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ABSTRACT 
This paper introduces the pgrw-open set in a topological space and studies some of its properties. Also in this paper 
we introduce pgrw-interior, pgrw-neighbourhood, pgrw-limit points in topological spaces. Using pgrw-closed sets we 
introduce pgrw-closure and discuss some of its basic properties. 
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1. INTRODUCTION 
 
Regular open sets and rw-open sets have been introduced and investigated by Stone [9] and Benchalli and Wali [1] 
respectively. Levine [4] introduced and investigated semi open sets. Maki et.al [5] introduced and studied generalized 
α-closed sets and α-generalized closed sets. R.S.Wali and P S. Mandalgeri [11] introduced and studied αrω-closed 
sets. R.S. Wali and V.T. Chilakwad [10] introduced and studied pgrw-closed sets. 
 
2. PRELIMINARIES 
 
For a subset A of a space X, cl (A),  Int(A) and  Ac  denote the Closure of A, Interior of A and Complement of A in X 
respectively. 
 
Definition 2.1: Let (X, ) be a topological space  and A ⊆ X. 
 
The intersection of all semi closed (pre-closed, α-closed, and semi-pre-closed) subsets containing A is called the Semi 
closure (pre-closure, α-closure and Semi-pre-closure) of A and is denoted by scl(A) [pcl(A),αcl(A), spcl(A)]. 
 
Definition 2.2: A subset A of a topological space (X,  ) is called  

a) a #regular generalized closed (briefly #rg-closed) set  [9] if cl(A)⊆U whenever A ⊆ U and U is rw-open.  
b) a generalized semi-pre closed set(briefly gsp-closed) [7] if spcl(A) ⊆ U whenever A⊆U and U is open in X.  
c) a generalized semi pre regular closed (briefly gspr-closed) set [6] if spcl(A) ⊆ U whenever A ⊆ U and U is  

regular open in X. 
d) generalized pre regular closed set (briefly gpr-closed) [2] if pcl(A) ⊆ U whenever A ⊆ U and U is regular open 

in X. 
e) a generalized pre closed (briefly gp-closed) set [4]  if  pcl(A)⊆U whenever A⊆U and U is  open in X.   
f) a α-regular w- closed set[11] if αcl(A) ⊆ U whenever A⊆U and U is rw -open in X.  

The complements of the above mentioned closed sets are their open sets respectively. 
 
3.  PRE GENERALISED REGULAR WEAKLY-CLOSED SETS [10] IN A TOPOLOGICAL SPACE  
 
Definition 3.1: A subset A of a topological space X is called a Pre generalized regular weakly-closed [pgrw-closed set] 
set if  pcl(A)⊆U whenever A ⊆ U and U is  rω-open in X.  
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Results 3.2[10]: 

i) Every closed set is a pgrw-closed set in X 
ii) Every α-closed set in X is pgrw-closed. 
iii) Every regular closed set is pgrw-closed in X. 
iv) Every pgrw-closed set is gspr-closed [gsp-closed, gp-closed, gpr-closed] in X. 

 
4.  pgrw-OPEN SETS 
 
In this section, we define pgrw-open set in a topological space and obtain some of its properties.  
 
Definition 4.1: A subset A of a topological space X is called a pre generalised regular-weakly open (briefly pgrw-open) 
set in X if   the complement Ac   of A is pgrw-closed in X. 
 
Example 1: X = {a. b. c}, T={X, ɸ, {a}, {b}, {a, b}} Open sets are X, ɸ, {a}, [b}, {a, b}. 
Closed sets are X, ɸ, {b, c}, {a, c},{c}. 
Rw-open sets are X, ɸ, {a},{[b}, {c},{a, b}. 
Pgrw closed sets are X, ɸ, {b, c}, {a, c},{c}. 
Pgrw –open sets are X, ɸ, {a},{b},{a, b} 
 
Example 2: X={a. b. c}, T={X, ɸ,{a}}. 
Rw open sets are X, ɸ, {b}, {a}, {b}, {c},{a, b}, {b, c},{a, c} . 
Pgrw –closed sets are X, ɸ, {b},{c},{b, c}. 
Pgrw-open sets are X, ɸ, {a, c},{a, b},{a}. 
 
