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ABSTRACT 
The aim of this paper is to discuss the bounds on codes based on graph theoretic techniques. The well-known Singleton 
and Hamming bounds can be derived as an application of a property relating the clique and independence number of 
vertex transitive graphs. 
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1. INTRODUCTION  
 
Let qF  be an alphabet of order q . A q -ary code C of length  n  and size C  is a subset of n

qF containing C elements 

called codewords. The Hamming weight ( )wt C of a codeword c is the number of its non-zero entries. A constant-

weight code is a code where all the codewords have the same Hamming weight. The Hamming distance ( ),d c c′
between two codewords c  and c′  is the number of positions where they have different entries. The minimum Hamming 
distance of a code C is the largest integer ∆  such that ( ), , ,c c C d c c′ ′∀ ∈ ≥ ∆ .  Let ( ),qA n d be the maximum size 

of a q -ary code of length n and minimum Hamming distance .d  Finding the values of ( ),qA n d is a fundamental 
problem in “classical” coding theory. The dual problem, consisting of finding the maximal order of a set of codewords 
satisfying an upper bound on their pairwise Hamming distance (anticodes), is well studied in extremal combinatorics. 
Using the tools from algebraic graph theory, we draw a link between the maximal order of codes and that of anti-codes. 
Many known bounds on ( ),qA n d follows directly from basic properties of graphs, such as relations among the clique, 
independence and chromatic numbers of graphs. 
 
In this paper, we first briefly introduce some of the needed background in graph theory. We then use the tools 
introduced in the previous section to derive bounds on the maximum size of unrestricted codes. 
 
2.  PRELIMINARIES: GRAPH THEORY BACKGROUND 
 
2.1. Basic Definitions and Results  
 
Definition 2.1.1: A graph G is an ordered pair ( ) ( )( ),V G E G , which consists of the disjoint sets of vertices ( )V G

and edges ( )E G together with an incidence function Gψ  associating each edge with an unordered pair of not 
necessarily distinct vertices.  
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Definition 2.1.2: Two vertices u  and v  of G ( ),u v G∈  are adjacent, if ( ),u v  is an edge of G .  

It is denote by u ~ v . If all the vertices of G are pairwise adjacent, then G  is complete. A complete graph on            
n  vertices is denoted as nK . Two vertices that are not adjacent are called independent. 
 
Definition 2.1.3: The degree ( )d v of a vertex v  is the number of vertices adjacent to v . The maximum degree of the 

graph G is defined as ( ) ( ){ }: max ;G d v v V∆ = ∈ . 
 
Definition 2.1.4: The complement of a graph G is the graph G  defined over the same vertex set but where two 

vertices are adjacent in G , iff they are not in G . 
 
Definition 2.1.5: The clique number ( )Gω of a graph G is defined as the largest number of vertices of G  that are 
pairwise adjacent. 
 
Definition 2.1.6: The independence number ( )Gα  of a graph G is the largest number of pairwise independent 

vertices in G . 
 

It can be easily seen that ( ) ( )G Gα ω= . 

 
Definition 2.1.7: (Graph Automorphism) Let ( ),G V E  be a graph and ϕ  a bijection from V  to itself.  ϕ  is called 

an automorphism of G   iff  , ,u v V∀ ∈ u ~ v ⇔ ( )uϕ ~ ( )vϕ . 
 
The set of all automorphisms of G is a group under composition; it is called the automorphism group of G and it is 
denoted ( )Aut G . 
 
Definition 2.1.8: (Vertex Transitive Graph) A graph ( ),G V E  is vertex transitive iff ( ), ,u v V Aut Gϕ∀ ∈ ∃ ∈  

such that, ( )u vϕ = . 
 
Theorem 2.1.9: Let ( ),G V E  be a vertex transitive graph, then ( ) ( ) ( ) .G G V Gα ω ≤  

 
3. BOUNDS ON CODES 
 
In this section, we apply some of the graph theoretical results to obtain some bounds on the maximal size of codes. First 
we define a family of graphs called Hamming graphs that will establish a link between codes and graphs. 
 
Definition 3.1: (Hamming Graph) The Hamming graph ( ),qH n d , n N∈ and1 d n≤ ≤ , has as vertices all the    

q -ary sequences of length n , and two vertices are adjacent iff their Hamming distance is larger or equal to d . That is, 

( )( ), n
q qV H n d F= , where { }0,1,..., 1qF q= − , and u ~ v   iff ( ),d u v d≥ . 

 
Note that, a q -ary code of length n  and minimum Hamming distance d  corresponds to a clique in the graph

( ),qH n d . Further, ( ),qA n d , the maximum size of such code is the clique number of the corresponding Hamming 
graph. 
 
