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ABSTRACT
We introduce the notion of (a, @, ) -weak generalized Geraghty contractions via triangular & -admissible mappings
to prove some sufficient conditions for the existence of fixed points of such maps in complete metric space, where ¢ is

an altering distance function and 8 € S where S = {3 : (0,00) — [0,1) satisfying A(t,) >1=t, — 0}. Examples
are provided to illustrate our results.
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1. INTRODUCTION AND PRELIMINARIES

Most of the fixed point theorems in nonlinear analysis usually start with Banach [9] contraction principle. A huge amount
of literature is witnessed on applications, generalizations and extensions of this principle carried out by several authors in
different directions like weakening the hypothesis and considering different mappings. Fixed point theory is an essential
tool in the study of various varieties of problems in control theory, economic theory, nonlinear analysis and global
analysis.

But all the generalizations may not be from this principle. In 1989, Bakktin [8] introduced the concept of a b-metric space
as a generalization of a metric space. In 1993, Czerwik[11] extended many results related to the b - metric space. In 1994,
Matthews [20] introduced the concept of partial metric space in which the self distance of any point of space may not be
zero. In 1996, O’Neill [28] generalized the concept of partial metric space by admitting negative distances. In 2013,
Shukla [34] generalized both the concepts of b-metric and partial metric space by introducing the notation of partial
b-metric spaces. Many authors recently studied the existence of fixed points of self maps in different types of metric
spaces [16,35,23,32,37]. Some authors [4,20,24,30,31] obtained some fixed point theorems in b-metric spaces. Some
authors proved « — i versions of certain fixed point theorems in different types of metric spaces [3,16]. Recently Samet

et.al [29] and Jalal Hassanzadeasl [14] obtained fixed point theorems for « — contractive mappings. Mustafa [24]
gave a generalization of Banach contraction principle in complete ordered partial b-metric space by introducing the
notion of a generalized o —y weakly contractive mapping. G.V.R. Babu et.al [5] proved coupled fixed point theorems
by using (e, @, ) -weak generalized Geraghty contraction. In 2012, Mohammad Mursaleen et.al [22] proved coupled
fixed point theorems for « -y contractive type mappings in partially ordered metric spaces.

In this paper we modify the concepts of G. V. R. Babu et.al [6] to study sufficient conditions for the existence of fixed
points of weak generalized Geraghty contractions in a complete metric space. In fact, we obtain sufficient conditions for
the existence of fixed points of weak generalized Geraghty contractions in a complete metric space. A supporting
example is also given. Further an open problem is also given at the end of this paper.
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Notation: G. V. R. Babu. et.al [6] used the following notation in their paper. (X,d) denotes a metric space. Let
T:X —> X be a self map of X and Fix (T) denotes the set of all fixed points of T . We denote
S={p:(0,0) >[0,1)/ p(t,) >1=>t —0}, and @ ={p:[0,0) >[0,0)/¢ is non-decreasing,
continuous and ¢(t) =0 <t =0}. We call the elements of @ as altering distance functions. Further, we use the
following notation: for sub sequences {th} and {an} in Xwith X, # X, , we write

AT )T, #AT ()T (X, )

d, =d(x, ,X ) A, = d A
n (hn kn) dn an ¢(dn)

We denote the set of all real numbers by R , the set of all non-negative reals by R™ and the set of all natural numbers by

N .

Definition 1.1: (B.Samet.et.al.[29]) Let T : X — X beaselfmapand a : X x X — R be a function. Then T is said
tobe o -admissible if a(X,y)>1= a(TX,Ty)>1.

Definition 1.2: (E. Karapinar. et.al. [18]) An « -admissible map T is said to be triangular « - admissible if
a(x,z)21 and a(z,y)21= a(X,y)>1.

For more details and examples on ¢« -admissible and triangular ¢ -admissible maps, one can refer [17], [18] and [29].

Lemma 1.3: (E. Karapinar. et.al. [18])
Let T:X — X be triangular « -admissible map. Assume that there exists X, € X such that ar(X,,Tx;) >1.

