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ABSTRACT

In the present paper, the higher dimensional LRS Bianchi type-1 space-time has been classified according to matter
symmetries (collineations) in presence of perfect fluid. We have obtained different constraint conditions on energy-
momentum tensor (T,,) for perfect fluid. If we solve these constraint conditions, we obtain new exact solutions of
Einstein field equations. These are studied when energy-momentum tensor is degenerate and non-degenerate by
applying these constraint conditions on energy-momentum tensor (T,,). We have considered only those cases which
satisfy energy conditions for perfect fluid.

Keywords: Higher dimensional LRS Bianchi type-I, perfect fluid, matter symmetries (collineations), energy-momentum
tensor.

1. INTRODUCTION

In recent years, the study of higher dimensional space-time has an active field of research in the quest of unification of
gravity with other fundamental forces in physics. Higher dimensional theories proposed by Kaluza and Klein [1, 2].
They realized that a unification of gravity and electromagnetism could exist in a world with 4+1 space-time
dimensions. The idea of higher dimension is particularly important in the field of cosmology to know the exact physical
situation at very early stages of the formation of universe. The number of authors [3-7] have studied the higher
dimensional space-time in cosmology.

In this paper, the motivation for studying matter symmetries in higher dimensional space-time, we obtain exact
solutions to the Einstein’s field equations which are highly non-linear partial differential equations. The Einstein’s field
equations are given by

1
Rab _ERgab = KTab’ (11)
where R, is Ricci tensor, R = g’ R,, is a Ricci scalar, T, is energy-momentum tensor. Here we have assumed
cosmological constant A = 0 and gravitational constant k = 1.

Due to the non-linearity equations, we assume certain symmetries of the space-time metric and these symmetry
assumptions are expressed in terms of isometries of metric tensor, called Killing vectors, which give rise to
conservation laws [8-19]. The symmetries of energy-momentum tensor give conservation laws on matter fields. Such
symmetries are called matter symmetries (collineations). The matter symmetries (collineations) can be written as
[20-24]

LxTay =0 & Top X+ T X5 + Tpe XS =0, (a,b,c=1,2,3,4,5) (1.2)
where Ly is Lie derivative operator along vector field X which generates the symmetry.

In this paper, the higher dimensional LRS Bianchi type-1 space-time has been studied according to matter symmetries
(collineations) in presence of energy-momentum tensor for a perfect fluid. We have obtained different constraint
conditions on energy-momentum tensor (T, ) for a perfect fluid. The plan of this paper is as follows. In the next section
we characterize the matter collineations equations for higher dimensional LRS Bianchi type-I space-time in presence of
perfect fluid. In section (2.1), matter symmetry equations for this space-time are solved when energy-momentum tensor
is degenerate, while in section (2.2), we find a general classification for the non-degenerate case for perfect fluid.
Lastly, we conclude the discussion and conclusion of the results obtained.
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2. MATTER SYMMETRIES EQUATIONS
Here, we consider homogeneous higher dimensional LRS Bianchi type-I metric in the form

ds? = —dt? + A%dx? + B?>(dy? + dz?) + C*dw?, (2.1)
where 4, B and C are the functions of t alone.

The expression for the energy-momentum tensor with a perfect fluid has the form

Tap = (p + P)UsUp + PYap- (2.2)
where u? is the five-velocity vector such that u,u® = —1, and p and p are the energy density and pressure of the fluid
respectively.

Non-zero components of the Ricci tensor are
AAC  2A4B

Ry, = —AA— — (2.3)
Ryy = Ryy = —B2 — BB — 122 - P2C (2.4)
Ry = —CC -2 2E (2.5)
Rss=2+22+5, (2.6)

