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ABSTRACT 
The dominating graph DGabc(G) of a graph G is obtained from G with vertex set V′ = V(G) ∪ S, where V = V(G) and S 
is the set of all minimal dominating sets of G. Then two elements in V′ are said to satisfy property ‘a’ if u, v ∈ V and 
are adjacent in G. Two elements in V′ are said to satisfy property ‘b’ if u = D1, v = D2 ∈ S and have a common vertex. 
Two elements in V′ are said to satisfy property ‘c’ if u ∈ V(G), v = D ∈ S such that u ∈ D. Two elements in V′ are said 
to satisfy property‘d’ if u, v∈V(G) and there exists D∈ S  such that u, v∈ D. A graph having vertex set V′ and any two 
elements in V′ are adjacent if they satisfy any one of the property a, b, c is denoted by DGabc(G).  In this paper, we 
obtain some basic properties of DGabc(G). Also, we establish the characterization of DGabc(G). 
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INTRODUCTION 
 
Graphs discussed in this paper are finite, undirected and simple. For graph theoretic terminology refer to Harary[3], 
Buckley and Harary[1]. For a graph, let V(G) and E(G) be its vertex and edge set respectively. A graph with p vertices 
and q edges is called a (p, q) graph. The degree of a vertex v in a graph G is the number of edges of G incident with v 
and it is denoted by deg(v).  
 
The length of any shortest path between any two vertices u and v of a connected graph G is called the distance between 
u and v and it is denoted by dG(u, v). The distance between two vertices in different components of a disconnected 
graph is defined to be ∞. For a connected graph G, The eccentricity e(v) of  v is the distance to a vertex farthest from v. 
Thus, e(v) = max{d(u, v) : u ∈ V}.The radius rad(G) is the minimum eccentricity of the vertices, whereas the diameter 
diam(G) is the maximum eccentricity. If these two are equal in a graph, that graph is called self-centered graph with 
radius r and is called an r self-centered graph. For any connected graph G, rad(G) ≤ diam(G) ≤ 2rad(G). v is a central 
vertex if e(v) = r(G). The center C(G) is the set of all central vertices. For a vertex v, each vertex at a distance e(v) from 
v is an eccentric vertex of v.  
 
The girth g(G) of the graph G, is the length of the shortest cycle (if any) in G.  
 
A graph G is connected if every two of its vertices are connected, otherwise G is disconnected. The vertex connectivity 
or simply connectivity κ(G) of a graph G is the minimum number of vertices whose removal from G results in a 
disconnected or trivial graph. The edge connectivity λ(G) of a graph G is the minimum number of edges whose removal 
from G results in a disconnected or trivial graph. A set S of vertices of G is independent if no two vertices in S are 
adjacent. The independence number βo(G) of G is the maximum cardinality of an independent set.  
 
The concept of distance in graph plays a dominant role in the study of structural properties of graphs in various angles 
using related concept of eccentricity of vertices in graphs.  
 
The concept of domination in graphs was introduced by Ore [8]. The concept of domination in graphs originated from 
the chess games theory and that paved the way to the development of the study of various domination parameters and 
its relation to various other graph parameters. For details on γ(G), refer to [2, 9].  
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A set D ⊆ V is said to be a dominating set in G, if every vertex in V−D is adjacent to some vertex in D. The cardinality 
of minimum dominating set is called the domination number and is denoted by γ(G). A dominating set D is called a 
minimal dominating set if no proper subset of D is a dominating set. The upper domination number Г(G) of a graph G 
is the maximum cardinality of a minimal dominating set of G. Domatic number d(G) of a graph is the largest order of a 
partition of V(G) into dominating sets of G.  
 
In [5, 6, 7], Kulli, Janakiram and Niranjan introduced the following concepts in the field of domination theory. 
 
The minimal dominating graph MD(G)[5] of a graph G is the intersection graph defined on the family of all minimal 
dominating sets of vertices of G. The vertex minimal dominating graph MvD(G)[6] of a graph G with             
V(MvD(G)) = V′ = V ∪ S, where S is the collection of all minimal dominating sets of G with two vertices u, v ∈ V′ are 
adjacent if either they are adjacent in G or v = D is a minimal dominating set of G containing u.  
 
