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ABSTRACT 
In this paper we introduce some stronger forms of semi #g𝛼𝛼-irresolute functions namely strongly semi #g𝛼𝛼-irresolute 
functions, strongly *semi #g𝛼𝛼-irresolute functions and almost semi #g𝛼𝛼-irresolute functions in topological spaces. We 
discuss some properties and characterizations of these functions. Moreover we examine the relationships of these 
functions with the other existing functions. 
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functions, strongly *semi #g𝛼𝛼-irresolute functions and almost semi #g𝛼𝛼-irresolute functions. 
 
 
1. INTRODUCTION 
  
The concept of strongly 𝛼𝛼-irresolute functions was introduced by G. Lo Fara [10] in 1987. Later in 2003, Y. Beceren 
[3] introduced the notions of almost 𝛼𝛼-irresolute functions and 𝛽𝛽-preirresolute functions. R.Devi et.al. [5] introduced 
and investigated the notions of new classes of functions namely strongly g#𝛼𝛼-irresolute functions, strongly semi g#𝛼𝛼-
irresolute functions and almost g#𝛼𝛼-irresolute functions. 
 
In this paper we introduce some stronger forms of semi #g𝛼𝛼-irresolute functions namely strongly semi #g𝛼𝛼-irresolute 
functions, strongly *semi #g𝛼𝛼-irresolute functions and almost semi #g𝛼𝛼-irresolute functions in topological spaces. We 
discuss some properties and characterizations of these functions. Moreover we examine the relationships of these 
functions with the other existing functions. Throughout this paper X and Y denote the topological spaces (X,𝜏𝜏) and 
(Y,𝜎𝜎) on which no separation axioms are assumed unless otherwise mentioned. For a subset A of X its closure and 
interior are denoted by cl(A) and int(A) respectively. 
 
2. PRELIMINARIES 
  
Definition 2.1: A subset A of X is said to be 

(i) semi-open [8] (resp. 𝛼𝛼-open [15], 𝛽𝛽-open [1]) if A ⊆ cl(int(A)) (resp. A ⊆ int(cl(int(A))), A ⊆ cl(int(cl(A)))). 
(ii) generalized closed (briefly g-closed) set [9] if cl(A) ⊆ U, whenever A ⊆ U and U is open in X. The 

complement of the g-closed set is called a g-open set. 
(iii) g#𝛼𝛼-closed [16] if 𝛼𝛼cl(A) ⊆ U, whenever A ⊆ U and U is g-open in X. The complement of the g#𝛼𝛼-closed set 

is called a g#𝛼𝛼-open set. 
(iv) #g𝛼𝛼-closed [4] if 𝛼𝛼cl(A) ⊆ U, whenever A ⊆ U and U is g#𝛼𝛼-open in X. The complement of the #g𝛼𝛼-closed set 

is called a #g𝛼𝛼-open set. 
(v) semi #g𝛼𝛼-closed [7] if scl(A) ⊆ U, whenever A ⊆ U and U is #g𝛼𝛼-open in X. The complement of the semi #g𝛼𝛼-

closed set is called a semi #g𝛼𝛼-open set. 
(vi) g𝛼𝛼-closed [12] if 𝛼𝛼cl(A) ⊆ U, whenever A ⊆ U and U is 𝛼𝛼-open in X. The complement of the g𝛼𝛼-closed set is 

called a g𝛼𝛼-open set. 
(vii) *g𝛼𝛼-closed [20] if cl(A) ⊆ U, whenever A ⊆ U and U is g𝛼𝛼-open in X. The complement of the *g𝛼𝛼-closed set 

is called a *g𝛼𝛼-open set. 
(viii) 𝛼𝛼g-closed [11] if 𝛼𝛼cl(A) ⊆ U, whenever A ⊆ U and U is open in X. The complement of the 𝛼𝛼g-closed set is 

called a 𝛼𝛼g-open set. 
(ix) g#-closed [20] if cl(A) ⊆ U, whenever A ⊆ U and U is 𝛼𝛼g-open in X. The complement of the g#-closed set is 

called a g#-open set. 
(x) gs-closed [2] if scl(A) ⊆ U, whenever A ⊆ U and U is open in X. The complement of the gs-closed set is 

called a gs-open set. 
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(xi) strongly g*s-closed [17] if scl(A) ⊆ U, whenever A ⊆ U and U is gs-open in X. The complement of the 

strongly g*s-closed set is called a strongly g*s-open set. 
(xii) gsp-closed [6] if spcl(A) ⊆ U, whenever A ⊆ U and U is open in X. The complement of the gsp-closed set is 

called a gsp-open set. 
 