Theorem 4.2: For any topological space X  

i) Every open (α-open, regular-open, αrω-open, #rg-open, pgpr-open) set is pgrw-open.   
ii) Every pgrw-open set is gspr–open (gsp-open, gp-open and gpr-open). 

 
Remark 4.3: The union and intersection of pgrw-open sets in X are generally not pgrw-open. 
 
Example:  X={a, b, c}, T={X, ɸ, {a}, {b}, {a, b}}. {a, b}, {a} are pgrw – open. But {a, b}∩{a} is not pgrw-open.         
X = {a, b, c, d}, T = {X, ɸ, {{a}}, {c, d}, {a, c, d}}{a} & {b} are pgrw-open, but {a}U{b} = {a, b} is not pgrw-open. 
 
Theorem 4.4: A subset A of a topological space X is pgrw-open iff U⊆ p-int(A), whenever U is rω-closed and U ⊆ A.  
 
Proof: A and U are subsets of a topological space X such that A is pgrw-open, U is rw-closed and U⊆A.   
=> X-A is pgrw-closed, X-U is rw-open and X-A⊆X-U. 
=> pcl(X-A) ⊆X-U by the defn of pgrw-closed set. 
=> U⊆X-pcl(X-A)      
=> U⊆p-intA.  
 
Conversely, Suppose U⊆ p-int (A) whenever U is rω-closed and U ⊆ A.  
=> X- p-int (A) ⊆X-U whenever X-U is rw-open and X-A⊆X-U. 
=> pcl(X-A) ⊆X-U whenever X-U is rw-open and X-A⊆ X-U    ’.’  pcl(X-A)= X-p-int(A) 
=> X-A is pgrw-closed. 
=> A is pgrw-open. 
 
Theorem 4.5: If p-int(A) ⊆B⊆A and A is a  pgrw-open set, then B is pgrw-open. 
 
Proof:  p-int(A)⊆B⊆A & A is pgrw open.  
=> X-A ⊆X-B⊆X-p-int(A) &X-A is pgrw-closed. 
=> X-A ⊆X-B⊆pcl(X-A) & X-A is pgrw-closed.    ‘.’  Pcl(X-A) = X-p-intA 
=> X-B is pgrw-closed [th 3.21[10]]. 
=> B is pgrw-open. 
 
Theorem 4.6: If A is a pgrw-closed set, then pcl(A)-A is pgrw-open. 
 
Proof:  A is pgrw-closed. F is rw-closed and F⊆pcl(A)-A    
=> F=φ [th3.22 [10]      
=> F⊆ p-int (pcl(A)-A)   
=> pcl(A)-A is pgrw-open[ by th 4.4]. 
The converse is not true. 
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Example 4.7: Let X={a, b, c, d}, T = {X, ɸ, {a} {b}, {a, b}, {a, b, c}}. Let A = {a, d}  
pcl(A)-A = {a, c, d}-{a, d} = {c} which is pgrw-open. But A is not pgrw-closed. 
 
Theorem 4.8:  For a pgrw-open set A and rw-open set U in a topological space X if p-int(A) ∪ Ac  ⊆U, then U=X. 
 
Proof: In a topological space X, for any two sets A & U, (p-int(A) )∪Ac⊆U 
=> Uc⊆[(p-int(A) )∪Ac ]c        

=> Uc⊆[p-int(A)]c∩(Ac)c 

=> Uc⊆  pcl(Ac)∩A           
=> Uc⊆pcl(Ac)-Ac 
=> Uc= ϕ   [Using th. 3.22[10]]       
=> U=X.    
 
Theorem 4.9: If A and B are two subsets of a space X such that A is pgrw-open and p-int(A)⊆B,  then A∩B is also 
pgrw-open. 
 
Proof: A is pgrw-open and p-int(A)⊆B . ……..(i)    
 
For any set A, p-int( A)⊆A…………………....(ii)      
.’. From (i) and (ii), p-int(A)⊆A∩B. Also  A∩B⊆A. 
∴ p-int(A)⊆A∩B⊆A.   => A∩B is also a pgrw-open set in X.  [Th.4.5] 
 
5. pgrw-CLOSURE  
 
In this section the pgrw-closure and pgrw-Interior are defined and some of their basic properties are studied.  
 