Define the sequence X, ., by X.,, =TX,, n=1,2,.... Thenwe have a(X,,X,)>1forall m,ne Nwith n<m.

n+1

Definition 1.4: (S. H. Cho. et.al.[13]) Let (X,d) be a metric space, and let & : X x X — R be a function. A map
T:X — X iscalled an « - Geraghty type contraction if there exists 3 € S such that

a(x,y) d(Tx,Ty) < g(d(x,y)) d(x,y) forall x,ye X . (1.4.1)

Definition 1.5: (G. V. R. Babu. et.al.[6]) Let (X,d) be ametricspaceand T : X — X be a self map. If there exist
a:XxX >R,pe® and L>0 such that

a(x,y) ((d(Tx,Ty))) < #(M(x,y))) + LN(X,y) (1.5.1)
forall x,ye X,Xx=Yy
where

M(x y) = max{d(x,y),d(x,Tx), d(y,TY)%[d (%, Ty) +d(y, Tx)1},

N(X,y) = min{d(x,Tx),d(x,Ty),d(y,Tx)} then T is said to be an almost generalized ¢ - contractive map
w.r.to the altering distance function ¢ .

Definition 1.6: (G. V. R. Babu. et.al.[6]) Let (X,d) be a metric space let T : X — X be a self map. If there exist
a:XxX >R, feS, pe® and L>0 such that

a(x,y) ¢((d(Tx,Ty))) < B(#(M (x,¥))) (M (X, y))+L.N(x,y) (1.6.1)
forall X,ye X,
where

M (x, y) = max{d(x, y),d(x,Tx), d(%W)é[d(X,TY) +d(y, I}

N(X,y) =min{d(x,Tx),d(x,Ty),d(y,Tx)} then we say that T is («, ¢, 3) - weak generalized Geraghty
contractive map.
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Theorem 1.7: (G. V. R. Babu. et.al.[6]) Let T be a self map on a complete metric space X .Let ar: X x X —> R be
a function. Assume that there exist @ € @, and L >0 such that

a(X, y)p(d(Tx,Ty)) < p(M (x, y)) + LN(x, y) (1.7.1)
forall X,ye X,X#Yy
where

M (x, y) = max{d(x, y),d(x,Tx), d(y,Ty)%[d(X,Ty) +d(y, ™)1},
N (X, y) =min{d(x,Tx),d(x,Ty),d(y,Tx)}.

Further, assume that
(i) T is «-admissible, and

(ii) there exists X, € X such that a(X,,TX,) =1 and set X, =TX, , for n=1,2,3,.... Then the sequence
{Xn} converges to z and z is a unique fixed point of T in X if and only if for any two sub-sequences
{th} and {an} of {X,} with Xq # X . we have that AT -1 = d, >0, provided that T is

continuous at z .

Theorem 1.8: (G. V. R. Babu. et.al.[6]) Let (X,d) be a complete metric space, & : X x X — R be a function and

let T:X — X be a self map. Suppose the following conditions hold:
(i) T is (a,¢, ) -weak generalized Geraghty contraction;

(i) T istriangular o -admissible,
(iii) there exists X, € X suchthata(X,,TX,) >1andsetx, =Tx, , for n=1,23,...

(iv) either (8) T is continuous (or) (b) if {X,} is a sequence in X such that a(X,,X,,;) =1 for all n and
X, — X as N — oo, then there exists a sub-sequence {X”k} of {X.,} such that a(Xnk ,X)>1 forall k.

ThenT hasa fixed point X in X, provided that /3 is continuous on (0, 0)

2. MAIN RESULT

In this section we obtain sufficient conditions for the existence of fixed points of weak generalized Geraghty contractions
in a complete space. We begin this section with the following lemma, which can be easily established.
Lemma2.1: Let (X,d) beametricspace. Let {X,} be asequencein X suchthat d(X,,;,X,) >0 as N —>oo.If
{Xx,} is not a Cauchy sequence then there exist an & >0 and sequences of positive integers {m, } and {n,} with
m, >n, >k and
M) limd(X, 1. X, 1) =¢

k—o0 k k
(i) limd(x, ,x, )=¢

k—o k k
(iii) |imd(xmk_l, X”k) =¢

k—o0
(iv) lmd (ka , X"k+1) =¢

Notation: We adopt the following notation throughout this paper. (X,d) denotes a metric space. Let T : X — X
be a self map of X and Fix (T) denotes the set of all fixed points of T. We denote

S={f:(0,0)—>[0,1)/p(t,) >1=>t, >0}, and @ ={p:[0,00) >[0,%0)/¢p is non-decreasing,
continuous and ¢(t) =0 <>t = 0}. We call the elements of @ as altering distance functions. Further, we use the
following notation: for any sequences {a,} and {b,} in X with a, #b,, we write

d, =@, b,),8, = LT g ;= HETMIOD

numbers by R, the set of all non-negative reals by R™ and the set of all natural numbers by N .

