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ABSTRACT 
The framing of this paper bears the main aim to introduce and study a weaker version of β- normality called            
𝜋𝜋𝜋𝜋- normality, which surely lies between β- normality and almost β- normality. It contains the fact that 𝜋𝜋𝜋𝜋- normality 
is a topological property as well as hereditary property with respect to regularly closed subspaces. The 
characterization & preservation theorems in the context are presented which strengthen the evidence of the existence of 
such spaces. In fact, there are many 𝜋𝜋𝜋𝜋- normal spaces which are not 𝜋𝜋- normal.  
 
This paper also includes 𝜋𝜋- normality in terms of disjoint dense subsets and some basic properties. The relationships 
among𝜋𝜋𝜋𝜋- normal spaces,𝜋𝜋𝜋𝜋- normal spaces&𝜋𝜋𝜋𝜋- normal spaces are, here, investigated. 
 
Last but not the least, the purpose of introducing this paper is to continue the study of the class of normal spaces, 
namely 𝜋𝜋𝜋𝜋- normal spaces, which is a generalization of the class of 𝜋𝜋𝜋𝜋- normal spaces&𝜋𝜋𝜋𝜋- normal spaces. 
 
The effort of coining this paper is nothing but a humble dedication to the eminent mathematician Professor M.E. Abd. 
El Monsef who breathed his last breathing on 13th August, 2014. 
 
 
1. INTRODUCTION & PRELIMINARY 
 
D.Andrijevic introduced a new class of generalized open sets in a topological space, the so called β-open sets (i.e. semi-
pre-open sets) [1]. The class of semi-pre-open sets contains all semi-open sets and pre-open sets. Professor M.E.Abd 
El- Monsef et al. projected the fundamental properties of β-open sets & β-open continuous mappings [2] along with the 
study of β-closure and β-interior operators [3]. We, however, know that a set in a topological space is said to be regular 
open set or open domain [4] if it is the interior of its closure. And the finite union of regular open sets is said to be       
π-open [5]. With the help of these two notions of β-open set & π-open set, the concept of a πβ-normal topological space 
is, here, introduced. Obviously, πβ-normality lies in between β-normality & almost β-normality and it is a weaker 
version of β-normality. 
 
In the present paper, spaces (X, T) and (Y, σ) always mean topological spaces which are not assumed to satisfy any 
separation axioms are assumed unless explicitly mentioned. 
 
Also, f: (X, T)→ (Y, σ) denotes a single valued function f of a space (X, T) into another space (Y, σ). And for a subset 
A of a space (X,T), X/A = Ac, cl(A) & int(A) denote the complement, the closure & the  interior of A in (X,T) 
respectively. 
 
If (M, TM) is a subspace of (X, T) and A ⊆ M, then clX(A), clM(A) & intX(A), intM(A) denote the closure & interior of 
A in (X, T) and in (M, TM) respectively. 
 
We also need to recall the following definitions: 
 
Definition 1.1: A subset A of a topological space (X, T) is called  

(i) regular open or open domain[4] if  A = int(cl(A)). 
(ii) an α-open[9] set if  A⊆  int(cl(int(A))) 
(iii) pre-open [6]  or nearly open[7] set if  A ⊆ int(cl (A)) 
(iv) semi-open [8]  set if  A⊆ cl(int(A)) 
(v) β-open [2] or semi-pre open [1] set  if A⊆ cl(int(cl(A)). 
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(vi) Π-open [5] if A =   


p

n
nB

1=
where Bn is a regular open set for n= 1, 2, 3……p. 

 
The compliments of the above mentioned open sets are their respective closed sets. The smallest 𝒦𝒦-closed set 
containing A is called 𝒦𝒦cl(A) where 𝒦𝒦 = regular, α, p, s,β & π. The largest 𝒦𝒦-open set contained in A is called            
𝒦𝒦 int(A) where𝒦𝒦 = regular, α, p, s, β & π. 
 
The family of all 𝒦𝒦-open (resp. 𝒦𝒦 -closed) sets of  a space (X,T) is denoted by 𝒦𝒦O(X)(resp. 𝒦𝒦C(X)); here and above 
𝒦𝒦 = regular, α, p, s, β & π. 

         p-closed 
 

Clearly,    regular closed                    π-closed               closed              α-closed                        β-closed 
          
          s-closed 

 
None of the above implications is reversible. 
 