Definition 5.1: For a subset A of a topological space X, pgrw-closure of A is defined as intersection of all pgrw-closed 
sets containing A. 
 
Notation:  pgrwcl(A) . 
 
Example:  X={a, b, c, d},  T={X, ϕ,{a},{b},{a, b} {a, b, c}}. Let A={a, b},then pgrwcl(A)={a, b, d} 
 
Theorem 5.2: A and B are subsets of a space X  

i) pgrwcl(X) = X, pgrwcl(ϕ)=ϕ 
ii) A ⊆ pgrwcl(A) 
iii) If  B is any pgrw-closed set containing A, then pgrwcl(A) ⊆ B 
iv) If A⊆ B then pgrwcl(A)⊆ pgrwcl(B)  
v) pgrwcl(A)= pgrwcl(pgrwcl (A))  
vi) pgrwcl(A) ∪ pgrwcl(B) ⊆ pgrwcl(A B) 

 
Proof:  

i) X is the only pgrw-closed set containing X. Therefore pgrwcl(X) = Intersection of all the pgrw-closed sets 
containing X=∩{X} =X. Therefore pgrwcl (X) = X and again  by definition of pgrw-closure, pgrwcl(ϕ) = 
Intersection of all pgrw-closed sets containing ϕ = ϕ ∩ any pgrw-closed set containing ϕ =ϕ. Therefore 
pgrwcl(ϕ)=ϕ. 

ii) By definition of pgrw-closure of A, it is obvious that A ⊆ pgrwcl(A). 
iii) Let B be any pgrw-closed set containing A. Since pgrwcl(A) is the intersection of all pgrw-closed sets 

containing A, pgrwcl(A) is contained in every pgrw-closed set containing A. Hence in particular    
pgrwcl(A)⊆B. 

iv) Let A and B be subsets of X such that A⊆B.  
pgrwcl(B)=∩{F: B ⊆F and F   is a pgrw-closed set}.  If B ⊆F ϵ PGRWC(X),  
then pgrwcl(B)  ⊆ F. since A ⊆B, A⊆ B ⊆F ϵ PGRWC(X), we have  pgrwcl(A) ⊆F   by (iii), 
pgrwcl(A) ⊆∩{F : B ⊆F ϵ PGRWC(X)} =  pgrwcl(B).Therefore  pgrwcl(A) ⊆ pgrwcl(B). 

v) A is a subset of X.  pgrwcl(A)= ∩{F : A ⊆F ϵ PGRWC(X). 
If A⊆F ϵ PGRWC(X), then pgrwcl(A) ⊆ F, since F is pgrw-closed set containing pgrwcl(A) by (iii) 
pgrwcl(pgrwcl(A)) ⊆ F, for every pgrw-closed set containing A.  
Hence pgrwcl(pgrwcl(A))  ∩{F : A ⊆F ϵ PGRWC(X)}. 
Then  pgrwcl(pgrwcl(A))   pgrwcl(A)………………………………………………………....(I) 
Next, A⊆ pgrwcl(A)  (from (ii)).   ∴ pgrwcl(A) ⊆ pgrwcl(pgrwcl(A))  .[using  ( iv)  above]….(II) 
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Therefore   from I and II pgrwcl(pgrwcl(A)) = pgrwcl(A). 

vi) Let A and B be subsets of X. Clearly A⊆A∪B, B⊆A∪B. 
From (iv) pgrwcl(A) ⊆ pgrwcl(A∪B), pgrwcl(B) ⊆ pgrwcl(A∪B) 
Hence pgrwcl(A) ∪pgrwcl(B)⊆ pgrwcl(A∪B). 

 
Theorem 5.3: If A ⊆ X is a pgrw-closed set, then pgrwcl(A) =A 
 
Proof: Let A be a pgrw-closed subset of X. then by theorem 5.2(ii), A ⊆ pgrwcl(A) .----–(i) 
 
Also A⊆A and A is pgrw-closed set.       ∴ by theorem5.2 (iii) pgrwcl(A) ⊆A. ------------–(ii) 
(i) and (ii) pgrwcl(A) =A. 
 