, VN We denote the set of all real
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Theorem 2.2: Let T be a self map on a complete metric space X . Let a: X x X — R be a continuous function
and a(X,X) >1V x e X . Assume that there exist ¢ € ®,and L >0 such that

a(x, Y)e(d(Tx,Ty)) < p(M (X, y)) + L.N(x, y) (22.1)
forall X,ye X,X#Yy where

M (x,y) = max{d(x, y),d(x,Tx),d (y,Ty),%[d (x,Ty) +d (y, ™)1},

and

N (x,y) =min{d(x,Tx),d(x,Ty),d(y,Tx)} (2.2.2)

Further, assume that

()T is « -admissible, and

(ii) there exists X, € X suchthat a(X,,TX,)=1.Set X, =TX,, for n=1,2,3,....
(iii)forany two sequences{a, } and {b,}of X with a, #b,, we have that A? —1

=d, -0 (2.2.3)

Then the sequence {Xn} converges to apoint Z€ X and z isafixed pointof T in X . Furtherif y,z are fixed
pointof T in X ,then a(y,z)<lor y=1z

Proof: Let X, € X besuchthat a(X,,TX,) >1. We define {X,} in X by X, , =Tx, foreachn=0,1,2,3,...

If X, = for some ne N, then X, =TX, and hence X, is a fixed point of T . Hence, without loss of

n+1

generality, we assume that X 6 # X for al ne N . By using the « - admissibility of T , we have

n+1
a(Xe %) = (X, TX,) 21 = (X, X,) = a(TX,, TX;) ==1. Now, by mathematical induction, it is easy to see
that ar(X,,X,,,) =1 forall ne N .Bytaking X=X, , and y = X, in the inequality (2.2.1), we get

(/’(d (Xn1xn+l)) = ¢(d (TXn—l'TXn)) < a(xn -1 n)¢(d (TXn 17TX )) < Q)(M (Xn -1 n)) +LN (Xn -1 n) (2 2. 4)

where

M (x ) = max{d (x

nl'n nl'n

)06 1T, )0 (x, Txn),%[ouxn1,Txn)+d(xn,TxM)]}

= maX{d (Xn -1 n) d(Xn -1 n) d(Xn’Xm—l) [d (Xn—l’Xn+l)+d(Xn7 n)]}

= max{d (X, ;,X,),d(X,, X,,1)} (2.2.5)

( n-1? n) mln{d(xn -11 n) d(Xn l'TX ) d(TXn -11 n)}
= mln{d(xn -11 n) d(xn l’TX ) d(xn’ n)}
=0 (2:2.6)

If max{d(x,_;,X,),d(X,,X,,,)}=d(X,,X,,,) for some neN then from (2.2.4),(2.2.5) and (2.2.6), we have
¢(d (Xn ! Xn+1)) < (D(M (Xn -11 n)) (D(d (Xn ' Xn+l)) a contradiction.

Thus, we have max{d (X, X,),d (X, X,,;)}=d(X,;,X,) forall ne N and hence
d(x,,X,,;) <d(X,,,x,) forall neN. (2.2.7)

n! *n+l

Thus it follows that {d (X, X,,;)} is a non-negative, decreasing sequence of real numbers.

Suppose that [imd(x,,X, ;) =r,r=>0

nN—oo
Now we prove that I =0.
Assume that > 0.
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By choosing@, = X,,b, =X,
T CIUCORTC o

" o(d,)

On taking limitas N — o0,

#(limd (X1, %,.,))
then we have |im Aﬁ = lim ¢(d (Xn+1’ Xn+2)) = n—o ! 2 = ¢(r) =1.

n—0 N—>2 ¢(d (Xn ) Xn+1)) ¢(r|1|_|11d (Xn ) Xn+1)) ¢(r)

Hence by our assumption ¢(d,) >0 as N —> o ie., lim @(d(X,,X,,;)) =0

=o(r)=0

= r =0, contradicts our assumption that I >0

Sr=limd(x,,X,) =0

n—oo

Now, we show that {X,} isa Cauchy sequence in X .
Suppose that {X,} is not a Cauchy sequence.

Then there exist & > 0, and sub-sequences {ka} and {X”k} of {X,} with m, >n, > K such that
006y, %
(1) ||m d(xmk+l’ Xnk+1) =€

k—o0
@ limd (X, %, )=¢

k—o0

p(d(Txy, ,TX, ) P(d (X, 110X, 1))
Hence [im k <7~ lim L T :(0(5) -1
@0, %)) (0, %)) 0(e)

) )>¢ and d (ka " X”k) < & and we have the following identities.