Definition 2.2: A function f: (X,𝜏𝜏) → (Y,𝜎𝜎) is said to be 

(i) *g𝛼𝛼-continuous [20] if 𝑓𝑓−1(V) is *g𝛼𝛼-open in X for every open set V of Y. 
(ii) g#-continuous [19] if 𝑓𝑓−1(V) is g#-open in X for every open set V of Y. 
(iii) strongly g*s-continuous [18] if 𝑓𝑓−1(V) is strongly g*s-open in X for every open set V of Y. 
(iv) gs-continuous [2] if 𝑓𝑓−1(V) is gs-open in X for every open set V of Y. 
(v) gsp-continuous [6] if 𝑓𝑓−1(V) is gsp-open in X for every open set V of Y. 
(vi) semi #g𝛼𝛼-continuous [7] if 𝑓𝑓−1(V) is semi #g𝛼𝛼-open in X for every open set V of Y. 

 
Definition 2.3: A function f: (X,𝜏𝜏) → (Y,𝜎𝜎) is said to be semi #g𝛼𝛼-irresolute [7] (resp. 𝛼𝛼-irresolute [13],                       
𝛽𝛽-irresolute[14]) if 𝑓𝑓−1(V) is semi #g𝛼𝛼-closed (resp. 𝛼𝛼-closed, 𝛽𝛽-closed) in (X,𝜏𝜏) for every semi #g𝛼𝛼-closed set V (resp. 
𝛼𝛼-closed, 𝛽𝛽-closed) of (Y,𝜎𝜎). 
 
Definition 2.4: A function f: (X,𝜏𝜏) → (Y,𝜎𝜎) is said to be strongly 𝛼𝛼-irresolute [10] if 𝑓𝑓−1(V) is open in (X,𝜏𝜏) for every 
𝛼𝛼-open set V of (Y,𝜎𝜎). 
 
Definition 2.5: A function f: (X,𝜏𝜏) → (Y,𝜎𝜎) is said to be almost 𝛼𝛼-irresolute [3] if 𝑓𝑓−1(V) is 𝛽𝛽- open in (X,𝜏𝜏) for every 
𝛼𝛼-open set V of (Y,𝜎𝜎). 
 
3. STRONGLY SEMI #g𝜶𝜶-IRRESOLUTE FUNCTIONS 
 
Definition 3.1: A function f: (X,𝜏𝜏) → (Y,𝜎𝜎) is said to be strongly semi #g𝛼𝛼-irresolute if 𝑓𝑓−1(V) is open in X for every 
semi #g𝛼𝛼-open set V of Y. 
 
Theorem 3.2: If f: (X,𝜏𝜏) → (Y,𝜎𝜎) is a strongly semi #g𝛼𝛼-irresolute function then it is semi #g𝛼𝛼-irresolute. 
 
Proof: Let V be a semi #g𝛼𝛼-open set in Y. Since f is strongly semi #g𝛼𝛼-irresolute function, 𝑓𝑓−1(V) is open in X and 
hence it is semi #g𝛼𝛼-open. Therefore f is semi #g𝛼𝛼-irresolute. 
 
The Converse of the above theorem need not be true by the following example. 
 
Example 3.3: Let X = Y = {a, b, c} with τ = {ϕ, X,{a}} and 𝜎𝜎 = {ϕ, Y,{a},{a, b}}  
 
Define f: (X, τ) → (Y, 𝜎𝜎) by f(a) = a, f(b) = b and f(c) = c.  
 
Semi #g𝛼𝛼-open sets in (X, τ) = {ϕ, X, {a}, {a, b}, {a, c}}. 
 
Semi #g𝛼𝛼-open sets in (Y, 𝜎𝜎) = {ϕ, Y, {a}, {a, b}, {a, c}}. 
 
Here 𝑓𝑓−1(V) is semi #g𝛼𝛼-open in X for every semi #g𝛼𝛼-open set V of Y. Hence f is semi #g𝛼𝛼-irresolute. But     
𝑓𝑓−1({a,c}) = {a,c} is semi #g𝛼𝛼-open in Y, not open in X. Thus f is not strongly semi #g𝛼𝛼-irresolute. 
 
Theorem 3.4: If f: (X,𝜏𝜏) → (Y,𝜎𝜎) is a strongly semi #g𝛼𝛼-irresolute function then it is continuous (resp. 𝛼𝛼-continuous, 
semi continuous, 𝛽𝛽-continuous). 
 
