) \cup Cl(A) \subseteq A \cup Cl(A) \subseteq Cl(A). \\ \ Hence \ A \ is \ closed.$

Proposition 3.20: Every $G\gamma^*$ -set is G-set.

4. DECOMPOSITION OF CONTINUITY:

Definition 4.1: A function $f: (X, \tau, G) \rightarrow (Y, \sigma)$ is said to be $G-\gamma$ -continuous function if for each open set V in Y, $f^{-1}(V)$ is $G-\gamma$ -open set

Definition 4.2: A function $f: (X,\tau,G) \rightarrow (Y,\sigma)$ is said to be $G\gamma^*$ -continuous function if for each open set V in Y, $f^{-1}(V)$ is $G\gamma^*$ set.

Proposition 4.3:

- (a) Every G-continuous function is G-γ-continuous function.
- (b) Every G-precontinuous function is G-γ-continuous function.
- (c) Every G- α -continuous function is G- γ -continuous function.
- (d) Every G-semicontinuous function is G-γ-continuous function.
- (e) Every G-γ-continuous function is γ-continuous function

Proof: Obvious. Converse need not be true can be seen in the following examples.

Example 4.4: Let $X = \{a, b, c\}$ and $\tau = \{\phi, X, \{a\}, \{b, c\}\}$. If $G = \{X, \{a\}, \{b\}, \{a, b\}, \{b, c\}\}$, then G is a grill on X such that $\tau \setminus \{\phi\} \subset G$. Let $Y = \{a, b\}$ with topology $\sigma = \{\phi, Y, \{a\}\}$.

Let $f: (X,\tau, G) \rightarrow (Y,\sigma)$ be defined by f(a) = a, f(b) = a and f(c) = b. Then f is $G-\gamma$ -continuous but it is neither G-semicontinuous nor $G-\alpha$ -continuous.

Example 4.5: Let $X = \{a, b, c\}$ and $\tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$. If $G = \{X, \{a\}, \{b\}, \{a, b\}, \{b, c\}\}$, then G is a grill on X such that $\tau \setminus \{\phi\} \subset G$. Let $Y = \{a, b\}$ with topology $\sigma = \{\phi, Y, \{a\}\}$.

Let $f: (X,\tau,G) \rightarrow (Y,\sigma)$ be defined by f(a) = a, f(b) = b and f(c) = a. Then f is G- γ -continuous but it is neither G-precontinuous nor G-continuous.

Example 4.6: Let $X = \{a, b, c, d\}$ and $\tau = \{\phi, X, \{d\}, \{a, c\}, \{a, c, d\}\}$. If $G = \{X, \{a\}, \{d\}, \{a, c\}, \{a, c, d\}\}$, then G is a grill on X such that $\tau \setminus \{\phi\} \subset G$. Let $Y = \{a, b, c\}$ with topology $\sigma = \{\phi, Y, \{a, b, c\}\}$ Let $f: (X, \tau, G) \rightarrow (Y, \sigma)$ be the identity function . Then f is γ -continuous but not G- γ -continuous.

Proposition 4.7: Every continuous function is $G\gamma^*$ -continuous function.

Remark 4.8: Converse of the above need not be true as seen in the following example.

Example 4.9: Let $X = \{a, b, c\}$ and $\tau = \{\phi, X, \{a\}, \{b, c\}\}$. If $G = \{X, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{b, c\}\}$, then G is a grill on X such that $\tau \setminus \{\phi\} \subset G$.

Let $Y = \{a, b\}$ with topology $\sigma = \{\phi, Y, \{a\}\}$, Let $f: (X, \tau, G) \rightarrow (Y, \sigma)$ be defined by f(a) = a, f(b) = b and f(c) = a. Then f is $G\gamma^*$ -continuous function but not continuous.

Proposition 4.10: A function $f: (X, \tau, G) \rightarrow (Y, \sigma)$ is continuous if and only if it is $G-\gamma$ -continuous and $G\gamma^*$ -continuous.

Proof: It follows from proposition 3.18.

Proposition 4.11: The following statements are equivalent for a function $f: (X, \tau, G) \rightarrow (Y, \sigma)$:

- (a) f is G- γ -continuous;
- (b) for each $x \in X$ and each open set V in Y with $f(x) \in V$, there exists a G- γ -open set U containing x such that $f(U) \subset V$;
- (c) for each $x \in X$ and each open set V in Y with $f(x) \in V$, $f^{-1}(V)$ is a G- γ -neighborhood of x.
- (d) the inverse image of each closed set in (Y,σ) is $G-\gamma$ -closed.

Proof: a \Rightarrow b: Let $x \in X$ and V be an open set in Y such that $f(x) \in V$. Since f is G- γ -continuous, $f^{-1}(V)$ is G- γ -open.

Put $U = f^{-1}(V)$, then U is a G- γ -open set containing x such that $f(U) \subset V$.

b⇒c: Let V be an open set in Y such that $f(x) \in V$. Then by assumption, there exists a G- γ -open set U containing x such that $f(U) \subset V$. So $x \in U \subset f^{-1}(V)$. Hence $f^{-1}(V)$ is a G- γ -neighborhood of x

c \Rightarrow a: Let V be an open set in Y such that $f(x) \in V$. Then by c) $f^{-1}(V)$ is a G- γ -neighborhood of x. Thus for each $x \in f^{-1}(V)$, there exists a G- γ -open set U_x containing x such that $x \in U_x \subset f^{-1}(V)$. Hence $f^{-1}(V) \subset \bigcup_{x \in f^{-1}(V)} U_x$.