The dominating graph D(G)[7] of a graph G= (V, E) is a graph with V(D(G)) = V∪S, where S is the set of all  minimal 
dominating sets of G and with two vertices u, v ∈ V(D(G)) are adjacent if u ∈ V and v = D is a minimal dominating set 
of G containing u.  
 
In this paper, we define a new dominating graph DGabc(G) with property a, b and c. we establish some basic properties 
of DGabc(G). We characterize the graph G for which DGabc(G) is completely disconnected, complete, self- centered of 
radius 2, etc. 
 
We need the following results to study the dominating graph DGabc(G) of a graph G. 
 
Theorem 1.1[3]: A graph G is Eulerian if and only if every vertex of G is of even degree. 
 
Theorem: 1.2[3] If for all vertices v of G, deg(v) ≥ p/2 where p ≥ 3, then G is Hamiltonian. 
 
2. THE DOMINATING GRAPH DGabc(G) OF A GRAPH G 
 
We define a new class of intersection graphs in the field of domination theory as follows. 
 
Definition 2.1: A graph having vertex set V′= V(G) ∪ S, where S is the set of all minimal dominating sets of G. Then 
two elements in V′ are said to satisfy property ‘a’ if u, v∈V and are adjacent in G. Two elements in V′ are said to 
satisfy property ‘b’ if u = D1, v = D2 ∈ S and have a common vertex. Two elements in V′ are said to satisfy property ‘c’ 
if u∈V(G), v=D∈S such that u∈D. A graph having vertex set V′=V(G)∪S, where S is the set of all minimal 
dominating sets of G and any two elements in V′ are adjacent if and only if they satisfy any one of the property a, b, c 
is denoted by DGabc(G).  
 
Remark 2.1: 

(i) G is an induced sub graph of DGabc(G). 
(ii) MvD(G) is an induced sub graph of DGabc(G). 
(iii) MD(G) is an induced sub graph of DGabc(G). 
(iv) Number of vertices in DGabc(G) = p + Number of minimal dominating sets of  G. 
(v) Number of edges ≥ q. 
(vi) Deg DG

abc
(G) vj = deg G vj+Sj, 1 ≤ j ≤ p, where Sj is the number of minimal dominating set containing vj. 

(vii) Deg Di ≤ |Di| + 
( )1

2

S S −
, 1 ≤ i ≤ n, where S is the set of all minimal dominating sets of G. 

Here, the elements of V(G) are called as point vertices and the elements of S are known  as set vertices. 
 
Example: 
                 
   G:                                                                           DGabc(G): 

                  
{1, 3}, {1, 4}, {2, 4}, {2, 5} and {3, 5}  
are minimal dominating sets of G.               
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Theorem 2.1: If G = Kp, Then DGabc(G) is Kp ο K1. 
 
Proof: When G = Kp. Each vertex is a minimal dominating set of G. By the definition of DGabc(G), DGabc(G) is           
Kp ο K1. 
 
Theorem 2.2: If G = pK ,

 
then DGabc(G) is K1, p. 

Proof: When G = pK . The whole vertex set is a minimal dominating set of G. By the definition of DGabc(G), DGabc(G) 
is K1, p. 
 
Theorem 2.3: For any graph G, DGabc(G) is connected. 
 
Proof: Since for each vertex v∈V(G) there exists a minimal dominating set containing v, every vertex in DGabc(G) is 
not an isolated vertex. Suppose DGabc(G) is disconnected. Let G1 and G2 be two components of DGabc(G). Then there 
exists two non-adjacent vertices u,v∈V(G) such that u∈V(G1) and v∈V(G2). This implies that there is no minimal 
dominating set in G containing u and v, which is a contradiction, since there exists a maximal independent set 
containing u and v and every maximal independent set is a minimal dominating set. Hence DGabc(G) is connected. 
 
We establish a necessary and sufficient condition on G for which DGabc(G) is complete. 
 
Theorem 2.4: DGabc(G) is complete if and only if G = K1. 
 
Proof: Suppose DGabc(G) is complete. Then G is complete and has exactly one minimal dominating set. This implies 
that G = K1. 
 
Conversely, G = K1. By the definition, we get DGabc(G) = K2, which is complete. 
 