The Converse of the above need not be true as seen from the following example. 
 
Example 5.4: Let X={a, b, c, d},T={X, ϕ ,{a},{c, d},{a, c, d}}A={a}  which is pgrw-open.  But pgrwcl(A)=A. 
 
Theorem 5.5: If A and B are subsets of a space X, then pgrwcl(A∩B)⊆ pgrwcl(A)∩pgrwcl(B) 
 
Proof: Let A and B be subsets of X, Clearly A∩B⊆A, A∩B⊆B. By theorem 5.2(iv)  
pgrwcl(A∩B) ⊆ pgrwcl(A), pgrwcl(A B) ⊆ pgrwcl(B).  
Hence pgrwcl(A∩B) ⊆ pgrwcl(A)∩pgrwcl(B). 
 
Remark 5.6: In general pgrwcl(A)∩pgrwcl(B) ⊈ pgrwcl(A∩B) as seen from the following example. 
 
Example 5.7: Consider X={a, b, c, d}, T={X, ϕ,{a},{b},{a, b},{a, b, c}}, A={b, c, d}, B={a, b, c} 
Pgrwcl(A)={b, c, d}.  Pgrwcl(B)=X.     Pgrwcl(A)∩pgwcl(B)={b, c, d} 
Pgrwcl(A∩B)=pgrwcl({b, c})={b, c}.  .’.  Pgrwcl(A)∩pgwcl(B) ⊈ Pgrwcl(A∩B). 
 
Theorem 5.8: For an x ϵ X, x ϵ pgrwcl(A) if and if A∩V ≠ ϕ for every pgrw-open set V containing x. 
 
Proof: Let x ϵ pgrwcl(A)  To prove  A∩V ≠ ϕ for every pgrw-open set V containing x by contradiction. 
 
Suppose there exists a pgrw-open set V containing x s.t A∩V=ϕ. Then A⊆ X-V, X-V is a pgrw-closed set,      
pgrwcl(A) ⊆ X-V. This shows that x ∉V which is a contradiction. 
 
Hence A∩V ≠ ϕ for every pgrw-open set V containing x. 
 
Conversely, Let xϵX and A∩V ≠ ϕ for every pgrw-open set V containing x. To prove xϵpgrwcl(A). We prove the result 
by contradiction. Suppose x ∉ pgrwcl(A) then there exists a pgrw-closed set F containing A such that  x ∉ F. Then x ϵ 
X-F is pgrw-open. Also (X-F) ∩ A=ϕ which is a contradiction. Hence  x ϵ pgrwcl(A). 

 
Theorem 5.9: For every subset A of X,     (i) pgrwcl(A) ⊆ cl(A)    (ii) pgrwcl(A) ⊆ pcl(A) 
 
Proof: 

(i)   Let A be a subset of a topological space X. Then by definition, 
cl(A)= ∩{F: A ⊆ F, F is closed}. If A ⊆ F ϵ C(X), then A ⊆ FϵPGRWC(X) because every closed set is      
pgrw-closed that is pgrwcl(A)⊆F. 
Therefore pgrw cl(A)⊆∩{F : A⊆F ϵ C(X)} = cl(A).     Hence pgrωcl(A)⊆cl(A). 

(ii)  Let A be a subset of topological space X. By definition, pcl(A)= ∩{F : A ⊆F, a pre closed set}. 
If A⊆F, a pre closed set, then A⊆F ϵ PGRWC(X) because every pre-closed set is pgrw-closed that is 
pgrwcl(A)⊆F. Therefore pgrwcl(A) ⊆∩{F : A⊆F ϵ pC(X)} = pcl(A). 
Hence pgrw cl(A) ⊆ pcl(A). 

 
Theorem 5.10: If A is a subset of a space X, then gprcl(A)⊆ pgrwcl(A) . 
 
Proof: Let A be a subset of X. pgrw-cl(A)=∩{F : A ⊆F ϵ  PGRWC(X)}. 
 
