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ABSTRACT 
Let G= (V, E) be a graph. A Subset D of V is called a dominating set of G if every vertex in V-D is adjacent to atleast 
one vertex in D. The Domination number γ (G) of G is the cardinality of the minimum dominating set of G. Let              
G = (V, E ) be a graph and let f  be a function that assigns to each vertex of  V to a set of values from the set 
{1,2,.......k} that is,  f:V(G) → {1,2,.....k} such that fo r each u,v ∈ V(G), f(u)≠f(v), if u is adjacent to v in G. Then the 
dominating set D ⊆V (G) is called a balanced dominating set if ∑ 𝑓𝑓(𝑢𝑢) =𝑢𝑢𝑢𝑢𝑢𝑢 ∑ 𝑓𝑓(𝑣𝑣)𝑣𝑣𝑣𝑣𝑣𝑣−𝐷𝐷 . In this paper, this new 
parameter is going to be analyzed for trees. If T is a tree with order n≥ 3 and  l leaves,  𝛾𝛾𝑏𝑏𝑏𝑏 (𝑇𝑇) ≤  𝛾𝛾(T)+ l – 1and for s 
support vertices, 𝛾𝛾𝑏𝑏𝑏𝑏 (𝑇𝑇) ≤  (n+s)/2. 
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1. INTRODUCTION 
 
Let G = (V, E) be a graph with vertex set V and edge set E. The degree of v denoted by degG (v) is the number of 
vertices adjacent to v in G. A vertex of degree one is called a leaf and its neighbor is a support vertex. 
 
Let G = (V, E ) be a graph and let f  be a function that assigns to each vertex of  V to a set of values from the set 
{1,2,.......k} that is,  f:V(G) → {1,2,.....k} such that for each u,v ϵ V(G), f(u)≠f(v), if u is adjacent to v in G. Then the set 
D ⊆V (G) is called a balanced dominating set if  ∑ 𝑓𝑓(𝑢𝑢) =𝑢𝑢𝑢𝑢𝑢𝑢 ∑ 𝑓𝑓(𝑣𝑣)𝑣𝑣𝑣𝑣𝑣𝑣−𝐷𝐷  
 
The balanced domination number  𝛾𝛾𝑏𝑏𝑏𝑏 (𝐺𝐺) is the minimum cardinality of the balanced dominating set. 
 
The set D ⊆ V (G) is called strong balanced dominating set if ∑ 𝑓𝑓(𝑢𝑢) ≥𝑢𝑢𝑢𝑢𝑢𝑢 ∑ 𝑓𝑓(𝑣𝑣)𝑣𝑣𝑣𝑣𝑣𝑣−𝐷𝐷 .Also the set D ⊆ V(G) is 
called weak balanced dominating set if ∑ 𝑓𝑓(𝑢𝑢) ≤𝑢𝑢𝑢𝑢𝑢𝑢 ∑ 𝑓𝑓(𝑣𝑣)𝑣𝑣𝑣𝑣𝑣𝑣−𝐷𝐷  
 
The sum of the values assigned to each vertex of G is called the total value of G. that is,  
Total value = f (V) = ∑ 𝑓𝑓(𝑣𝑣)𝑣𝑣𝑣𝑣𝑣𝑣 (𝐺𝐺) . 
 
Definition 1.1: The distance d(x, y) between two vertices x and y is the length of the shortest path from x to y 
considering all possible paths in G from x to y. 
 
Definition 1.2: The eccentricity of vertex v is ecc(v) = max{d(v, w); w ∈ 𝑉𝑉}.The radius of  G is rad(G) = min 
{ecc(v);v ∈ 𝑉𝑉}.The diameter of G is diam(G)= max{ecc(v);v∈ 𝑉𝑉}. 
 
Definition 1.3: If one vertex of a tree is singled out as a starting point and all the branches fan out from the vertex, we 
call such a tree a rooted tree. 
 