Theorem 2.5: For any graph G, p + d(G) ≤ p′ ≤ 2

)1p(p +
, where d(G) is the domatic number of G and p′ denotes the 

number of vertices of DGabc(G). Further, the lower bound is attained if and only if G = Kp or pK  or K1, p−1 and the 

upper bound is attained if and only if G is (p−2) regular graph. 
 
Proof: The lower bound follows from every graph has at least d(G) number of minimal dominating sets of G and the 
upper bound follows from every vertex is in at most (p−1) minimal dominating set of G. 
 
Assume p′ = p+d(G). Suppose uv∈E(G), then u∈D1 and v∈D2. So if D1 and D2 are disjoint minimal dominating sets 
and |D1|, |D2| > 1, elements of D1 are dominated by D2 and vice versa in G. Hence we can form a minimal dominating 
set with vertices from D1 and D2. But p′ = p+d(G) implies minimal dominating sets are all disjoint. This implies either 
|D1| = 1.... |Dp| = 1or |D1| = 1 and |D2| = p−1 or |D1| = p. Thus G =Kp or pK  or K1, p−1. 
 
Conversely, Suppose G = Kp or pK  or K1, p−1. Then d(Kp) = p or d( pK ) = 1 or d(K1, p−1) = 2. Thus, it follows that the 
order of DGabc(G) is p+d(G). 
 
Suppose the upper bound is attained. Then p′ = p(p+1)/2.  

Thus, number of minimal dominating sets = 
2

)1p(p +
 − p = .2pC

2

)1p(p
=

−
Therefore any two vertices of G form a 

minimal dominating set. This implies that each vertex is in exactly (p−1) minimal dominating sets and hence G is (p−2) 
regular graph. 
 

Conversely, G is a (p−2) regular graph. G = Kp−1 factor, p is even. Thus we get 1+2+3+ ...+ (p−1) =
2

)1p(p −
 minimal 

dominating sets. Thus, it follows that p′ = p + .
2

)1p(p

2

)1p2(p

2

)1p(p +
=

−+
=

−
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Theorem 2.6: For any graph G, p + q ≤ q′ ≤ p(p−1) + 
2

)2m(m −
 + q, where |S| = m and q′ is the number of edges in 

DGabc(G)  . 
 
Proof: The lower bound follows from every vertex in G is in at least one minimal dominating set. The upper bound 
follows from (i) Every vertex is in at most (p−1) minimal dominating set of G. (ii) Corresponding to each minimal 
dominating set there exists at least one non-trivial disjoint minimal dominating set when G has no isolated vertices, 
since, if D is a minimal dominating set V−D is also a dominating set. The lower bound is sharp for G = Kp. Upper 
bound is attained when G = Kp−1factor. 
 
Corollary 2.1: If G is a connected (p, q) graph, then 2p−1 ≤ q′. 
 
Proposition 2.1: For any graph G, βo(DGabc(G)) ≥ max{βo(G), d(G)}, where βo(G) is the independence number of G 
and d(G) is the domatic partition of G. 
 
Observation 2.1: Let G be a connected graph and let v be a full degree vertex. Since the minimal dominating set          
w = D = {v} contains v, this implies that, in DGabc(G), D is adjacent to v only. Hence, deg(w) = 1. Therefore, DGabc(G) 
has a pendent vertex. 
 
Observation 2.2: For any graph G, χ(G) ≤ χ(DGabc (G)) ≤ χ(G) + 2.  
 
Next we study the connectivity and edge connectivity of DGabc(G). 
 
Theorem 2.7: For any graph G,  
κ(DGabc(G)) ≤ 

( ) ( )
min{min{deg ( ),1 },min{deg ( ),1 }}abc abci jDG G DG G

D i n v j p≤ ≤ ≤ ≤  
 
Proof: We consider the following cases. 
 
Case-(i): Let u = D be the minimal dominating set of G and is of minimum degree among all the vertices of DGabc(G). 
Then by deleting the vertices adjacent to u, the resulting graph is disconnected.  
 
Case-(ii): Let v ∈ V(G) and is of minimum degree among all the vertices of DGabc(G). Then by deleting the vertices 
adjacent to v, the resulting graph is disconnected. 
 
Hence, the result is proved. 
 