Proof: Let V be an open set in Y and hence it is a semi #g𝛼𝛼-open set in Y. Since f is strongly semi #g𝛼𝛼-irresolute 
function, 𝑓𝑓−1(V) is open in X (and hence it is 𝛼𝛼-open, semi open and 𝛽𝛽-open respectively). Therefore f is continuous 
(resp. 𝛼𝛼-continuous, semi continuous, 𝛽𝛽-continuous). 
 
The following example shows that the converse of the above theorem need not be true. 
 
Example 3.5: Let X = Y = {a, b, c} with τ = {ϕ, X,{a},{a, b}} and 𝜎𝜎 = {ϕ, Y,{a, b}}  
 
Define f: (X, τ) → (Y, 𝜎𝜎) by f(a) = a, f(b) = b and f(c) = c. 
 
𝛼𝛼-open sets in (X, τ) = Semi-open sets in (X, τ) = 𝛽𝛽-open sets in (X, τ) = {ϕ, X, {a}, {a, b}, {a, c}} 
 
Semi #g𝛼𝛼-open sets in (Y, 𝜎𝜎) = {ϕ, X, {a}, {b}, {a, b}}. 
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Here 𝑓𝑓−1(V) is open (resp. 𝛼𝛼-open, semi open and 𝛽𝛽-open) in X for every open set V of Y.  
 
Hence f is continuous (resp. 𝛼𝛼-continuous, semi continuous, 𝛽𝛽-continuous). But 𝑓𝑓−1({b}) = {b} semi #g𝛼𝛼-open in Y, 
not open in X. Thus f is not strongly semi #g𝛼𝛼-irresolute. 
 
Theorem 3.6: If f: (X,𝜏𝜏) → (Y,𝜎𝜎) is a strongly semi #g𝛼𝛼-irresolute function then it is *g𝛼𝛼-continuous (resp.                 
g#-continuous, strongly g*s-continuous, gs-continuous, gsp-continuous). 
 
Proof: Let V be an open set in Y and hence it is a semi #g𝛼𝛼-open set in Y. Since f is strongly semi #g𝛼𝛼-irresolute 
function, 𝑓𝑓−1(V) is open in X and hence it is *g𝛼𝛼-open (resp. g#-open, strongly g*s-open, gs-open, gsp-open). 
Therefore f is *g𝛼𝛼-continuous (resp. g#-continuous, strongly g*s-continuous, gs-continuous, gsp-continuous). 
 
The Converse of the above theorem need not be true by the following example. 
 
Example 3.7: Let X = Y = {a, b, c} with τ = {ϕ, X,{a},{a, b}} and 𝜎𝜎 = {ϕ, Y,{a, b}}  
 
Define f: (X, τ) → (Y, 𝜎𝜎) by f(a) = a, f(b) = b and f(c) = c. 
*g𝛼𝛼-open sets in (X, τ) = g#-open sets in (X, τ) = {ϕ, X,{a},{a, b}}. 
 
Strongly g*s-open sets in (X, τ) = {ϕ, X,{a},{a, b},{a, c}}. 
gs-open sets in (X, τ) = gsp-open sets in (X, τ) = {ϕ, X,{a},{b},{a, b},{a, c}}. 
Semi #g𝛼𝛼-open sets in (Y, 𝜎𝜎) = {ϕ, Y,{a},{b},{a, b}} 
 
Here 𝑓𝑓−1(V) is *g𝛼𝛼-open (resp. g#-open, strongly g*s-open, gs-open, gsp-open) in X for every open set V of Y. Hence 
f is *g𝛼𝛼-continuous (resp. g#-continuous, strongly g*s-continuous, gs-continuous, gsp-continuous). But 𝑓𝑓−1({b}) = {b} 
semi #g𝛼𝛼-open in Y, not open in X. Thus f is not strongly semi #g𝛼𝛼-irresolute. 
 
Theorem 3.8: If f: (X,𝜏𝜏) → (Y,𝜎𝜎) is a strongly semi #g𝛼𝛼-irresolute function then it is strongly 𝛼𝛼-irresolute. 
 
Proof: Let V be 𝛼𝛼-open in Y and hence it is semi #g𝛼𝛼-open. Since f is strongly semi #g𝛼𝛼-irresolute, 𝑓𝑓−1(V) is open in 
X. Thus f is strongly 𝛼𝛼-irresolute. 
 