Any other notion and symbol, not defined in this paper, may be found in the appropriate reference. 
 
Definition 1.2[10]:  Two sets A & B of a space (X, T) are said to be separated if there exist two disjoint open sets         
U & V in (X, T)  such that A⊆U and B ⊆ V. 
 
Definition 1.3:  

(a) [10] A space (X, T) is called a normal space if any two disjoint closed sets can be separated. 
(b) [11] A space (X, T) is called an almost normal space if any two disjoint closed subsets, one of which is regular 

closed, can be separated. 
(c) [12] A space (X, T) is called a π- normal space if any two disjoint closed subsets, one of which is π-closed, 

can be separated. 
(d) [13] A space (X, T) is called a mildly normal space if any two disjoint regular closed sets can be separated. 

 
Definition 1.4 [14, 15, 16, 17, and 18]: 

(a) A space (X,T) is said to be pre-normal or p-normal (resp. s-normal, β-normal) if for each pair of disjoint 
closed sets A and B of X there exist  pre-open(resp. semi-open, semi-pre-open) sets  U & V for which A ⊆U 
and B⊆V such that U ∩ V = φ. 

(b) A space (X, T) is said to be almost p-normal(resp. almost s-normal, almost β-normal) if for each closed set  A 
and  each regular closed set B such that U ∩ V = φ, 
there exist  disjoint pre-open(resp. semi-open, semi-preopen) sets U&V such that A ⊆U and B⊆V. 

(c) A space (X, T) is said to be mildly p-normal (resp. mildly s-normal, mildly β-normal) if for each pair of 
disjoint regular closed sets A and B of X there exist  pre-open (resp. semi-open, semi-pre open)sets U&V in the 
manner A ⊆ U and B ⊆ V such that U ∩ V = φ. 

(d) A space (X, T) is said to be π p-normal (resp. π s-normal) if for each pair of disjoint closed sets A and B  one 
of which is π-closed ,there exist disjoint  pre-open (resp. semi-open)sets U & V in the manner A ⊆U and B⊆V. 

 
2. Π β-NORMAL SPACE 
 
This section begins with the definition of Πβ-normality being motivated by the concept of π-normality. 
 
Definition 2.1: A space (X, T) is said to  be πβ-normal if for each pair of disjoint closed sets A and B  on of which is   
π-closed ,there exist  β-open sets U&V such that A ⊆U and B⊆V. The following is the implications diagram connecting 
the sorts of normal spaces indicated in definitions (1.3) & (1.4) & (2.1): 

 
Normal                 π-Normal                          Almost Normal                           Mildly Normal 
 
 
𝒦𝒦-Normal            π𝒦𝒦-Normal                   Almost 𝒦𝒦-Normal                          Mildly 𝒦𝒦-Normal. 
where 𝒦𝒦 = regular, α, p, s, β & π. 
 
And,               A         B where, A = normal, π- normal, Almost normal, mildly normal  
                       

        
        C          D             B = s-normal, πs- normal, Almost s-normal, mildly s-normal 

C = p-normal, πp- normal, Almost p- normal, Mildly p- normal                         
D = β-normal, πβ- normal, Almost β- normal, Mildly β- normal 
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None of the above implications is reversible,  
 
Example 2.2:  

(1) If X = {a, b, c, d} and T = {φ, {c}, {d}, {b, c}, {c, d},{a, c, d},{b, c, d}, X}. Then the space (X, T) is                
β-normal but not p-normal. 

(2) If X = {a, b, c, d, e} and T = {φ, {c, d}, {a, c, d}, {b, c, d}, {c, d, e}, {a, b, c, d}, {a, c, d, e}, {b, c, d, e}, X}. 
Then the space (X, T) is β-normal but not s-normal. 

(3) If X = {a,b,c,d} and T = {φ, {b,d},{a,b,d},{b,c,d},X}, then Tc = the family of closed sets=φ,{a},{c},{a, c}, X}  
and  PO(X) = {φ,{b},{d},{a,b},{a,d},{b,c},{b,d},{c,d},{a,b,c},{b,c,d},{a,b,d},{a,c,d},X}. 

 
Now, (X, T) is p-normal because for the pair of disjoint closed sets {a} & {c} there exist p-open sets {a, b}&{c, d} 
such that {a} ⊆ {a, b} & {c} ⊆ {c, d} & {a, b} ∩ {c, d} = φ. 
 