If A⊆F ϵ PGRWC(X), then A⊆F ϵ GPRC(X), because every pgrw-closed set is gpr-closed i.e.  gprcl(A) ⊆F therefore 
gprcl(A) ⊆∩{F : A ⊆F ϵ PGRWC(X)}= pgrwcl(A).  Hence gprcl(A) ⊆ pgrwcl(A). 
 
 



R. S. Wali*1, Vijayakumari T. Chilakwad2 /  
On Pre Generalized Regular Weakly-Open Sets in a Topological Space / IJMA- 6(11), Nov.-2015. 

International Journal of Mathematical Archive- 6(11), Nov. – 2015                                                                                                            167 

 
pgrw-interior:    
 
Definition 5.11: For a subset A of a topological space X, pgrw-interior of A is defined as pgrwint(A) = ∪{G: G⊆A and 
G is pgrw-open in X} or ∪{G: G⊆A and G ϵ PGRWO(X)}. i.e pgrwint(A) is the union of all pgrw -open sets contained 
in A.  Every point of pgrw-interior of A is called  pgrw-interior point of A. 
 
Example X={a, b, c, d}, T={X, ϕ,  {b, c},{b, c, d},{a, b, c}}. Let A={a, b}.  pgrwint(A)={a, b}. 
 
Theorem 5.12: Let A and B be subsets of a space X. Then 

i) pgrwint(X) = X, pgrwint(ϕ)=ϕ 
ii) pgrwint(A) ⊆ A 
iii) If  B is any pgrw-open set contained in A, then B ⊆ pgrwint(A) 
iv) If A ⊆ B then pgrwint(A) ⊆ pgrwint(B)  
v) pgrwint(A) ⊆ pgrwint(pgrwint(A))  
vi) pgrwint(A∩B) ⊆ pgrwint(A)∩pgrwint(B) 

 
Proof: i) and ii) are obvious by definition of pgrw-interior of A.  
iii) Let B be any pgrw-open set s.t  B ⊆ A.  Let x ϵ B, B is an pgrw -open set contained in A, x is an pgrw-interior point 
of A  i.e. x ϵ pgrwint(A). Hence B ⊆ pgrwint(A). 
iv), v), vi) have similar proofs as in theorem5.2  and using definition of pgrw-interior. 
 
Theorem 5.13: If a subset A of a topological space X is pgrw-open, then pgrwint(A)=A 
 
Proof: Let A be a pgrw-open subset of X. From 5.12 (ii) pgrwint(A)⊆A …..(1) A⊆A and A is pgrw-open 
=>A⊆pgrwint(A) from 5.12(iii)…..(2) is pgrw-open set contained in A from Theorem 5.12( iii)  A ⊆ pgrw int(A)  --(2).    
 
Hence from (1) and (2) pgrwint(A)=A. 
 
Corollary: If a subset A of a topological space X is open then int(A)= pgrwint(A). 
 
Proof: A⊆X and A is open.   
∴ int(A) =A  and  as every open is pgrw-open   A= pgrwint(A) .     
∴  int(A)=pgrwint(A).  
 
Converse is not true.  
 
Example:  X={a, b, c, d}, T={X, ϕ, {a},{b},{a, b}, {a, b, c}}.   
A={b, d},      int(A)={b}.      pgrwint(A)={b}. Here   intA=pgrwintA, but A is not open. 
 
Theorem 5.14 If A and B are subsets of a space X. Then, pgrωint(A)  pgrωint(B) ⊆ pgrωint(A∪B). 
 
Proof: For any two subsets of X, A⊆A∪B and B⊆A∪B and so in space X. pgrωint(A)⊆pgrωint(A∪B) and  
pgrωint(B)⊆pgrωint(A∪B). This implies that pgrωint(A)∪pgrωint(B) ⊆pgrwint(A∪B). 
 
Remark 5.15: The converse of the above theorem need not be true as seen from the following example. 
 
Example 5.16: Let X={a, b, c, d}, T ={X, ϕ,{a},{b},{a, b},{a, b, c}}, A={b, c}, B={a, d}, 
A B ={a, b, c, d}.   pgrwint(A)={b, c} pgrwint(B)={a},  pgrwint(A∪B)=X,  

 pgrωint(A) ∪ pgrωint(B)={a, b, c}.Therefore pgrωint(A∪B)  pgrωint(A) ∪ pgrωint(B). 
 