Definition 1.4: In a rooted tree, the parent of a vertex is the vertex connected to it on the path to the root; every vertex 
except the root has a unique parent. A child of a vertex v is a vertex of which v is the parent. 
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Definition 1.5: A dominating set S is an independent dominating set if no two vertices are adjacent that is, S is an 
independent set. The independent domination number i (G) of a graph G is the minimum cardinality of an independent 
dominating set. 
 
Theorem 1.6: Let G be a graph with n vertices. Then G has a balanced dominating set iff f (V) = ∑ 𝑓𝑓(𝑣𝑣)𝑣𝑣𝑣𝑣𝑣𝑣 (𝐺𝐺)   is even. 
Proved in [6]. 
 
Theorem 1.7: Let G be a graph with n vertices. Then G has no balanced dominating set iff f (V) = ∑ 𝑓𝑓(𝑣𝑣)𝑣𝑣𝑣𝑣𝑣𝑣 (𝐺𝐺)   is odd. 
Proved in [6]. 
 
2. UPPER BOUNDS 
 
Theorem 2.1: For any nontrivial tree T, if T=Pn then  𝛾𝛾𝑏𝑏𝑏𝑏 (𝑇𝑇) ≤  2i (T). 
 
Proof: Let T=Pn. 
 
We partition the vertices of T into two disjoint i (T)-sets D and D’. 
 
Therefore,  𝛾𝛾𝑏𝑏𝑏𝑏 (𝑇𝑇) ≤ |DUD’| 
                               ≤ |𝐷𝐷| + |𝐷𝐷′ | 
                               ≤ 2i (T). 
 
Hence  𝛾𝛾𝑏𝑏𝑏𝑏 (𝑇𝑇) ≤  2i (T). 
 

Theorem 2.2: If T=K1, n-1 then 𝛾𝛾𝑏𝑏𝑏𝑏 (𝑇𝑇) =�  ∆
2

  if n is odd
0    if n is even

�. 

 
Proof: 
 
Case-1: n is odd 
 
For K1, n-1, we have two partition, that is, D1 having one vertex of value 1 and D2 having n-1 vertices of value 2. 

∑ 𝑓𝑓(𝑣𝑣)𝑣𝑣𝑣𝑣𝑣𝑣 (𝐺𝐺)   = 2+n – 1 = n+1. 
 
D1U (D2/2) – 1 form a balanced dominating set of T. 
 
Therefore,  𝛾𝛾𝑏𝑏𝑏𝑏 (𝑇𝑇) = |D1 U D2

2
  - 1| 

                               = |D1 |+| D2
2

 | - 1 

                               = 1+𝑛𝑛−1
2

 - 1 

                               = 𝑛𝑛−1
2

 
 
𝛾𝛾𝑏𝑏𝑏𝑏 (𝑇𝑇) = 𝑛𝑛−1

2
 =  ∆

2
 . 

 
Case-2: n is even 
∑ 𝑓𝑓(𝑣𝑣)𝑣𝑣𝑣𝑣𝑣𝑣 (𝐺𝐺)   = 2+n – 1 = n+1. 
 
Therefore, ∑ 𝑓𝑓(𝑣𝑣)𝑣𝑣𝑣𝑣𝑣𝑣 (𝐺𝐺)   is odd. 
 
Therefore T has no balanced dominating set. 
 
Hence  𝛾𝛾𝑏𝑏𝑏𝑏 (𝑇𝑇) = 0. 
 
Theorem 2.3: If T is a tree of order atleast three with l leaves then  

𝛾𝛾𝑏𝑏𝑏𝑏 (𝑇𝑇) ≤  𝛾𝛾(T) + l – 1. 
 
Proof: To establish the upper bound, we proceed by induction on the order of T. It is obvious for n ∈ {3, 4, 5}. Let     
n ≥ 6. 
 
Assume that for any tree T’ of order 3≤ 𝑛𝑛′ < n having l’ leaves, 

 𝛾𝛾𝑏𝑏𝑏𝑏 (𝑇𝑇′) ≤  𝛾𝛾(T’)+ l’ – 1. 
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Let T be a tree of order n with l leaves. Let S and D be 𝛾𝛾𝑏𝑏𝑏𝑏 (𝑇𝑇)-set and 𝛾𝛾(T)- set respectively. If T is a star K1, n-1, we 

have  𝛾𝛾𝑏𝑏𝑏𝑏 (𝑇𝑇) =�  ∆
2

  if n is odd
0    if n is even

�.  

