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 ABSTRACT 
The boundary layer flow and heat transfer due to plate stretching with a power law velocity distribution in the 
presence of a transverse magnetic field is studied. A special form of magnetic field is chosen so as to yield the 
similarity equation. It is assume that the induced magnetic field is negligible, which justified for flow at small magnetic 
Reynolds number. The external electric field is zero and the electric field due to polarization of charges is also 
negligible, the heat due to viscous and Joule dissipation are neglected. Numerical solution of the resulting momentum 
boundary layer and thermal boundary layer equations are determined using fourth order Runge-Kutta scheme together 
with shooting method. 
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1. INTRODUCTION 
 
The study of the boundary layer flow of an electrically conducting fluid through a porous media has many applications 
in manufacturing and natural process which include cooling of electronic devices by fans, cooling of nuclear reactors 
during emergency shutdown, cooling of an infinite metallic plate in a cooling bath, textile and paper industries, glass-
fiber production, manufacture of plastic and rubber sheets, the utilization of geothermal energy, the boundary layer 
control in the field of aerodynamics, food processing, plasma studies and in the flow of biological fluids. 
Magnetohydrodynamics (MHD) is the study of the flow of electrically conducting fluids in a magnetic field. Many 
experimental and theoretical studies on conventional electrically conducting fluids indicate that magnetic field 
markedly changes their transport and heat transfer characteristics. The study of magnetohydrodynamics has many 
important applications, and may be used to deal with problems such as cooling of nuclear reactors by liquid sodium and 
induction flow meter, which depends on the potential difference in the fluid in the direction perpendicular to the motion 
and to the magnetic field [1]. Recently, the application of magnetohydrodynamics in the polymer industry and 
metallurgy has attracted the attention of many researchers. Several researches investigated the MHD flow [2 - 7].The 
study of flow over a stretching sheet has generated much interest in recent years in view of its numerous industrial 
applications such as the aerodynamic extrusion of plastic sheets, the boundary layer along a liquid film, condensation 
process of metallic plate in a cooling bath and glass, and also in polymer industries. Since the pioneering work of 
Sakiadis [8] which studied the stretching flow problem. Phukan[9] studied hydromagnetic flow and heat transfer over a 
surface stretching with a power-law velocity distribution. Mohebujjaman [10] discussed about MHD heat transfer 
mixed convection flow along vertical stretching sheet in presence of magnetic field with heat generation.  
 
Gupta and Gupta [11] have investigated heat and mass transfer in Hydrodynamic fluid flow over an isothermal 
stretching sheet with suction/blowing effects. Chen and Char [12] have extended the works of Gupta and Gupta to that 
of non-isothermal stretching sheet.  
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Viscous dissipation changes the temperature distributions by playing a role like an energy source, which leads to 
affected heat transfer rates. The advantage of the effect of viscous dissipation depends on whether the plate is being 
cooled or heated. Heat transfer analysis over porous surface is of much practical interest due to its rich applications. 
The previous studies are based on the constant physical properties of the fluid. However, it is known that the physical 
properties of the fluid may change significantly with temperature. The temperature increases leads to the increase in the 
transport phenomena by reducing the viscosity across the momentum boundary layer and due to which the heat transfer 
rate at the wall is also affected. Therefore, to accurately predict the flow and heat transfer rates, it is necessary to take 
into account the temperature-dependent viscosity of the fluid. The effect of temperature-dependent viscosity on heat 
and mass transfer laminar boundary layer flow has been discussed by many authors [13–18] in various situations. They 
showed that when this effect was included, the flow characteristics might change substantially compared with the 
constant viscosity assumption. Salem [19] investigated variable viscosity and thermal conductivity effects on MHD 
flow and heat transfer in visco-elastic fluid over a stretching sheet. Anjali Devi and Ganga [20] have considered the 
viscous dissipation effects on MHD flows 
 