Here overhead dot denotes differentiation with respect to t. Ricci scalar is given by

i B, ¢ AC , . AB BC B2
R__Z[Z+ZE+E+E+ZE+ZE_§' (2.7
Using Einstein field equations (1.1), non-zero components of energy-momentum tensor are
—p2[pB ¢, 5B B
Ty = A2[22+ ct2ptml (2.8)
—T.. —pg2[BAB_ BC AC A4 C
Ty =Ts = B [.B ta ettty | (2.9)
Ty =C?[;+2o 420+ 5 (2.10)
AB BC | AC | B2
T55=—[ZE+ZE+E+§. (2.11)
For the perfect fluid higher dimensional Bianchi type-I metric, using equation (2.2) we have,
Ty, = pA2, Ty, = Ty3 = pB?, T,y = pC?, Tss = p which yields following metric
dslorfect = p dt* + p[A2dx? + B*(dy? + dz®) + C2dw?]. (2.12)
The matter tensor metric is positive-definite when p > 0and p > 0.
For the perfect fluid the energy conditions are given as [25],
p=p)p>00<p<p. (2.13)
Using equation (1.2), we have following matter symmetries equations as,
T11’5X5 + 2T11X’11 = 0 (214)
T11X’12 + Tzzxi = 0 (215)
TllX}) + T22X'?i = 0 (216)
T X5 +TuX: =0 (2.17)
T11X’15 + T55Xi = 0 (218)
TypsX® + 2T X5 =0 (2.19)
Ty (X3 +X3) =0 (2.20)
Ty X5 + TyuX5 =0 (2.21)
T22X’§ + T55X’§ = 0 (222)
Ty 5X° + 2Ty X3 =0 (2.23)
Ty X3 + TyuX3 =0 (2.24)
Ty X%+ TssX3 =10 (2.25)
TagsX® + 2Ty X% =0 (2.26)
Ty X%+ Tss X3 =0 (2.27)
T55’5X5 + 2T55X% = O, (228)

where comma denotes the partial derivatives and indices 1, 2, 3, 4, 5 corresponds to variables x,y,z,w and t
respectively.
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2.1. MATTER SYMMETRIES FOR THE DEGENERATE ENERGY-MOMENTUM TENSOR FOR
PERFECT FLUID

For the degenerate energy-momentum tensor i.e. when det(T,,) = 0, we have following single possibility when
energy conditions (2.13) for perfect fluid are satisfied,

Tll = TZZ = T33 = T44 = 0 and T55 * 0
This gives, p > 0andp = 0.
For this case, using (2.14)-(2.28), we have following matter symmetries equations,

TssX5 =0, (a=1234) (2.1.1)
T55’5X5 + 2T55X% =0. (212)

Now, equation (2.1.1) yields, X® is function of ¢ alone.

On solving equation (2.1.2), we get
X% =—Land X!, X2, X3 and X* are arbitrary functions of x, v, z, w and t.

VTss

2.2. MATTER SYMMETRIES FOR THE NON-DEGENERATE ENERGY-MOMENTUM TENSOR FOR
PERFECT FLUID

For the non-degenerate energy-momentum tensor i.e. when det(T,,) # 0, we have the following single possibility
when energy conditions for perfect fluid are satisfied,

Toea #0 (a=12345) ie.p>0andp > 0.

Using above condition, we have following cases of non-degeneracy,
11 When one component of X = (X!, X2, X3, X%, X>) is non-zero i.e.
i X %0 X?=X3=X*=X"=0
i, X?#0 X'=X3=X*=X"=0
iii. X3#0 X'=X’=X*=X>=0
iv. X*#0 X'=X?°=X3=X"=0
V. X°#0 X'=Xx?’=X3=Xx*=0.
11] When two components of X = (X1, X2, X3,X* X>) are non-zero i.e.
i X'#0 X?#0, X3=X*=X>=0
i, X'#0 X3#0 X?=X*=X"=0
i, X'#0 X*#0 X*=X3=X°=
iv. X'#0 X°#0, X?=X3=X*=0
V. X?#0 X3#0, X'=X*=X=0
vii X?2#0 X*#0 X'=X3=X°=
vii. X?#0, X°#0 X'=X3=X*=0
viii,.  X3#0, X*#0, X'=X*=X°=
iX. X3#0 X°#0, X'=X*=X*=0
X. X*#0 X>#0 X'=X2=Xx3=0.
1117 When three components of X = (X!, X2, X3,X*, X®) are non-zero i.e.
i, X'#0 X?2#0, X3#0, X*=X>=0
i, X'#0, X2#0, X°#0, X3=X*=0
i, X'#0 X*#0, X>#0 X?=X3=0
iv. X'#0 X?#0 X*#0, X3=X>=0
V. X?#0 X3#0 X*#0, X'=X>=0.