 
Therefore 𝛾𝛾𝑏𝑏𝑏𝑏 (𝑇𝑇)=l/2 and 𝛾𝛾(T) =1.hence 𝛾𝛾𝑏𝑏𝑏𝑏 (𝑇𝑇) ≤  𝛾𝛾(T) + l – 1. 
 
Hence we may assume diam (T) ≥ 4. 
 
If any support vertex say t, is adjacent to two or more leaves, 
 
Then T’ be the tree obtained from T by removing a leaf adjacent to t. 

𝛾𝛾𝑏𝑏𝑏𝑏 (𝑇𝑇′)=0 or 𝛾𝛾𝑏𝑏𝑏𝑏 (𝑇𝑇′) ≤ 𝛾𝛾𝑏𝑏𝑏𝑏 (𝑇𝑇) , 𝛾𝛾(T’) =  𝛾𝛾(T) and l’=l-1. 
 
Applying inductive hypothesis to T’, we get  𝛾𝛾𝑏𝑏𝑏𝑏 (𝑇𝑇′) ≤  𝛾𝛾(T’) + l’ – 1. 
 
Hence 𝛾𝛾𝑏𝑏𝑏𝑏 (𝑇𝑇) ≤  𝛾𝛾(T) + l – 1. 
 
We can assume that every support vertex of T is adjacent to exactly one leaf. 
 
We now root the tree at a vertex r at maximum eccentricity diam (T) ≥ 4. 
 
Let u be a support vertex of maximum distance from r and v be the parent of u in the rooted tree. Then degT (u) =2.      
 
Let w be the parent of v and x be the parent of w. By our choice of u, every child of v is either a leaf or a support vertex 
of degree two. 
 
Consider the following two cases: 
 
Case-1: The child of v is a support vertex of degree two. V has a child besides u, say y, that is a support vertex. T’ can 
be obtained by removing a leaf from the support vertex y. 
 
Then 𝛾𝛾𝑏𝑏𝑏𝑏 (𝑇𝑇′) = 𝛾𝛾𝑏𝑏𝑏𝑏 (𝑇𝑇) - 1, 𝛾𝛾(T’) =  𝛾𝛾(T) and l’=l. 
 
Applying inductive hypothesis to T’, we get  𝛾𝛾𝑏𝑏𝑏𝑏 (𝑇𝑇′) ≤  𝛾𝛾(T’) + l’ – 1. 
 
Hence 𝛾𝛾𝑏𝑏𝑏𝑏 (𝑇𝑇) ≤  𝛾𝛾(T) + l – 1. 
 
Case-2: The child of v is a leaf. V is a support vertex and has no child besides u of degree two. T’ can be obtained by 
removing a leaf from the support vertex u. 
 
Then 𝛾𝛾𝑏𝑏𝑏𝑏 (𝑇𝑇′) = 𝛾𝛾𝑏𝑏𝑏𝑏 (𝑇𝑇) - 1, 𝛾𝛾(T’) =  𝛾𝛾(T)-1 and l’=l. 
 
Applying inductive hypothesis to T’, we get  𝛾𝛾𝑏𝑏𝑏𝑏 (𝑇𝑇′) ≤  𝛾𝛾(T’) + l’ – 1. 
 
Hence 𝛾𝛾𝑏𝑏𝑏𝑏 (𝑇𝑇) ≤  𝛾𝛾(T) + l – 1. 
 
Example 2.4: 

 
Figure-1 
𝛾𝛾𝑏𝑏𝑏𝑏  (T) = 6 

𝑙𝑙 = 5 , 𝛾𝛾(T) =5 
𝛾𝛾(T)+l – 1=5+5-1=9 
𝛾𝛾𝑏𝑏𝑏𝑏 (𝑇𝑇) ≤  𝛾𝛾(T) + l – 1. 
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Note 2.5: The bound of the theorem 3 is sharp. 
 