The study of heat source/sink effects on heat transfer is very important in view of several physical problems. Above 
mentioned studies contain only the effect of uniform heat source/sink (i.e., temperature dependent heat source/sink) on 
heat transfer. Eldahab and Aziz [21] have included the effect of non-uniform heat source with suction/blowing, but 
confined to the case of viscous fluids only. Thermal Radiation is one of the vital factors controlling the heat transfer in 
a non-isothermal system. Many of the researchers have considered the effect of radiation on flows involving a 
viscoelastic liquid. Works of Raptis [22, 23], Raptis and Perdikis [24], Siddheshwar et al. [25], Sujit Kumar Khan [26], 
address the effect of radiation in various situations. But these studies are carried under constant physical properties with 
uniform heat source. None of the above mentioned works discuss the combined effect of variable thermal conductivity 
and non-uniform heat source/sink. 
 
Several other applications may also benefit from a better understanding of the fundamentals of mass, energy, and 
momentum transport in porous media, namely cooling of nuclear reactors, underground disposal of nuclear waste, 
petroleum reservoir operations, building insulation, food processing, and casting and welding in manufacturing 
processes. In certain porous media applications, working fluid heat generation (source) or absorption (sink) effects are 
important. Representative studies dealing with these effects have been reported by authors such as Gupta and Sridhar 
[27], Abel and Veena [28] and Sharma [29]. 
 
The present work deals with hydromagnetic flow and heat transfer over a stretching sheet with a power law velocity 
distribution of Newtonian conducting fluid in the presence of heat source. 
 
2. MATHEMATICAL ANALYSIS 
 
We consider a polymer sheet emerging out of slit at origin be moving with non uniform velocity in an electrically 
conducting incompressible viscous fluid at rest in the presence of a magnetic field. The coordinate X is in the direction 
of motion of the sheet and y is the coordinate normal to it, 
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Boundary condition 
U=U(x), v = 0, T = Tw(x) at y =0 
 
u→ 0, T→T∞  as y→∞                                                                                                                                                       (4) 
 
where u and v are components of velocity respectively in x and y directions, T is the tempereture,κ is the coefficient of 
thermal diffusivity,Q0 is the dimensional heat generation(Q0˃0) or absorption(Q0˂0) coefficient, cp is the specofic 
heat,𝜌𝜌 is the fluid density which we assume constant for the present case.𝜇𝜇 is the coefficient of fluid viscosity which 
depends on temperature and k is permeability of the porous medium. 
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The equations (1) to (3) are not possible to make dimensionless by assuming the magnetic field to be constant. So in 
order to make above equation (1-3) dimensionless, applied magnetic field has to be assumed as a variable magnetic 
field in this system, because no similarity solution is seen to be found for the flow of arbitrarily surface stretching with 
power-law velocity for constant magnetic field. To establish a set of non-dimensional differential equation, we 
introduce following similar variables 
 
𝑢𝑢 = 𝑈𝑈0𝑥𝑥𝑚𝑚𝑓𝑓′(𝜂𝜂)                                                                                                                                                                 (5) 
 
T- T∞  = C xn θ (η)                                                                                                                                                              (6) 
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𝐵𝐵(𝑥𝑥) = 𝐵𝐵0   𝑥𝑥(m-1)/2                                                                                                                                                                                                             (8)
       

Where f′ and θ are the dimensionless velocity and temperature respectively, and η is similarity variable. Substitution in 
governing equations gives rise to the following two point boundary value problem. 
 
3. NUMERICAL SOLUTION 
 
The highly nonlinear coupled self-similar ODEs (11) and (12) along with the boundary conditions (13) and (14) 
constitute a two point boundary value problem (BVP) and is solved using shooting method, by converting it into an 
initial value problem (IVP). In this method, it is necessary to choose a suitable finite value of η→∞, say η∞. The 
following first-order system is set 
 
𝐹𝐹‴ + 𝐹𝐹𝐹𝐹″ − 𝐹𝐹′2 – ( 1

𝑅𝑅1
+ 𝑀𝑀2)F′ = 0                                                                                                                                 (9)     
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R1 = κp a

𝑣𝑣
 is the permeability parameter. 