But (X, T) is not normal since, the pair of disjoint closed sets {a} & {c} have no disjoint neighbourhoods. 
(4) If X = {a, b, c}, T = {φ, X, {a, b},{a, c}}, then Tc = the family of closed sets = {φ,{b},{c}, b, c}, X} and 

βO(X)={φ,{a},{a, b},{a, c}, X}. 
 
Thus, (X, T) is πβ-normal space because the only π- closed sets in X are φ & X. But (X, T) is not β-normal since, the 
pair of disjoint closed sets {b} & {c} have no disjoint β-open sets containing them. 
 
The following lemmas are enunciated as they are essential parts for the counterexamples about the other implications: 
 
Lemma 2.3: If D be a dense subset of a space (X, T), then D is β-open. 
 
Proof: Let D be a dense set in a space (X,T), then cl(D) = X. Thus, cl(int(cl(D))) = X. So, D ⊂cl(int(cl(D))) and 
consequently D is β-open. 
 
Corollary: If D & E are disjoint dense subsets of a space (X, T), then D & E are naturally disjoint β-open sets. 
 
Lemma 2.4: If D be a dense set & A is a closed set in a space (X, T), then D∪A is β-open set. 
 
Proof: suppose that D & A are respectively a dense set and a closed set in a space (X, T).  Then cl(D) = X& cl(A) = A.  
 
Now, cl(D∪A) = cl(D) ∪ cl(A) = X ∪ A = X & int (cl D∪A)) = int X = X. Also, cl(int (cl D∪A)) = cl (X) = X. Hence, 
D∪A ⊂cl(int(cl(D∪ A))). i.e. D∪ A is β-open set. 
 
Lemma 2.5: If D be a dense set & A is a closed set in a space (X, T), then D\A is a β-open set. 
 
Proof: Suppose that D &A are respectively a dense set and a closed set in a space (X, T). Then D is β-open set by 
lemma (2.3). Also AC is an open set. 
 
Now, D\A = D ∩ AC = intersection of a β-open set & an open set = A β-open set.  
 
Lemma 2.6: For any two disjoint closed sets A & B in a space (X, T), the sets U = (D∩ Ac)∪B & V = (D∩ Bc)∪A are 
β-open sets where D is a dense set in X. 
 
Proof: Let D be a dense set and A, B are disjoint closed sets in a space (X, T); then cl(D) = X; cl(A) = A; cl(B) = B;    
A∩B = φ. 
 
Now, cl(D∪B) = cl D ∪ cl B = X ⋃ B = X & Int(cl(D∪B)) = X ⇒ cl{int (cl(D∪B)} = X. 
 
This means that D∪B ⊆cl{int ( cl (D∪ B)} and consequently, D∪B is β-open set. 
 
Again, U = (D∩Ac)∪ B = (D∪B)∩ (Ac∪ B) = (D∪B) ∩Ac;  
 
Since A ∩ B = φ ⇒ B ⊂ Ac 
                     = intersection of a β-open set & an open set. 
                     = a β-open set. 
 
Similarly, V = (D∩Bc) ∪ A is also β-open set. 
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Theorem 2.7: If D & E are disjoint dense subsets in a space (X, T), then (X, T) is β-normal and so πβ- normal. 
 
Proof: suppose that D&E are disjoint dense sets in a space (X, T) then D∩E = φ. 
 
Let A and B be any pair of disjoint closed set in (X, T) so that A∩B = φ. 
 
Let U = (D∩AC) ∪ B & V = (E ∩BC) ∪ A. 
 
Then U & V are β-open sets by lemma (2.6). Also, A ⊆ V and B ⊆ U. 
 
Again, U ∩ V = [(D∩AC) ∪B]∩ [(E ∩BC) ∪A] 
                       = [(D∪ B) ∩(AC∪ B) ] ∩ [(E∪ A) ∩(BC∪ A)] 
                       = (D ∪ B) ∩ AC∩ (E∪ A) ∩ BC [A∩B = φ ⇒  A ⊆ BC& B ⊆ AC] 
                       = [(D ∪ B) ∩ BC] ∩ [(E∪ A) ∩ AC] 
                       = [(D ∩ BC)∪ (B∩ BC)] ∩ [(E ∩ AC)∪ (A∩AC)] 
                       = [(D ∩ BC)∪ φ] ∩ [(E ∩ AC)∪ φ]  
                       = (D ∩ BC)∩ (E ∩ AC) = (D ∩ E)∩ (AC∩ BC) = φ∩ (AC∩ BC) = φ. 
 
i.e. U & V are disjoint β-open sets containing disjoint closed set B&A respectively. 
 