Now, by our assumption @(d,) >0 as n — o ie,
Ilm gD(d (ka ! Xnk )) = 0

n—oo

= lim d(x

n—oo

X k) =0, a contradiction to (2).

mk 1
Therefore{X,} isa Cauchy sequence in X .

Since X is complete, there exists z € X such that [imX, =Z.

n—o0
Now, we show that z is a fixed point of T .

Then the following are the cases.

Case- (1): Suppose there is a sequence {n, }> Xo, = Z,Wesuppose X, ~#Z
WXy L a(z,z)>1 and « is continuous,

soa(x _1,2) >1 forlarge k.

Ny
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Now,
P(d(2,72)) = p(d (%, ,T2))

= p(d(Tx, _,T2))
<a(x, ,2)e(d(x, .T2)

<pM(x, ,2)) + LN(x,,2) (2.2.8)
But

M(x, ,12)=ma {dex, ,2.d0r %, ), AT Td(x, | T2)+d(x, 2T
= max{d(x, %, ). d(x, %, )}
=d(x, %)

~9(d(@.T2) <p(d(x, %, ) =0

- o(d(z,72) =0

= d(z,Tz)=0

S 2=Tz

Case-(2): Suppose X, # Z and zZ =Tz

S o(d(X,,1,T2)) = @(d(TX,, T2))
<a(x,,2)p(d(Tx,,Tz)) (since « is continuous and «(z,z) >1)

<p(M(x,,2)) + LN(x,,2) (2.2.9)
But

M(x,,z) = max{d(xn,z),d(xn,xml),d(z,Tz),zis[d(x z)+d(x,,Tz)]}=d(z,Tz) forlarge N

N (X,,2) = min{d (x,,2),d(X,, X,.,),d(2,T2)} =0 for large
= o(d(X,,1,T2)) < a(X,, 2)p(d(TX,, T2)) < (d (2, T2)) + L.O
On letting N — o0, we get

9(d(2,72)) < a(z,2)9(d(z,T2)) < p(d(z,T2))

= a(z,z) =1, acontradiction.

Hence z=Tz.
Consequently z is a fixed pointof T in X .

Suppose Y,z are two fixed pointsof T in X
=>Ty=y,Tz=12 (2.2.10)

If a(y,z) <1, then there is nothing to prove.

Suppose a(Y,z)>1 Assumethat Y # Z.
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Then
e(d(Ty,Tz)) <a(y,2)e(d(Ty,Tz))
<p(M(y,z))+L.N(y,2) (2.2.11)

But M (Y, z) = max{d(y, z),d(y,Ty),d(z,Tz),%[d(y,Tz)+d(Ty, )]}=d(y,2)

N(y,z) =min{d(y,z),d(y,Ty),d(z,T2)}=0

= o(d(Ty,Tz)) < a(y, 2)e(d(Ty,T2)) < (d(y,2))

= @(d(y,2)) <a(y,2)e(d(y,2)) < ¢(d(y, 2)) , a contradiction.
Hence y =z.

The following corollary can be easily established.

Corollary 2.3: Let T be a self map on a complete metric space X . Let & : X x X — R be a continuous function.
Assume that there exist ¢ € @, such that

a(x, Y)e(d(Tx,Ty)) < p(M (X, y)) + L.N(x, y) (23.1)
forall X,y e X,X#Yy where

M (x, y) = max{d(x, y),d(x, Tx), d(y,Ty),%[d(X,Ty) +d(Tx, )1},
N(x,y) =min{d(x,Tx),d(x,Ty),d(y,Tx)}.

Further, assume that
()T is a -admissible, and
(ii) there exists X, € X suchthat a(X,,TX,)>1andset X, =Tx, , for n=1,23,....

(iii)) for any two sequences {a,} and {b,} of X with a, #b,_,
We have that A7 >1=d, —0 (2.3.2)

Then the sequence {X,} isa Cauchy sequence. Suppose {X,} convergesto z and «(z,z)>1.

Then z isafixed pointof T in X .