The reverse implication need not be true which can be seen from the following example. 
 
Example 3.9: Let X = Y = {a, b, c} with τ = {ϕ, X,{a},{a, b}} and 𝜎𝜎 = {ϕ, Y,{a, b}}  
 
Define f: (X, τ) → (Y, 𝜎𝜎) by f(a) = a, f(b) = b and f(c) = c. 
𝛼𝛼-open sets in (Y, 𝜎𝜎) = {ϕ, X,{a, b}}. 
 
Semi #g𝛼𝛼-open sets in (Y, 𝜎𝜎) = {ϕ, Y, {a}, {b}, {a, b}} 
 
Here 𝑓𝑓−1(V) is open in X for every 𝛼𝛼-open set V of Y. Hence f is strongly 𝛼𝛼-irresolute. 
 
But 𝑓𝑓−1({b}) = {b} semi #g𝛼𝛼-open in Y, not open in X. Thus f is not strongly semi #g𝛼𝛼-irresolute. 
 
Theorem 3.10: If f: (X,𝜏𝜏) → (Y,𝜎𝜎) is a strongly semi #g𝛼𝛼-irresolute function then for each x ∈ X and each semi #g𝛼𝛼-
open set V of Y containing f(x) there exists an open set U of X containing x such that f(U) ⊂ V. 
 
Proof: Let x ∈ X and V be any semi #g𝛼𝛼-open set of Y containing f(x). Since f is strongly semi #g𝛼𝛼-irresolute, 𝑓𝑓−1(V) 
is open in X and contains x. Let U = 𝑓𝑓−1(V) then U is an open subset of X containing x and f(U) ⊂ V. 
 
Theorem 3.11: Let f: (X,𝜏𝜏) → (Y,𝜎𝜎) and g: (Y,𝜎𝜎) → (Z,𝜂𝜂) be any two functions, then their composition g∘ f: (X,𝜏𝜏) → 
(Z,𝜂𝜂) is 

(i) strongly semi #g𝛼𝛼-irresolute if f is strongly semi #g𝛼𝛼-irresolute and g is semi #g𝛼𝛼-irresolute 
(ii) semi #g𝛼𝛼-irresolute if f is semi #g𝛼𝛼-continuous and g is strongly semi #g𝛼𝛼-irresolute. 

 
Proof: 

(i) Let V be a semi #g𝛼𝛼-open subset of Z. Since g is semi #g𝛼𝛼-irresolute, 𝑔𝑔−1(V) is semi #g𝛼𝛼-open in Y. Since f is 
strongly semi #g𝛼𝛼-irresolute, (𝑔𝑔 ∘ 𝑓𝑓)−1 (V) = 𝑓𝑓−1(𝑔𝑔−1(V)) is open in X and hence g∘ f is strongly semi #g𝛼𝛼-
irresolute. 

(ii) Let V be a semi #g𝛼𝛼-open subset of Z. Since g is strongly semi #g𝛼𝛼-irresolute, 𝑔𝑔−1(V) is open in Y. Since f is 
semi #g𝛼𝛼-continuous, (𝑔𝑔 ∘ 𝑓𝑓)−1 (V) = 𝑓𝑓−1(𝑔𝑔−1(V)) is semi #g𝛼𝛼-open in X. Thus g∘ f is semi #g𝛼𝛼-irresolute. 
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4. STRONGLY *SEMI #g𝜶𝜶-IRRESOLUTE FUNCTIONS 
 
Definition 4.1: A function f: (X,𝜏𝜏) → (Y,𝜎𝜎) is said to be strongly *semi #g𝛼𝛼-irresolute if 𝑓𝑓−1(V) is semi open in X for 
every semi #g𝛼𝛼-open set V of Y. 
 
Theorem 4.2: If f: (X,𝜏𝜏) → (Y,𝜎𝜎) is a strongly semi #g𝛼𝛼-irresolute function then it is strongly *semi #g𝛼𝛼-irresolute. 
 
Proof: Let V be a semi #g𝛼𝛼-open set in Y. Since f is strongly semi #g𝛼𝛼-irresolute function, 𝑓𝑓−1(V) is open in X and 
hence it is semi open in X. Therefore f is strongly *semi #g𝛼𝛼-irresolute. 
 
The Converse of the above theorem need not be true by the following example. 
 