Theorem 5.17: For any subset A of a topological space of X, int(A) ⊆ pgrωint(A)      
 
Proof: Let A be a subset of a space X. Then x ϵ int(A) => x ϵ ∪ {G : G is open, G ⊆ A} 
=>  an open set  G s.t. x ϵ G ⊆ A    
=> There exists a pgrω-open set G s.t. x ϵ G⊆A, as every open set is a pgrω-open set in X and so  x ϵ ∪{G :G is pgrω-  
      open and  G⊆ A}. 
=> x ϵ pgrωint(A). Thus x ϵ int(A).   
=> x ϵ pgrωint(A). Hence int(A) ⊆ pgrωint(A). 
 



R. S. Wali*1, Vijayakumari T. Chilakwad2 /  
On Pre Generalized Regular Weakly-Open Sets in a Topological Space / IJMA- 6(11), Nov.-2015. 

International Journal of Mathematical Archive- 6(11), Nov. – 2015                                                                                                            168 

 
Remark: converse is not true.   
 
Example: X{a, b, c}, T={X, ϕ, {a}},    int({a, c}) ={a},  pgrwint({a, c}) = {a, c}. 
 
Theorem 5.18: If A is a subset of a topological space X, then pgrωint(A)⊆ gpr-int(A),  
 
Proof: A is a subset of a space X. x ϵ pgrwint(A). 
=> x ϵ ∪{G : G is pgrw-open , G ⊆ A}  
=> There exists an pgrω-open set G such that x ϵ G ⊆ A. 
=> there exists a gpr-open set G such that x  G  and G⊆ A  ‘.’  Every pgrw open set is gpr-open.      
=> x ϵ  ∪{G : G is gpr-open, G ⊆ A}    
=> x ϵ  gpr-int(A). Thus x  ϵ pgrω int(A). 
=> x ϵ gpr-int(A). Hence pgrωint(A) ⊆ gprint(A). 
 
Remark: Converce is not true. 
 
Theorem 5.19: For any subset A of X  

i) X - pgrwint(A) = pgrwcl(X - A)    
ii) pgrωint(A) = X -  pgrωcl(X - A)   
iii) X - pgrωint(X - A)= pgrωcl(A)  
iv) X - pgrωcl(A) =  pgrωint(X - A) 

 
Proof:  

(i) If x ϵ X-pgrw-int(A) then x is not in pgrw-int(A)  i.e. every pgrw-open set G containing x is such that 
G⋢A. This implies every pgrw-open set G containing x intersects (X - A) i.e. G (X A)∩ − ≠ φ . Then by 
theorem 5.8   x ϵ pgrwcl(X-A).  
.’. X-pgrw-int(A) ⊆ pgrwcl(X-A) -----------------------------------(1) 

 
Let x ϵ  pgrwcl(X-A), then by theorem 5.8 every pgrw-open set G containing x intersects X–A   
i.e. G (X A)∩ − ≠ φ , i.e. every pgrw-open set G containing x s.t.G⋢A. Then x is not in pgrw-int(A),   
i.e. x ϵ X-pgrw-int(A) and so Pgrwcl(X-A) ⊆X-pgrw-int(A)--- (2)   

 
From (1) and (2) X-pgrwint(A)=pgrwcl(X-A). 

i) Follows by taking complements in i). 

ii) Follows by replacing A by X-A in i) 

iii) Follows by taking complements in iii). 
 
6. pgrω-NEIGHBOURHOOD AND pgrω-LIMIT POINTS 
 
In this section we define the notion of pgrω-neighbourhood, pgrω-limit points and pgrω- derived set. 
 
Definition 6.1: Let X be a topological space and x X∈ . A subset   N of X is said to be a pgrω-neighbourhood of x if 
there exists a pgrw open set G such that x G N∈ ⊆ .    
 