Theorem 2.4: Let (X,d) be a complete metric space, : X x X — R be a continuous function and let

T :X — X be aself map. Suppose the following conditions hold:
(i) T is (a,¢, ) -weak generalized Geraghty contraction i.e.,

a (X, Y)e(d(Tx,Ty)) < (@M (X, y))o(M (X, y)) + LN (X, y) 2.4.1)
where L>0 forall X,y e X, where
M(x,y) = max{d(x, y),d(x,Tx),d (y,Ty),%[d(x,Ty) +d(Tx, y)I},

and N(x,y) = min{d(x,Tx),d(x,Ty),d(y,Tx)}.

(i) T istriangular & -admissible,

iii) there exists X, € X suchthat a(X,,TX,)=>1andset X, =TX ,for n=1,2,3,... .Then %} is a Cauch
0 0 1 %o n n-1 y
sequence.

Suppose {Xn} convergesto X and «(X,X)>1.Then X isafixed pointof T in X .
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Proof: Asinthe theorem 2.2, Let X, € X besuchthat a(X,,TX,) =1. Wedefine {X,} in X by X, =Tx,, for
each n=1,23,... If X, =

without loss of generality, we assume that X, # X
a(Xy, %) = a(Xy, TX) 21

X,,, for some ne N, then X, =TX, and hence X, is a fixed point of T . Hence,

for all N e N . By using the o - admissibility of T , we have

n+1

= a(X, X)) = a(TX, Tx) >1.
Now, by mathematical induction, it is easy to see that c(X,,, X,,;) =1forall ne N.

By taking X = X,, and Y = X, inthe inequality (2.4.1),

We get
P(d (X, Xo,1)) = AA(TX, 1, TX,))
<a(X, 1, %,)o(d(Tx, ;,TX,))
S a(X, 4, %,)9(d (TX, 1, TX,)) (2.4.2)

where
M (X1, %) = max{d (X, 4, X,), d (X, 1, TX, ), d (X, TXn),%[d(Xn1,Txn)+d(Xn,TXn1)]}
:max{d(xnfllxn)’d(x -1 n) d(xnixnﬂ) [d(Xn—l'Xn+l)+d(Xn’ n)]}
= maX{d (Xn -1 n) d(xn’ Xn+1)} (2-4-3)
N (%4, %,) = mindd (%, 1, %), d (%1, TX,), d (T4, %)}

=min{d (X, ., X,),d(X,,,TX,),d(X,,%,)}
-0 (2.4.9)

If max{d (X, ;,X,),d(X,, X, )}=d(X,,X,,,) for some neN then from (2.4.2),(2.4.3) and (2.4.4), we have
(D(d (Xn ! Xn+1)) < ¢(M (Xn -11 n)) (P(d (Xn' Xn+l)) a contradiction.

Thus, we have max{d (X, ;, X,),d (X, X,,;)}=d (X, X,) forall ne N and hence
d(x,,X,,;) <d(X,,,x,) forall neN. (2.4.5)

Thus it follows that {d(X,,X,;)} is a non-negative, decreasing sequence of real numbers. Suppose that

limd(x,,X,,,)=r,r=0

n—oo
Now we prove that I =0.

Assume that > 0.

E OC(Xn, Xn+1) ¢(d (Txn ’TXn+l)) < ﬂ(¢(M (Xn ’ Xn+1))) ¢(M (Xn’ Xn+1)) + LN (Xn ' Xn+l)
= ¢(d (Txn ’Txn+1)) < ﬂ((D(M (Xn ! Xn+l)))¢(d (Xn ! Xn+1) + LN (Xn ! Xn+l)

= ¢(d (Xn+1’ Xn+2)) < ﬂ((ﬂ(M (Xn ! Xn+l)))¢(d (Xn’ Xn+1) + LN (Xn’ Xn+1)
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On letting N — o0

lim #(d (X1, %,.2)) < liminf B(@(d (%, X,.1)))A(d (X, %;.1))

nN—o0 n—oo

< IimSUp ﬂ(¢(d (Xn’ Xn+l)))¢(d (Xn 1 Xn+1))

n—oo

<lim ¢(d (X, X,.1))

n—ow

~o(r) <liminf B(e(d (X,, %,,1)))@(r) < limsup S(p(d (X, X,.,1))@(r) < ¢(r)

N—a0 n—o

= p(r) =0 or 1im Ap(d (X, %)) =1
- 1im (A (%, %)) =1

= limd(x,,X;.,) =0

nN—oo

= r =0, a contradiction for our assumption of > 0.
~r=0

Hence limd(x,,X,,)=0

n—oo

Let us suppose {X,} is nota Cauchy sequence.