Theorem 2.8: For any graph G, 
λ(DGabc(G)) ≤  

( ) ( )
min{min{deg ( ),1 },min{deg ( ),1 }}abc abci jDG G DG G

D i n v j p≤ ≤ ≤ ≤  

 
Proof: Proof is similar to theorem 2.7. 
 
Next we shall find out radius and diameter of DGabc(G), classify the graph G such that DGabc(G) is self-centered with 
diameter two, DGabc(G) is bi-eccentric etc. 
 
Theorem 2.9: For any graph G, distance between any two vertices in DGabc(G) is at most three.  
 
Proof: Suppose G has at least two vertices. Then DGabc(G) has at least three vertices. Let u, v ∈ V′. We consider the 
following cases. 
 
Case-(i): u, v ∈ V(G).  
 
If u and v are adjacent in G, then in DGabc(G), d(u, v) = 1. Suppose u and v are not adjacent in G. Then there exists a 
minimal dominating set containing u and v. In DGabc(G), d(u, v) = 2. Hence d DG

abc
(G) (u, v) ≤ 2. 

 
Case-(ii): u ∈ V(G) and v ∉ V(G).  
 
In this case v ∉ V(G), thus v = D is a minimal dominating set of G. If u ∈ D, then in DGabc(G), d(u, v) = 1. If u ∉ D, 
then there exists a vertex w ∈ D adjacent to u and hence in DGabc(G),  d(u, v) = d(u, w) + d(w, v) = 2. 
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Case-(iii): Suppose u, v ∉ V(G). Then u = D1 and v = D2 are two minimal dominating sets of G. If D1 and D2 are 
disjoint, then every vertex w ∈ D1 is adjacent to some vertex in x ∈ D2 and vice versa. This implies that in DGabc(G),  
d(u, v) = d(u, w) + d(w, x) + d(x, v) = 3. 
 
If D1 and D2 are disjoint, then there exists a minimal dominating set D3 such that D3 is adjacent to both D1 and D2. 
Thus, in DGabc(G), d(D1, D2) = d(D1, D3) + d(D3, D2) = 2. 
 
If D1 and D2 have a vertex in common, then in DGabc(G), d(D1, D2) = 1. 
 
Thus, from all the three cases, distance between any two vertices in DGabc(G) is at most three. 
 
Theorem 2.10: rad(DGabc(G)) = 1 if and only if G = pK . 
 
Proof: Suppose rad(DGabc (G)) = 1, then there exists x ∈ V′ such that e(x) = 1, x is adjacent to all other vertices. We 
have to prove G = pK . On the contrary, assume G ≠ pK . Then there exists at least two minimal dominating sets and 

∆( DGabc(G)) < p′−1, a contradiction. Hence G must be pK . 
 
Conversely, G = pK , then there exists exactly one minimal dominating set containing all the vertices of G. Thus the 
result follows from the definition of DGabc (G). 
 
Theorem 2.11: If G is a disconnected graph with at least one edge then DGabc(G) is 2-self-centered. 
 
Proof: Suppose G is a disconnected graph. Consider the following cases. 
 
Case-(i): G has an isolated vertex.  
 
Each minimal dominating set contains this isolated vertex. Let u be the isolated vertex. In DGabc(G), d (u, D) = 1, where 
D is any minimal dominating set of G. Let v ∈V(G). Then d(u, v) = d(u, D)+d(D, v) = 2. That is e(u) = 2. 
 
Suppose v∈V(G) and v is not isolated and v′∈V′, v′∉V(G). Then v′ = D is a minimal dominating set of G. If v∈D, then 
in DGabc(G), d(v, v′) = 1. If v∉D, then there exists a vertex w∈D adjacent to v and hence in DGabc (G),                      
d(v, v′) = d(v, w) + d(w, v′) = 2. Let v∈V, v ≠ u and x∈V. In DGabc(G), d(v, x) = 1 if vx ∈ E(G). If vx ∉ E(G), then 
there exists D∈S such that v, x∈D. Therefore, d(v, x) = d(v, D)+d(D, x) = 2 in DGabc(G). Thus,  e(v) = 2, where v∈V is 
not an isolated vertex. d(x, y)=1 for x, y ∈ S, since x = D1, y = D2 contains the isolated vertex u. Therefore, eccentricity 
of set vertices is also 2. Hence, DGabc(G) is 2-seld-centered. 
 