Example 4.3: Let X = Y = {a, b, c} with τ = {ϕ, X,{a}} and 𝜎𝜎 = {ϕ, Y,{a},{a,b}}  
 
Define f: (X, τ) → (Y, 𝜎𝜎) by f(a) = a, f(b) = b and f(c) = c.  
 
Semi-open sets in (X, τ) = {ϕ, X,{a},{a, b},{a, c}}. 
 
Semi #g𝛼𝛼-open sets in (Y, 𝜎𝜎) = {ϕ, Y,{a},{a, b},{a, c}}. 
 
Here 𝑓𝑓−1(V) is semi-open in X for every semi #g𝛼𝛼-open set V of Y. Hence f is strongly *semi #g𝛼𝛼-irresolute. But 
𝑓𝑓−1({a,c}) = {a,c} is semi #g𝛼𝛼-open in Y, not open in X. Thus f is not strongly semi #g𝛼𝛼-irresolute. 
 
Theorem 4.4: Let f: (X,𝜏𝜏) → (Y,𝜎𝜎) and g: (Y,𝜎𝜎) → (Z,𝜂𝜂) be any two functions, then their composition                          
g∘ f: (X,𝜏𝜏) → (Z,𝜂𝜂) is strongly *semi #g𝛼𝛼-irresolute if f is strongly *semi #g𝛼𝛼-irresolute and g is semi #g𝛼𝛼-irresolute. 
 
Proof: It is similar to the proof of Theorem 3.11. 
 
Theorem 4.5: For a function f: (X,𝜏𝜏) → (Y,𝜎𝜎), the following are equivalent. 

(i) f is strongly *semi #g𝛼𝛼-irresolute. 
(ii) For each x ∈ X and each semi #g𝛼𝛼-open set V of Y containing f(x) there exists a semi open set U of X 

containing x such that f(U) ⊂ V. 
(iii) 𝑓𝑓−1(V) ⊂ cl(int( 𝑓𝑓−1(V))) for every semi #g𝛼𝛼-open set V of Y. 
(iv) 𝑓𝑓−1(M) is semi-closed in X for every semi #g𝛼𝛼-closed set M of Y. 

 
Proof:  
(i) ⟹ (ii): Let x ∈ X and V be any semi #g𝛼𝛼-open set of Y containing f(x). Since f is strongly *semi #g𝛼𝛼-irresolute, 
𝑓𝑓−1(V) is semi open in X and contains x. Let U = 𝑓𝑓−1(V). Thus there exists a semi open set U of X containing x such 
that f(U) ⊂ V. 
 
(ii) ⟹ (iii): Let V be any semi #g𝛼𝛼-open set of Y containing f(x). i.e., x ∈ 𝑓𝑓−1(V). By (ii), there exists a semi open set 
U of X containing x such that f(U) ⊂ V. Thus we have x ∈ U ⊂ cl(int(U)) ⊂ cl(int( 𝑓𝑓−1(V))) and hence 𝑓𝑓−1(V) ⊂ 
cl(int( 𝑓𝑓−1(V))). 
 
(iii) ⟹ (iv): Let M be any semi #g𝛼𝛼-closed subset of Y. Let V = Y \ M. Then V is semi #g𝛼𝛼-open in Y. By (iii), we 
have 𝑓𝑓−1(V) ⊂ cl(int( 𝑓𝑓−1(V))) and hence 𝑓𝑓−1(M) = X \ 𝑓𝑓−1(Y \ M) = X \ 𝑓𝑓−1(V) is semi-closed in X. 
 
(iv) ⟹ (i): Let M be any semi #g𝛼𝛼-open subset of Y. Let V = Y \ M. Then V is semi #g𝛼𝛼-closed in Y. By (iv), we have 
𝑓𝑓−1(V) is semi-closed. Then 𝑓𝑓−1(M) = X \ 𝑓𝑓−1(Y \ M) = X \ 𝑓𝑓−1(V) is semi-open in X. Therefore f is strongly *semi 
#g𝛼𝛼-irresolute. 
 
5. ALMOST SEMI #g𝜶𝜶-IRRESOLUTE FUNCTIONS 
 
Definition 5.1: A function f: (X,𝜏𝜏) → (Y,𝜎𝜎) is said to be almost semi #g𝛼𝛼-irresolute if 𝑓𝑓−1(V) is 𝛽𝛽-open in X for every 
semi #g𝛼𝛼-open set V of Y. 
 
Theorem 5.2: If f: (X,𝜏𝜏) → (Y,𝜎𝜎) is almost semi #g𝛼𝛼-irresolute function then it is 𝛽𝛽-continuous. 
 