For case I (i), matter symmetries equations, (2.14)-(2.28) becomes,
T1 X, =0 (a=12345) whichimplies X' =¢,.

Similarly, for the sub-cases I-(ii), I-(iii), 1-(iv), we have, solutions as X? = c,, X3 = ¢3, X* = c, respectively. And for
sub-case I-(v), we obtain the constraint equations lead to

Taa,SXS =0 (a = 1;2:4’) (221)
TssXj, =0 (b =1234) (2.2.2)
TsssX® + 2T5sX3 = 0. (2.2.3)

© 2015, IJMA. All Rights Reserved 110



R. S. Rané’, S. S. Dabhane* / The Study of Matter Symmetries in Higher Dimensional LRS Bianchi.... / IIMA- 6(11), Nov.-2015.

From equations (2.2.2) and (2.2.3), X° = \/% with constraint condition
55
T4qe = a = const.#= 0 (d = 1,2,4) where ¢, ¢, ¢3, ¢4, s are the constants.

For case 11 (i), substitute X* # 0, X2 # 0, X3 = X* = X> = 0 in equations (2.14)-(2.28), we get

T XL =0 (a=134,5) (2.2.4)
TpX; =0 (b=2345) (2.2.5)
Tllelz + T22X'21 = 0 (226)

Then we arrive at solutions,
)(1 = Cl' XZ = Cz.

Similarly, in the same way, solution for sub-case lI-(ii), X! = ¢;, X3 = c,, for sub-case lI-(iii), X! = ¢s, X* = ¢¢ and
C

for sub-case I1-(iv), X! = ¢;, X> = —== with constraint condition T,y = a = const.# 0 (d = 1,2,4).
55

\/T_
Now, for the sub-case 11-(v), from equations (2.14)-(2.28), we have
TpX: =0 (a=1245) (2.2.7)
TpX3 =0 (b=1345) (2.2.8)
Ty (X5 +X3) = 0. (2.2.9)

Equation (2.2.7) and (2.2.8), gives, X? = f(z) and X® = g(y) then using equation (2.2.9), we have
f(2)3 =—g(), =&, where § is constant.

If§ =0,then f =c;and g = c,.

If§#0,thenf=c+8.zandg=c, —38.y.

Now, using equations (2.14)-(2.28), for sub-cases I1-(vi), 1I-(vii), 11-(viii), I1-(ix) and 1l-(x), we have similar type of
solutions as in sub-cases I1-(ii), I1-(iii) and 11-( iv).

For case I11-(i), we put, X* # 0, X2 # 0, X3 # 0, X* = X> = 0 in equations (2.14)-(2.28), we get

TXL =0 (a=145) (2.2.10)
Ty X5 =0 (b=245) (2.2.11)
Ty X3 =0 (c=345) (2.2.12)
Ty X5 + T X3 =0 (2.2.13)
T X3+ TpX3i=0 (2.2.14)
Ty (X3 +X3) =0. (2.2.15)

Then we arrive at solutions,
Xt=cp, X =—qz+c5, X3 =qy+oc,.

For case 11 (ii), in this sub-case, X* # 0, X2 # 0, X> # 0, X3 = X* =0, in (2.14)-(2.28), we have

Tzzxi = 0 (2217)
TssX5 =0 (a=34) (2.2.18)
TuasX>=0(d=24) (2.2.19)
Ty 5X° +2T;1 X1 =0 (2.2.20)
T11X’12 + Tzzxi = 0 (2221)
T11X’15 + T55Xi = 0 (2222)
T22’5X5 + 2T22X1% = 0 (2223)
Ty X% + Tss X5 =0 (2.2.24)
Ts55X° + 2Ts5X3 = 0. (2.2.25)

With constraint conditions Ty; = a = const.# 0 (d = 1,2, 4), then we have solutions,
X'=c¢, X2 =, X5 =22

JTss°

Now, we have obtained solutions in sub-case I11-(iii), using (2.14)-(2.28), as
X'=c, X* =), X° =22

JTss5"
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Unlike solutions of sub-case I11-(i), we get, solutions for sub-case 11-(iv) using (2.14)-(2.28), as
X2=c,—cw, X3 =c3, X* =4 + 1.