Case-(ii): G has no isolated vertex. 
 
Since G has at least two components. Let v∈V(G1) and u∈V(G2). Then there exists a minimal dominating set D such 
that D contains u and v. Then, in DGabc (G), d(u, v) = d(u, D) + d(D, v) = 2. Suppose Di, Dj for 1 ≤ i ≤ n, 1 ≤ j ≤ m, i ≠ j 
are not disjoint, then in DGabc(G), d(Di, Dj) = 1. 
 
Suppose Di, Dj are disjoint. Then there exists a minimal dominating set D3 such that D3 is adjacent to both Di and Dj. 
Then, in DGabc(G),  d(Di, Dj) = d(Di, D3) + d(D3, Dj). Hence, in DGabc(G), d(Di, Dj) ≤ 2. 
 
Suppose x∈V(G) and x∉Di for 1 ≤ i ≤ n. Then there exists a vertex y∈V(G) such that y is adjacent to x and y∈Di. 
Then, in DGabc(G), d(x, Di) = d(x, y) + d(y, Di) = 2. Therefore, eccentricity of set vertices is 2 and eccentricity of point 
vertices is also 2. Hence, DGabc(G) is 2-self-centered. 
 
Theorem 2.12: rad(DGabc(G)) = 2 and diam(DGabc(G)) = 3 if G is any one of the following: 

(i) G = Kp. 
(ii) rad(G) = 1 and diam(G) = 2. 

 
Proof: Case-(i): G = Kp. 
 
For each vertex v, {v} ⊆ V(G) form a minimal dominating set of  G. By the definition of DGabc(G), each vertex is 
adjacent to exactly one minimal dominating set and DGabc (G) = Kp ° K1. The eccentricityof pendent vertices is 3 and 
other vertices have eccentricity two. Hence, rad(DGabc(G)) = 2 and diam(DGabc(G)) = 3. 
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Case-(ii): rad(G) = 1 and diam(G) = 2.  
 
In this case two sub cases arise. 
 
Sub case-(i): G has only one central vertex. 
 
Let v be the central vertex. Then {v} = D form a minimal dominating set of G. In DGabc(G), D is adjacent to v only. Let 
D1 be the minimal dominating set of G that contains u ∈ V(G) which is not a central vertex. Thus, it follows, in 
DGabc(G), d(D, D1) = d(D, v) + d(v, u) + d(u, D1) = 3. Hence, the eccentricity of set vertices is three. 
 
d(u, D) = d(u, v) + d(v, D) = 2. Hence, the eccentricity of point vertices is two. 
 
Therefore, rad(DGabc(G)  = 2 and diam(DGabc(G)) = 3. 
 
Sub case-(ii): G has more than one central vertex. 
 
Let t be the number of central vertices and Di, 1 ≤ i ≤ t be the corresponding minimal dominating sets of G. Let u and v 
be the central vertices of G and let D1 and D2 be the corresponding minimal dominating sets of G. In                  
DGabc(G), d(D1, D2) = d(D1, u) + d(u, v) + d(v, D2) = 3. 
 
Let D′≠Di be the minimal dominating set that contains w∈V(G) which is not a central vertex. Then in                           
DGabc(G), d(D1, D′)= d(D1, w) + d(w, u) + d(u, D′) = 3. Hence the eccentricity of set vertices is three.                       
d(w, D1) = d(w, u) + d(u, D1) = 2 and d(u, D2) = d(u, v) + d(v, D2) = 2. Hence, the centricity of point vertices is two. 
Therefore, rad(DGabc(G))  = 2 and diam(DGabc(G)) = 3. 
 
Theorem 2.13: If G is a connected graph with rad(G) ≥ 2, then DGabc(G) is self-centred with diameter two. 
 
Proof: Suppose rad(G) ≥ 2, then consider the following cases. 
 
Case-(i): Suppose u,v∈V(G) and dG(u, v)≥3. Then {u, v} is a maximal independent set. Hence it is a minimal 
dominating set. Thus, in DGabc(G), d(u, v) = d(u, D) + d(D, v) = 2. 
 