Proof: Let V be an open set in Y and hence it is a semi #g𝛼𝛼-open set in Y. Since f is almost semi #g𝛼𝛼-irresolute 
function, 𝑓𝑓−1(V) is 𝛽𝛽-open in X. Hence f is 𝛽𝛽-continuous. 
 
The following example shows that the converse of the above theorem need not be true. 
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Example 5.3: Let X = Y = {a, b, c} with τ = {ϕ, X, {a}, {a, b}} and 𝜎𝜎 = {ϕ, Y, {a, b}}  
 
Define f: (X, τ) → (Y, 𝜎𝜎) by f(a) = a, f(b) = b and f(c) = c.  
 
𝛽𝛽-open sets in (X, τ) = {ϕ, X, {a}, {a, b}, {a, c}}. 
 
Semi #g𝛼𝛼-open sets in (Y, 𝜎𝜎) = {ϕ, Y,{a},{b},{a, b}}. 
 
Here 𝑓𝑓−1(V) is 𝛽𝛽-open in X for every open set V of Y. Hence f is 𝛽𝛽-continuous. But 𝑓𝑓−1({b}) = {b} is semi #g𝛼𝛼-open 
in Y, not 𝛽𝛽-open in X. Thus f is not almost semi #g𝛼𝛼-irresolute. 
 
Theorem 5.4: If f: (X,𝜏𝜏) → (Y,𝜎𝜎) is almost semi #g𝛼𝛼-irresolute function then it is almost 𝛼𝛼-irresolute. 
 
Proof: Let V be 𝛼𝛼-open in Y and hence it is semi #g𝛼𝛼-open. Since f is almost semi #g𝛼𝛼-irresolute, 𝑓𝑓−1(V) is 𝛽𝛽-open in 
X. Thus f is almost 𝛼𝛼-irresolute. 
 
The reverse implication need not be true which can be seen from the following example. 
 
Example 5.5: Let X = Y = {a, b, c} with τ = {ϕ, X, {a},{a, b}} and 𝜎𝜎 = {ϕ, Y,{a, b}}  
 
Define f: (X, τ) → (Y, 𝜎𝜎) by f(a) = a, f(b) = b and f(c) = c.  
 
𝛽𝛽-open sets in (X, τ) = {ϕ, X,{a},{a, b},{a, c}}. 
 
𝛼𝛼-open sets in (Y, 𝜎𝜎) = {ϕ, Y, {a, b}}. 
 
Semi #g𝛼𝛼-open sets in (Y, 𝜎𝜎) = {ϕ, Y,{a},{b},{a, b}}. 
 
Here 𝑓𝑓−1(V) is 𝛽𝛽-open in X for every 𝛼𝛼-open set V of Y. Hence f is almost 𝛼𝛼-irresolute. 
 
But 𝑓𝑓−1({b}) = {b} is semi #g𝛼𝛼-open in Y, not 𝛽𝛽-open in X. Thus f is not almost semi #g𝛼𝛼-irresolute. 
 
Theorem 5.6: Let f: (X,𝜏𝜏) → (Y,𝜎𝜎) and g: (Y,𝜎𝜎) → (Z,𝜂𝜂) be any two functions, then their composition g∘ f: (X,𝜏𝜏) → 
(Z,𝜂𝜂) is 

(i) almost 𝛼𝛼-irresolute if f is almost semi #g𝛼𝛼-irresolute and g is 𝛼𝛼-irresolute 
(ii) almost semi #g𝛼𝛼-irresolute if f is 𝛽𝛽-irresolute and g is almost semi #g𝛼𝛼-irresolute. 

 
Proof: The Proof is similar to that of Theorem 3.11. 
 
Theorem 5.7: For a function f: (X,𝜏𝜏) → (Y,𝜎𝜎), the following are equivalent. 

(i) f is almost semi #g𝛼𝛼-irresolute. 
(ii) For each x ∈ X and each semi #g𝛼𝛼-open set V of Y containing f(x) there exists a 𝛽𝛽-open set U of X containing 

x such that f(U) ⊂ V. 
(iii) 𝑓𝑓−1(V) ⊂ cl(int( 𝑓𝑓−1(V))) for every semi #g𝛼𝛼-open set V of Y. 
(iv) 𝑓𝑓−1(M) is 𝛽𝛽-closed in X for every semi #g𝛼𝛼-closed set M of Y. 

 
Proof: It is similar to the proof of Theorem 4.5. 
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