𝑀𝑀2 = 2𝜎𝜎𝐵𝐵0
2

𝜌𝜌(1+𝑚𝑚 )
 is magnetic parameter 

𝑃𝑃𝑃𝑃 = 𝜇𝜇𝑐𝑐𝑝𝑝
𝐾𝐾

  is the Prandtl number 

𝐸𝐸𝑐𝑐 = 𝑎𝑎2

𝑐𝑐
𝑝𝑝�𝐸𝐸0

𝐾𝐾 �𝛾𝛾𝑎𝑎�

 is the Eckert number 

 
To solve (9) and (10) with (4) as an IVP the values for F3(0) i.e. f’’’(0) and i.e. θ’(0) are must needed but no such values 
are given. The initial guess values for f″(0) and θ′(0) are chosen and the fourth order Runge-Kutta method is applied to 
obtain a solution. The most often used method of the Runge-Kutta family is the Fourth-Order one, which extends the 
idea of the mid-point method, by jumping 1/4th of the way first, then going half-way, then going 3/4th of the way and 
finally jumping all the way. 
 
The formula for this method looks as follows 
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In the present case the equation (10) is reduced to such system of IVP where missing value of θ’(0) and also for θ(0) for 
different set of values of parameters having bearing on the phenomena are chosen purely on hit and trial basis such that 
the boundary condition at the other end i.e. η→∞,  θ(η)→0 is satisfied as the approximate value for η∞.  The integration 
was then repeated with another larger value of η∞.  The values of the initial wall temperature values of θ(0) Were then 
compared. 
 
If they agreed to about 6 considerable digits, the last value of n∞ used was considered the approximate values otherwise 
the process was repeated until further change in n∞ did not lead to any more change in the value of θ(0).Once the 
convergence is achieved we integrate the resultant ordinary differential equations using standard fourth order Runge–
Kutta method with the given set of parameters to obtain the required solution. 
 
4. RESULT AND DISCUSSION 
 
A boundary layer problem for momentum, heat transfer over a stretching porous surface with prescribed heat flux in the 
presence of a transverse variable magnetic field is examined in this work. Porous medium, viscous and Joule's 
dissipation are taken into consideration in this study. The MHD boundary layer equations of momentum and heat 
transfer are solved analytically and different analytical expressions are obtained for non-dimensional velocity and 
temperature profiles for prescribed heat flux case. Computation results are carried out for different values of β, 
Magnetic parameter M 2, Prandtl number Pr, Eckert number Ec and permeability parameter R1. 
 
A representative set of graphical result is given in figure1 to 9 to show the influence of different physical parameter on 
solution. The influences of the magnetic parameter M on the longitudinal velocity profile is depicted in Figure 1. It can 
be seen that increasing M is to reduce the velocity distribution in the boundary layer which results in thinning of the 
boundary layer thickness, and hence induces an increase in the absolute value of the velocity gradient at the 
surface.figure-2 shows dimensionless velocity profiles for different values of β. The dimensionless velocity profile       
f′ (η) shows that due to increase of β velocity decreases. Actually, the fluid material Temperature profile become fuller 
and increases with the increase of Ec. in the flow is reduced with the increase in β and for this the boundary layer 
thickness decreases, which can be confirmed from figure.figure3 depicted that as permeability parameter R increases 
velocity increases .Figure 4 and figure5 shows the effect of magnetic field M and Prandtl number Pr on the temperature 
profile. An increase in Prandtl number Pr is associated with a decrease in the temperature distribution which is 
displayed in Fig.5, same effect it shows with the increase of magnetic parameter M. Figure 6 show the effect of 
temperature profile in the presence of different values of the Eckert number Ec.Figure-7 demonstrated, the influences 
magnetic parameter M on transverse velocity.Figure-8 shows the dimensionless velocity distribution F′ as a function of 
dimensionless coordinate η for various values of M with Pr=0.71 and β=0.1.it is seen from figure 1 that for fixed Pr and 
β. f′ decreases with increase in M.figure-9 shows the effect of heat transfer with the changes of heat source parameter 
Q. It is seen that hear transfer increases initially and then changes above the sheet for large values of Q. 
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Figure-6 
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