Case-(ii): Suppose x∈V(G) and x∉D1, D1∈S. Then there exists a vertex y∈V(G) such that y is adjacent to x and     
y∈D1. Thus, it follows that, in  DGabc(G), d(x, D1) = d(x, y) + d(y, D1) = 2. 
 
Case-(iii): Suppose u′, v′ ∉ V(G). Then u′ = D2 and v′ = D3 are two minimal dominating sets of G. If D2 and D3 are 
adjacent, then, in DGabc(G), d(u′, v′) = 1. 
 
Suppose D2 and D3 are disjoint. Then there exists a minimal dominating set D4 such that D4 is adjacent to both D2 and 
D3. Thus, in DGabc(G), d(D2, D3) = d(D2, D4) + d(D4, D3) = 2. 
 
So in all cases, eccentricity of point vertices and eccentricity of set vertices is two. 
 
Hence, DGabc(G) is self-centred with diameter two. 
 
Next, we establish the necessary and sufficient condition on G for which DGabc(G) is a tree. 
 
Theorem 2.14: For any graph G, DGabc(G) is a tree if and only if G = pK  or K2. 
 
Proof: Suppose DGabc(G)  is tree, then we have to prove that G = pK  or K2. On the contrary, if G ≠ pK  or K2, then we 
consider the following cases. Since DGabc(G) is a tree, G is also a tree. 
 
Case-(i): If ∆(G) = p−1, p ≥ 3, then G is a star. Then there exists exactly two minimal dominating sets D and D′, D 
contains the central vertex and D′ contains all pendent vertices of G. Clearly, by the definition of DGabc(G), DGabc(G) 
contains a cycle, a contradiction. 
 
Case-(ii): If ∆(G) ≤ p−2, then there exists three vertices u, v and w ∈ V(G) such that u and v are adjacent and w is not 
adjacent to both u and v. This implies that in DGabc (G), u and v are connected by at least two paths, which is a 
contradiction. Thus from the above cases G = pK  or K2. 

Conversely, suppose G = pK  or K2. Then by definition, DGabc(G) is a tree. 
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Theorem 2.15: γ(DGabc(G)) = 1 if and only if G = pK . 
 
Proof:  The proof follows from theorem 2.11. 
 
Theorem 2.16: γ(DGabc(G)) = p if and only if G = Kp. 
 
Proof:  Suppose γ(DGabc(G)) = p. We have to prove G = Kp. On the contrary, if G ≠ Kp, then there exists at least two 
non-adjacent vertices u and v in G. Hence there exists D containing {u, v} and this D dominates u and v in DGabc(G) 
and other vertices dominates remaining vertices. This implies that γ(DGabc(G)) ≤ p−1, which is a contradiction. Hence 
G = Kp. 
 
Conversely, suppose G = Kp, then each vertex form a minimal dominating set of G. By the definition each vertex is 
adjacent to exactly one minimal dominating set. That is DGabc(G) = Kp°K1. Hence, γ(DGabc(G)) = p. 
 
Theorem 2.17: For any graph G, 1≤ γ(DGabc(G)) ≤ p. The lower bound is attained if and only if G = pK , and the upper 
bound is attained if and only if G = Kp. 
 
Proof: Proof follows from theorem 2.12 and 2.13. 
 
Theorem 2.18: γ(DGabc(G)) ≤ γ(G) if G has an isolated vertex. 
 
Proof: Suppose G has an isolated vertex. Then every minimal dominating set contains this isolated vertex. Thus all 
minimal dominating sets are adjacent to each other. This isolated vertex dominates all set vertices. Remaining vertices 
of G is dominated by at most γ(G)−1 vertices. Hence at most γ(G)−1 +1= γ(G) vertices are needed to dominate 
DGabc(G). Thus, γ(DGabc(G)) ≤ γ(G). 
 
Theorem 2.19: For any graph G, γ(G) + γ(DGabc(G)) ≤ 1+p. 
 