Remark 3.2: ( ) ( )( ), ,q qA n d H n dω= . 

 
Now we will show that Hamming graphs are vertex transitive. This property will then be used to derive the well-known 
Singleton and Hamming bounds. 
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Lemma 3.3: The Hamming graph ( ),qH n d  is vertex transitive. 
 
Proof: Take q qF Z= , the integers modulo q . For all , , n

qu v x F∈ , define the function ( ),u v x x v uϕ = + − .  

( ),u v xϕ  is an automorphism of ( ),qH n d .  
 
In fact, ( ) ( )( ) ( ) ( )( ) ( ) ( ), ,, , ,u v u vd x y d x v u y v u wt x v u y v u wt x y d x yϕ ϕ = + − + − = + − − + − = − = . 

 
Also ( ),u v xϕ  takes u  to v . 
 
Therefore by Theorem 2.1.9. and Remark 3.2. we have the following inequality. 
 
Corollary 3.4: ( ) ( )( ), , n

q qA n d H n d qα ≤   

The independence number ( )( ),qH n dα of the Hamming graph ( ),qH n d is the maximum number of sequences of 

length n  such that the Hamming distance between any two of them is at most 1d − . Define ( ),qN n s to be the 
maximum number of q -ary sequences of length n  that intersect paiwise, that is, have the same entries, in at least s
positions. It follows that,  

( )( ) ( ), ,q qH n d N n tα = ; with 1t n d= − +                                                                                                           (1) 

 
By bounding from below the value of ( ),qN n t  in two different ways, we get the Singleton and the Hamming Bounds. 
 
Lemma 3.5: (Singleton Bound) ( ) 1, n d

qA n d q − +≤   

 
Proof: Consider the set ( ),T n t of all q -ary sequences of length n  having the same value 0 in the first 

1t n d= − + entries. Therefore, by definition, ( ) ( ), , n t
qN n t T n t q −≥ = . Then, by Eq. (1) and Corollary 3.4.,

( ) 1,
n

n d
q n t

qA n d q
q

− +
−≤ = . 

Lemma 3.6: (Hamming Bound) ( )

( )
1
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0

,

1

n

q d
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i

qA n d
n

q
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=

≤

 
− 

 
∑

  

Proof: Let 
1

2
dr − =   

 and consider the ball ( ) ( ){ }, ;n
qB n r x F wt x r= ∈ ≤ By Triangle inequality,

( ) ( ), , , , 2 1x y B n r d x y r d∀ ∈ ≤ ≤ − .  Therefore, ( ) ( ), ,qN n t B n r≥   

 

But, ( ) ( )
0

, 1
r

i

i

n
B n r q

i=

 
= − 

 
∑ The result then follows directly from Eq. (1). The exact expressions of ( ),qN n t can 

be used to derive better upper bounds on ( ),qA n d For instance, if  n t−  is even, ( )
2

2
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,

n t

i

n
N n t

i

−

=

 
=  

 
∑ . Thus, in this 

case, 
1,

2
dB n −  

    
is a maximal anticode and no improvement can be made in this case on the Hamming bound. 

However, when n t− is odd, ( )
1
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1
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n t

i

n
N n t

i

− −

=

− 
=  

 
∑ . Therefore, we obtain the following lemma. 
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Lemma 3.7: ( )
1

2
2

0

2,
1

n

d

i

A n d
n

i

−

−

=

≤
− 

 
 

∑

,   if d is even. 

 
Notice that the above bound is tighter than Hamming bound for even ,d  since 
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Next we give a new upper bound on ( ),qA n d for alphabets of arbitrary size. 
 

Lemma 3.8:  For 3q ≥  1t n d= − + , and 
1min ,

2 2
n t tr

q
  − −

=   −  
  

,                     

 ( )
( )

2

0

,
2

1

t r

q r
i

i

qA n d
t r

q
i

+

=

≤
+ 

− 
 

∑
  

 
Proof: The proof follows from Corollary 3.4.  Note that, for 1,q t≥ +  ( ), n t

qN n t q −= .  
 
i.e. a maximal anticode would be the trivial set ( ),T n t described in the proof of Lemma 3.6. 
 
For d even and n  not much larger than t , the next Lemma provides an improvement on the Hamming bound for non-
binary alphabets. 
 
Lemma 3.9:  For d  odd and   
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≤ + +
−
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Proof: Under the conditions of this Lemma,  

 ( ) ( )
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− 
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∑   

The result then follows from Corollary 3.4. 
 
4. CONCLUSION  
 
In this paper, we have used graph theoretic techniques to give a nice sketch of well-known Singleton and Hamming 
bound by means of independence and clique number of general and vertex transitive graphs. 
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