Example 2.6: 
P8  
 
       V0 (1)   V1 (2)              V2 (1)          V3 (2)         V4 (1)           V5 (2)        V6 (1)               V7 (2)  
 

Figure-2 
𝛾𝛾𝑏𝑏𝑏𝑏  (P8) = 4 

𝑙𝑙 = 2 , 𝛾𝛾(P8) =3 
𝛾𝛾(P8)+l – 1=3+2-1=4 
𝛾𝛾𝑏𝑏𝑏𝑏 (𝑇𝑇) =  𝛾𝛾(T) + l – 1. 

 
Theorem 2.7: If T is a tree of order n ≥ 3 with s support vertices then 𝛾𝛾𝑏𝑏𝑏𝑏 (𝑇𝑇) ≤  (n+s)/2. 
 
Proof: We proceed by induction on the order n.It is obvious that result is valid if diam (T) ∈ {2, 3} establishing the 
base case. 
 
Assume that every tree T’ of order 3≤ n’< n with s’ support vertices satisfies 𝛾𝛾𝑏𝑏𝑏𝑏 (𝑇𝑇′) ≤  (n’+s’)/2. 
 
Let T be a tree of order n with s support vertices. We now root T at a vertex r of maximum eccentricity diam (T) ≥ 4. 
 
Let u be a support vertex at maximum distance from r and v its parent in the rooted tree. 
 
Since diam (T) ≥ 4, let w be the parent of v in the rooted tree.  Consider the following two cases 
 
Case-1: degT (w) ≥ 3 
 
Then either w is a support vertex of T or w has a child besides u as a support vertex. 
 
Let T’=T- Tv. clearly n’=n-(N [V]) =n-3 and s’=s-1. 
 
There is a 𝛾𝛾(T’)-set S’ containing w. Thus, S’U {u} is a balanced dominating set of T, implying that 

 𝛾𝛾𝑏𝑏𝑏𝑏 (𝑇𝑇) ≤ 𝛾𝛾𝑏𝑏𝑏𝑏 (𝑇𝑇′) + 1. 
 
Applying the inductive hypothesis to T’, it follows that  
𝛾𝛾𝑏𝑏𝑏𝑏 (𝑇𝑇) ≤ 𝛾𝛾𝑏𝑏𝑏𝑏 (𝑇𝑇′) + 1 
            ≤  (n’+s’)/2 
            ≤ 𝑛𝑛+𝑠𝑠−4

2
 +1 

            ≤  (n+s)/2. 
 
Case-2: degT (w) = 3 
 
Let T’=T- Tv. clearly n’=n-(N [V]) =n-3 and s’=s-1. 
 
There is a 𝛾𝛾(T’)-set S’ containing w.Thus, S’U {u} is a balanced dominating set of T, implying that  

𝛾𝛾𝑏𝑏𝑏𝑏 (𝑇𝑇) ≤ 𝛾𝛾𝑏𝑏𝑏𝑏 (𝑇𝑇′) + 1. 
 
Applying the inductive hypothesis to T’, it follows that  
𝛾𝛾𝑏𝑏𝑏𝑏 (𝑇𝑇) ≤ 𝛾𝛾𝑏𝑏𝑏𝑏 (𝑇𝑇′) + 1 
             ≤  (n’+s’)/2 
             ≤ 𝑛𝑛+𝑠𝑠−4

2
 +1 

             ≤  (n+s)/2. 
 
Hence  𝛾𝛾𝑏𝑏𝑏𝑏 (𝑇𝑇) ≤  (n+s)/2. 
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Example 2.8: 

 
Figure-3 
𝛾𝛾𝑏𝑏𝑏𝑏  (T) = 5 
𝑛𝑛 = 12 , s=4 

𝛾𝛾𝑏𝑏𝑏𝑏 (𝑇𝑇) ≤  (n+s)/2. 
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