Consequently, a pair of disjoint closed set is separated by disjoint β-open sets i.e. (X, T) is β-normal space & hence, a 
πβ-normal space. 
 
Example 2.8: (i) The co-finite topology on the set R of real numbers is a πβ-normal space but not normal. 
 
Let R stand for the set of real numbers and CF= {A: A⊆R and A = φ or AC is finite. Then (R, CF) is the co-finite 
topological space. 
 
Let P & Q be the sets of irrational numbers & rational numbers respectively. Then P∪Q = R, P ∩ Q = φ. Again,       
cl(P) = R = cl(Q) so that P & Q are disjoint dense subsets of (R,CF). Hence, using theorem (2.7) (R, CF) is β-normal. 
Since, every β-normal space is a πβ-normal space. Hence, (R, CF) is also aa πβ-normal space. 
 
We, however, know that (R, CF) is not a normal space. Therefore, (R,CF) is a πβ-normal space but not normal. 

(ii) If R stand for the set of real numbers & 2T ={A: A ⊆ R and  A = φ or ∈2 A}, then (R, 2T ) is the particular  
point  topological space which is πβ- normal space but not β-normal. 
 

Now, let A⊆ R, then cl(A) = R if ∈2 A & cl(A) = A if ∉2 A. 

⇒ int (cl(A)) = R if ∈2 A & int(cl(A)) = A if ∉2 A. 

⇒ cl{int (cl(A))}= R if ∈2 A & cl{int( cl(A))} = A if ∉2 A. 
 
Therefore, the only β-open sets in the space are those which are open. Consequently, any two disjoint closed subsets in 
(R, 2T )   cannot be separated by two disjoint β-open sets  i.e. (R, 2T )  is not  β-normal space. Again, the only          

π-closed subset in the space are R & φ, which are disjoint.  So that any two disjoint closed subsets in (R, 2T ), one of 

which is π-closed, can be separated.  i.e. (R, 2T ) is a π- normal space and ultimately a πβ-normal space. 
 
Characterization of πβ-normality: Some characterizations of πβ-normality have been enunciated through the 
following theorem. 
 
Theorem 2.9: For a space (X, T) the following are equivalent: 

(a) (X, T) is πβ-normal space. 
(b) If U is an open set U and V  is π-open set whose union is X, there exist β- closed sets A and B such that A ⊆U, 

B ⊆ V &  A∪ B = X. 
(c) For every closed set A and every π-open set B such that A ⊆B, there exists a β-open set V such that        

A⊆V⊆ β-cl(V) ⊆ B. 
  
Proof: 
(a)⇒ (b): Let U and V be a π-open sets in a πβ-normal space (X,T) such that X = U∪V. Then UCis a closed set &VC is 
a π- closed sets. i.e. UC∩ V C = φ . Since (X, T) is πβ-normal there exist disjoint β-open sets U1 and V1 such that        
UC⊆ U1 and VC⊆ V1. 
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Let A =U1

c and B =V1
c. Then A and B are β-closed sets such that A ⊆ U, B⊆V and A ∪ B = X. 

 
(b) ⇒(c): Let A be a closed set and B, a  π- open set in a space (X, T) in the manner that A ⊆ B.  
 
Clearly, A∩ Bc = φ⇒Ac ∪H = X, where Ac is an open sets. 
 
Then by (b), there exist β-closed sets G and H such that G⊆Ac and H⊆B along with G ∪ H = X. This implies that         
A ⊆  Gc & Gc ⊆  H. 
 
Let V = Gc, we observe that V is a β-open set. Thus, all the above facts conclude that and V A⊆ V⊆β-cl(V)⊆ B. 
 
(c)⇒ (a): Let A and B be any two pair of disjoint closed sets in a space (X, T) such that B is π-closed. Since A ∩ B = φ, 
hence, A ⊆Bc and Bc is π- open. Thus using the prescribed condition (c), there exist a β –open set V such that             
A⊆ V ⊆β-cl(V)⊆ Bc. Taking G = V and H = [βcl (V)]c, we observe that  G & H are disjoint β-open sets such that      
A⊆ G & B ⊆H. Consequently, (X, T) is a πβ- normal space. 
 