Now, for sub-case I11-(v), we have, X% # 0, X3 # 0, X* # 0, X! = X> = 0 then using equations (2.14)-(2.28),

T,XL =0 (a=135) (2.2.26)
Ty X5 =0 (b=235) (2.2.27)
TuX* =0 (c=345) (2.2.28)
Tllelz + T22X'21 = 0 (2229)
TllX,i + T44X'41 = 0 (2230)
T22X31_ + T44Xé = 0 (2231)

Differentiating equation (2.2.29) with respect to w and differentiating equation (2.2.30) with respect to y and
subtracting these equations, we get

TyoX%4 — TuaX% = 0. (2.2.32)
Now, differentiating equation (2.2.31) with respect to x, we get

Ty X51 + TasX3, = 0. (2.2.33)
Adding equations (2.2.32) and (2.2.33), we obtain X3; = 0 which gives,

Xt =qw+c,. (2.2.34)

Using equation (2.2.34) in equation (2.2.31), we get,

-7
X4 =T—2261y+c3 and X! = c,.
44

3. DISCUSSION AND CONCLUSION

In the classification of higher dimensional LRS Bianchi type-I space-time according to energy-momentum tensor for
perfect fluid, we find fifteen matter symmetries equations. We have solved these equations for degenerate case (section
2.1) where det(T,;,) = 0 as well as for non-degenerate case (section 2.2) whendet(T,,) = T, T,°T,Ts # 0. From these
equations we obtained different constraint conditions on energy-momentum tensor. If we solve these constraint
conditions we can have new class of exact solutions of Einstein’s field equations. It is observed from section (2.1) that
when energy-momentum tensor is degenerate, then we obtain matter symmetries equations admit infinite dimensional.

Furthermore, it is observed from section (2.2) that when energy-momentum tensor is non-degenerate we found matter
symmetries (collineations) (MC’s) of one dimensional in all sub-cases of case-1 (i-v) whereas two dimensional MC’s in

respectively. All these results have been summarized in the table at the end of this conclusion. (see Appendix).

In this paper, we have obtained a complete classification of matter symmetries equations for the higher dimensional
LRS Bianchi type-1 space-time in presence of energy-momentum tensor for perfect fluid. After solving equation (1.2)
for the space-time (2.1), we got fifteen matter symmetry (collineation) equations. Using these fifteen MC equations, we
have shown that if the energy-momentum tensor for perfect fluid is degenerate, then we found single case where matter
symmetry is infinite dimensional. It is also observed that if energy-momentum tensor is non-degenerate, we found
finite dimensional MC’s for all cases, particularly one and two MC’s for the cases | and Il respectively, and for case I,
we have three and four MC’s.

APPENDIX
Table: For Non-degenerate Case
Case Constraint MC’s
i X' %0, X2=X3=X*=X5=0 1
Lii X?+0, X'=X3=X*=X°=0 1
Lili | X3#0, X'=X?=X*=X°=0 1
Liv | X*#0, X'=X?=X3=X°=0 1
l.v X5 #0, X1=Xx?=x3=Xx*=0 1
I.i X' %0, X% #0, X3=Xx4=X5=0 2
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i | X'#0, X3#0, X*°=X'=X"=0 2
ILiii | x'#0, X*#0, X?=x3=X"=0 2
ILiv_ | X'#0, X°#0, X?’=x3=Xx*'=0 2
v | X2#0, X3#0, X'=x*=X"=0 2
Ivi | X?#0, X*=#0, X'=x3=X"=0 2
ILvii | X2#0, X°#0, X'=x3=Xx*=0 2
ILviii | X3#0, X*#0, X'=X*=X"=0 2
ILix | X3#0, X°#0, X'=x*=Xx*=0 2
Ix | X*#0, X°#0, X'=x*=Xx>=0 2
i | x*=#0,  X2#0, X3#0, X*'=Xx°=0| 4
i | x*#0,  X2#0, X°#0, X3=Xx*=0| 3
i | x*+0,  Xx*#0, X5#0, X?=x3=0| 3
lLiv | X*#0, X?#0, X*#0, X3=X°=0| 4
v | X?#0, X3#0, X*=#0, X'=Xx°=0| 4
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