Definition 6.2:  

i) Let X be a topological space and A be a subset of X. A subset N of X is said to be a pgrω-neighbourhood  of A 
if there exists a pgrw open set G such that A G N⊆ ⊆ .  

ii) The collection of all pgrω-neighbourhoods of x X∈ is called pgrω-neighbourhood system of x and shall be 
denoted by pgrw-N(x) 

 
Definition 6.3: Let X be a topological space and A be a subset of X. Then a point x X∈ is called a pgrw limit point of 
A iff every pgrω-neighbourhood of x contains a point of A distinct from x i.e. ( )N {x} A− ∩ ≠ φ for each             
pgrω-neighbourhood N of x. The set of all pgrw-limit points of a set A is called the derived set of A and is denoted by 
pgrwd(A). 
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Theorem 6.4: Every neighbourhood N of a point x of a topological space X is a pgrω-neighbourhood of x. 
 
Proof: X is a topological space and x ϵ X. Let N be a neighbourhood of x.  By definition, ∃  an open set G such that 
x G N∈ ⊂ .  Then ∃  a pgrw open set G such that x G N∈ ⊂ .   ‘.’an open set is pgrw-open. Hence N is a           
pgrω-neighbourhood of x. 
 
Remark 6.5: A pgrω- neighbourhood N of x∈X need not be a neighbourhood of x in X, as seen from the following 
example. 
 
Example 6.6: Let X = {a, b, c, d} with topology  
T={X, ϕ, {a},{b},{a, b},{a, b, c}}.   
 
Here {a, c, d} is pgrw-neighbourhood of c. But it is not a neighbourhood of c. 
 
Theorem 6.7: A pgrw-open set is a pgrw-neighbourhood of each of its points. 
 
Proof: Suppose N is pgrω-open. Let x ∈ N. We claim that N is pgrω- neighbourhood of x. For N is a pgrω-open set 
such that x ∈ N ⊆ N. Since x is an arbitrary point of N, it follows that N is a pgrω- neighbourhood of each of its points. 
 
Remark 6.8: The converse of the above theorem is not true as seen from the following example. 
 
Example 6.9: Let X = {a, b, c, d} with T={X, ϕ,{a},{b},{a, b},{a, b, c}}.   
 
Here {a, c, d} is pgrw-neighbourhood of each of its points but it is not pgrw-open. 
 
Theorem 6.10: If F is a pgrω-closed subset of a topological space  X, and x ∈ Fc, then   there exists a pgrω-open set  N 
containing x such that N∩F =ϕ. 
 
Proof: F is a pgrω-closed subset of X and x∈Fc. Fc is a pgrω-open set of X. So by theorem 6.7, Fc is a                     
pgrω- neighbourhood of each of its points. Hence there exists a pgrω-open set N containing  x such that N⊂Fc. That is 
N ∩ F = ϕ. 
 
Theorem 6.11: Let X be a topological space and for each x∈X, let pgrω-N (x) be the collection of all pgrω- 
neighbourhood of x. Then we have the following results. 

(i)   ∀x ∈ X, pgrω-N (x) ≠ ϕ. 
(ii)  N ∈ pgrω-N (x) ⇒ x ∈ N. 
(iii) N∈pgrω-N (x), M ⊃N ⇒ M∈ pgrω-N (x). 
(iv) N ∈ pgrω-N (x) ⇒ there exists M ∈ pgrω-N (x) such that M ⊂ N and M ∈ pgrω-N (y) for every y ∈ M. 

 
Proof:  

(i)   Since X is a pgrω-open set, it is a pgrω- neighbourhood of every x ∈ X. Hence there exists at least one pgrω- 
neighbourhood (namely - X) for each x ∈ X. Hence pgrω-N (x) ≠ ϕ for every x ∈ X. 

(ii)  If N ∈ pgrω-N (x), then N is a pgrω- neighbourhood of x. So by definition of pgrω- neighbourhood, x ∈ N. 
(iii) Let N ∈ pgrω-N (x) and M ⊃ N. Then there is a pgrω-open set G such that x ∈ G ⊂ N.  
       Since, N ⊂ M, x ∈ G ⊂ M and so M is pgrω- neighbourhood of x. Hence M ∈ pgrω-N (x).  
(iv) If N ∈ pgrω-N (x), then there exists a pgrω-open set M such that x ∈ M ⊂N. Since M is a pgrω-open set, it is 

pgrω- neighbourhood of each of its points. M ∈ pgrω-N (y) for every y ∈ M. 
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