Then there exist £>0, and sub-sequences {X, } and {X, } of {X,} with m >n, >k such that

d(x, ,X, )2¢ and d(X, 10 %n ) <& and we have the following identities.

m’n

(i) Ilmd(Xm %o 1) T & (i) I|m0|(><m Xo )€

Also since T is triangular o - admissible and a(X,, X,,;) 21¥ne N,

(X, %, )21

Hence

PA (% %, ) = H(A (T, T, )
<al, 5, AT, T, )

< ﬂ(¢(M (Xm ' M ))¢(M (Xm ' M )) + LN (Xm ! nk) (246)
where
M (Xm Ty ) ma {d>(xm Ty ) d(xm P my +1) d( n? nk+1) [d (ka ! nk+l) + d(Xm +17 nk )]}
= d(xm , nk) (2.4.7)

Nt %, ) = M (6, 1%, )00t 6 1006, %, )}
=0 forlarge k (2.4.8)

Therefore from (2.4.6),(2.4.7) and (2.4.8), we have
gD(d (Xm +1° n +1)) <ﬂ(¢)(d (Xm * g ))¢(d(xm TNy ))+ LN (Xm ’ nk) (249)
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Allowing K — o0

Ilm ¢(d(xm +1? n +1))<I|m|nf ﬂ(¢(d(xm ' My )))¢(d(xm ' Ny ))
< Ilmsup ﬂ(¢(d (Xm ' n )))¢(d(xmk Ny ))

k—o0

<I|m ¢(d(xm 10y ))

= 4(e) <liminf A(#(d(x,, . %, ))¢(¢)
<I|msup ﬂ(¢(d(xm ’ N ))¢(8)

k—o0

<¢(e)

= p(e)=0 or Ilmﬂ((ﬂ(d(xm X ) =1

I|mﬁ(¢(d(xm 1y ))) 1
= pfeS
~lime(d (X, ., )) =0

= ¢@(&) =0, a contradiction.
Therefore{X,} is a Cauchy sequence in X .

Let it convergesto X € X .

SlimX, =X and a(X,x)>1

n—oo

=a(x,,X) 21V neN

- (A (X1, TX)) = 4(d (TX,, TX))
<a(X,, X)p(d(Tx,,Tx))
< Ble(M(X,,X)))e(M (X,,X)) where M(X,,x)=d(x,Tx) forlarge n.

Supposing d(x,Tx) =0
Allowing N =, @(d(x,Tx)) < B(e(d(X,Tx)))e(d(X,Tx)) < p(d(X,Tx))

which is a contradiction.

©ed(X,Tx))=0=d(x,Tx) =0
SX=TX
Hence X isafixed pointof T .

Note: G.V.R.Babu et.al [6] used continuity of £ while proving the theorem 1.8, here we successfully avoided the
ontinuity of /.
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Now we give an example in support of theorem 2.2

1
Example 2.5: Let X = [O,E] with usual metric d .
Clearly, (X,d) isametric space.

Define T: X — X by TXZ%
Define a1 X x X —[0,0) by a(X,y)= 2{1—%(X+ y)}

Define the altering distance function
¢:[0,00) >[0,0) by p(t)=t ift>0

1
Let X, 0,—
et x,yel0,-]
= a(x,y)= 2{1—%(x+ y)}>1 and

a(TxTy) = 2{- 7 (X +TY)}= 2011 (1= (x+ Y} = 20, +5 (x+ V> 1

~.T is a -admissible and taking X, =0

1 15
= a(X,,Tx,)=2{1-—}=—>1
a(Xy, Txy) = 2{ 16} 5
Now a(X, Y)e(d(TX,Ty)) = a(x, y)d(Tx,Ty) =0
Further

M (x, y) = max{d (x, y),d(X,TX),d(y,Ty),%[d(X,Ty) +d(Tx, y)I}
for X#Y

1 1.1 1
=max{| x-y|,|x—=||y—-—=|.=|x+y—-=}>0
Ux=yLIx=2Lly=212Ix+y=21
= (M (x,y))>0 and N(x,y)>0
sa(x Y)e(d(Tx,Ty)) <e(M(x,y))+ LN(x,y) forany L>0
*.hypothesis of theorem 2.2 is satisfied.

T E = % Hence % is a fixed pointof T

4
Is the theorem 2.2 true if the conditions on « are removed ?

The fourth author is grateful to management of Mrs.AVNCollege, Visakhapatnam and Mathematics Department of
Andhra University for giving necessary permission and providing necessary facilities to carry on this research.
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