Proof: Suppose γ(G) = 1. All the point vertices form a dominating set in DGabc(G). Hence γ(DGabc(G)) ≤ p. Thus,    
γ(G) + γ(DGabc(G))≤1+p. Suppose γ(G) = p. Then G = pK , γ(DGabc(G))=1. Hence γ(G)+γ(DGabc(G)) = 1+p. Therefore, 

γ(G) + γ(DGabc(G)) ≤ 1+p. Suppose 1 < γ(G) < p. Let γ(G) = k. Let D with |D| = k be a minimum dominating set. In 
DGabc(G), x = D dominates k point vertices. The remaining p−k vertices with D dominates DGabc(G). Therefore, 
γ(DGabc(G)) ≤ 1+(p – k) = p − k +1. 
 
Therefore, γ(G) + γ(DGabc(G)) ≤ k+1+p−k = 1+p. 
 
Next, traversability properties of the graph DGabc(G) is discussed. 
 
Theorem 2.20: Let G be a (p−3) regular graph and β0(G) = 2. If each minimal dominating set is independent, then 
DGabc(G)  is Hamiltonian. 
 
Proof: Let G be a (p−3) regular graph and β0(G) = 2. Since every minimal dominating set has exactly two vertices and 
for each v∈V(G), there exists two minimal dominating sets containing v. Thus, DGabc (G) contains a spanning cycle.  
Hence G is Hamiltonian. 
 
Theorem 2.21: Let G be a (p−3) regular graph with βo(G) = 2 and each minimal dominating set is independent. If p is 
odd, then DGabc (G) is Eulerian. 
 
Proof: Let G be a (p−3) regular graph with βo(G) = 2 and every minimal dominating set is independent. For every 
vertex v∈V(G), there exists exactly two minimal dominating sets containing v. Also, every minimal dominating set 
contains two vertices. Thus, in DGabc(G), 

( )
deg 3 2 1,abc iDG G

v p p= − + = −  1 ≤ i ≤ p and deg DG
abc

(G) Dj = 4, 1 ≤ j ≤ n.  

 
If p is odd, then every vertex of DGabc(G) has an even degree, then DGabc(G) is Eulerian. 
 
Next, we find the girth of DGabc(G). 
 
Theorem 2.22: Girth of DGabc(G) is three if and only if G has a triangle or there exists at least two minimal dominating 
sets which are not disjoint or there exists a minimal dominating set containing two adjacent vertices or there exists 
three dominating sets which are pair wise not disjoint. 
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Proof: Case-(i): G has a triangle. 
 
Since G is an induced sub graph of DGabc(G). Then girth of G is the girth of DGabc (G). Hence, girth of DGabc(G) is 
three. 
 
Case-(ii): Suppose there exists at least two minimal dominating sets D1, D2 which are not disjoint. Then they have a 
common vertex u. Thus, it follows that, in DGabc(G), D1, D2 and u form a triangle. Hence, girth of DGabc(G) is three. 
 
Case-(iii): Suppose there exists a minimal dominating set D3 containing two adjacent vertices u and v. In, DGabc(G), 
D3, u and v form a triangle. Hence, girth of DGabc(G) is three. 
 
Case-(iv): Suppose there exists three dominating sets D4, D5, D6 which are pair wise not disjoint. In, DGabc(G), D4, D5 
and D6 form a triangle. Hence, girth of DGabc(G) is three. 
 
Conversely, assume that girth of DGabc(G) is three. Consider the following cases. 
 
Case-(i): Three vertices are point vertices 
 
Since G is an induced sub graph of DGabc(G), these three form a triangle in G. 
 
Case-(ii): Two vertices are point vertices and one set vertex 
 
Let u, v be point vertices and D = w is a set vertex. Then {u, v, w} forms a triangle implies that u and v are adjacent 
and u, v ∈ D. 
 
Case-(iii): Two vertices are set vertices and one point vertex 
 
Suppose there exists at least two minimal dominating sets u = D1, v = D2 have a common vertex w ∈ V(G).  u, v are 
adjacent implies D1, D2 have a common vertex and uw, vw are adjacent implies w ∈ D1 ∩ D2. 
 
Case-(iv): All three vertices are set vertices 
 
Let u = D1, v = D2 and w = D3 are three minimal dominating sets of G. Di ∩ Dj  ≠ φ for i ≠ j. 
 
CONCLUSION 
 
In this paper, we have defined and studied the new dominating graph DGabc(G). Eccentricity properties of DGabc(G) are 
also studied.  
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