So $f^{-1}(V)$) is G- γ -open set. $a \Leftrightarrow d$:Obvious.

Proposition 4.12: Let $f: (X, \tau, G_1) \rightarrow (Y, \sigma, G_2)$ and $g: (Y, \sigma, G_2) \rightarrow (Z, \eta)$ be two functions where G_1, G_2 are grills on X and Y respectively. Then $g \circ f$ is $G \circ \gamma$ -continuous if f is $G \circ \gamma$ -continuous and g is continuous.

Proof: Straight forward

Definition 4.13: A grill topological space (X, τ, G) is said to G-γ-connected if X is not the union of two disjoint G-γ-open subsets of X.

Definition 4.14: A grill topological space (X, τ, G) is said to $G-\gamma$ -normal if for each pair of non-empty disjoint closed sets of X, it can be separated by disjoint $G-\gamma$ -open sets.

Theorem 4.15: A G-γ-continuous image of a G-γ-connected space is connected.

Proof: Let $f: (X,\tau,G) \rightarrow (Y,\sigma)$ be $G-\gamma$ -continuous function of a $G-\gamma$ -connected space X on to a topological space Y. Suppose Y is connected .Then A and B are clopen and $Y = A \cup B$, where $A \cap B = \phi$. Since f is $G-\gamma$ -continuous, $X = f^{-1}(A) \cup f^{-1}(B)$ where $f^{-1}(A) \cap f^{-1}(B)$ are non-empty $G-\gamma$ -open sets in X. Also $f^{-1}(A) \cap f^{-1}(B) = \phi$.

Hence X is not G-γ-connected which is a contradiction. Therefore, Y is connected.

Theorem 4.16: If $f: (X, \tau, G) \rightarrow (Y, \sigma)$ is $G-\gamma$ -continuous, closed injective and Y is normal, then X is $G-\gamma$ -normal.

Proof: Let F_1 and F_2 be disjoint closed subsets of X. Since f is closed and injective, f (F_1) and $f(F_2)$ are disjoint closed subsets of Y. Since Y is normal, f (F_1) and f (F_2) are separated by disjoint open sets V_1 and V_2 respectively. $f^1(V_1)$ and $f^1(V_2)$ are disjoint G- γ -open sets containing F_1 and F_2 Hence X is G- γ -normal.

Definition 4.17: A function f: $(X, \tau, G_1) \rightarrow (Y, \sigma, G_2)$ is called G- γ -open(resp. G- γ -closed) if for each U ∈ τ (resp.closed set F), f(U) is G- γ -open(resp. G- γ -closed).

Theorem 4.18: A function $f: (X, \tau, G_1) \rightarrow (Y, \sigma, G_2)$ is $G-\gamma$ -open if and only if for for each $x \in X$ and each neighborhood U of x, there exists $G-\gamma$ -open set V in Y containing f(x) such that $V \subset f(U)$.

Proof: Suppose f is G- γ -open function. For each $x \in X$ and each neighborhood U of x, there exists $U_x \in \tau$ such that $x \in U_x \subset U$. Since f is G- γ -open, $V = f(U_x)$ is G- γ -open set in Y and hence $f(x) \in V \subset f(U)$. Conversely,

Let U be an open set of (X,τ) . For $x \in U$, there exists G- γ -open set V_x in Y containing f(x) such that $f(x) \in V_x \subset f(U)$.

Therefore, we obtain $f(U) = \bigcup \{ V_x : x \in U \}$ and hence f(U) is G- γ -open and hence f is G- γ -open.

Theorem 4.19: Let $f: (X, \tau, G_1) \rightarrow (Y, \sigma, G_2)$ be $G-\gamma$ -open. If W is any subset of Y and F is closed subset of X containing $f^{-1}(W)$, then there exist a $G-\gamma$ -closed subset H of Y containing W such that $f^{-1}(H) \subset F$.

Proof: Suppose f is G- γ -open function. Let W be any subset of Y and F a closed subset of X containing f⁻¹(W). Then X–F is open. Since f is G- γ -open, f(X–F) is G- γ -open.

Hence H = Y - f(X - F) is $G - \gamma$ -closed. It follows from $f^{-1}(W) \subset F$ that $f^{-1}(H) \subset F$.

Theorem4.20: For any bijective function $f: (X, \tau) \rightarrow (Y, \sigma, G)$, the following are equivalent:

- (I) f^{-1} : $(Y, \sigma, G) \rightarrow (X, \tau)$ is $G-\gamma$ -continuous.
- (ii) f is G-γ-open.

(iii) f is G-γ-closed.

Proof: Straight forward.

REFERENCES:

- [1] G. Choquet, Sur les notions de filter et grille, Comptes Rendus Acad. Sci. Paris, 224(1947), 171-173.
- [2] E.Hatir and S.Jafari,On some new classes of sets and a new decomposition of continuity via grills, J. Adv. Math. Studies, 3(1) (2010), 33-40.
- [3] O. Ravi and S. Ganesan, On new types of grill sets and a decomposition of continuity, J. Adv. Math. Studies, 2 (1) (2011), 21-29.
- [4] B. Roy and M. N. Mukherjee, On a typical topology induced by a grill, Soochow J.Math., 33(2007), N0.4, 771-786.
- [5] B.Roy and M. N. Mukherjee, On a subclass of preopen sets via grills, Univ. Dun Bacau Studii Si Stiintifice 18 (2008), 255-266.