Topological property: In order to establish the topological property of πβ-normality, we first prove the following 
theorem. 
 
Theorem 2.10: If f: (X, T)→ (Y, σ) is an open & continuous function, then the image of a β-open set is β-open. 
 
Proof:  let f: (X, T)→ (Y, σ) be an injective, open & continuous function from a space (X, T) to another space (Y, σ). 
 
Let A be a β-open set in (X, T), then A ⊆ {int (cl (A)}. 
 
Now, f(A) ⊆ f ({int (cl (A)}) = f(cl B) where B = int (cl (A)). 
                  ⊆cl f(B), as f is a continuous mapping. 
 
i.e. f(A)⊆ cl f (int(cl (A))) = cl f (int C) ,where C = cl(A) 
             ⊆cl (int(f(C))) as f is an open mapping. 
 
i.e. f(A) ⊆ cl(int(f(cl (A)))⊆ cl{int(cl(f(A)) 
⇒ f(A) is also β-open. 
 
Theorem 2.11: πβ-normality is a topological property. 
 
Proof: In order to show that πβ-normality is a topological property, one has to prove that the homeomorphic image of a 
πβ-normal space is a πβ-normal space. 
 
Let f: (X,T)→ (Y,σ) be a one-one onto, an open & continuous function from a πβ- normal space (X, T) to another space 
(Y, σ). We need to show that f(X) = Y is also a πβ- normal space.  Let A & B be a pair of disjoint closed sets in (Y, σ) 
such that A is π-closed. Obviously, the continuity of f provides that f -1(A) is π-closed & f -1(B) is closed in X such that   
f -1(A) ∩ f -1(B) = φ. 
 
Now, the πβ – normality of (X, T), there exist β-open sets U & V of X in the manner that f-1(A)⊆U, f -1(A) ⊆ V and     
U ∩ V = φ.  
 
Since, f is an open, continuous one –to one function hence, A ⊆ f(U), B ⊆ f(V) and (U) ∩ f(V) = φ. Using the theorem 
(2.10), we observe that f(U) & f(V) are β –open sets as U & V are β-open sets and f is an open, continuous function. 
 
Thus, for a pair of disjoint closed sets A & B of (Y, σ) where A is π-closed, there exist disjoint β-open sets f(U) & f(V) 
in (Y, σ) such that A⊆ f(U), B ⊆ f(V) . This provides that (Y, σ) is a πβ-normal space. 
 
Hereditary property: The following lemmas are useful and necessary for the analysis of the hereditary property of a 
πβ-normal space. 
 
Lemma 2.12:  If M be a closed domain (i.e. regular closed) subspace of a space X and A is β-closed in X, then A∩M is 
a β-closed set in M. 
 
Proof: Let A be a β-open set in (X, T). Let M be a closed domain in (X, T) i.e. a regular closed subset of X, then       
(M, TM) is a closed domain subspace of (X, T). 
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Now, intX{clX(intX (A))} ⊆ A. It is required to show that A ∩ M is a β-closed set in (M, TM). 
 
We have, clM{intM (A ∩ M)}  = cl M{ intM (A ∩ M) ∩ intX (M)} 
                                                = clM {intX (A∩M)} 
                                                = clX{ intX (A∩ M)} ∩ M ⊆{clX(intX (A)} ∩ M 
 
i.e. intM{clM(intM (A∩ M))}⊆ int M[{clX(intX (A)} ∩ M] 
                                            ⊆intX [{clX(intX (A)} ∩ M] ∩ M 
                                            = intX [{clX(intX (A)} ∩ intX(M)∩ M⊆ A∩ intX(M)⊆ A ∩ M 
 
⇒A∩M is a β-closed set in (M, TM). 
 
Lemma 2.13: If (M, TM) is a closed domain subspace of a space (X, T), then A∩ M is a β-open set in (M, TM) 
whenever A is a β-open set in (X, T). 
 
Proof: Let A be a β-open set in (X, T). Let M be a closed domain in (X, T) i.e. a regular closed subset of X, then      
(M, TM) is a closed domain subspace of (X, T). Now, AC is β-closed set in (X, T), so with the help of the Lemma 
(2.12), the set G = AC⋂M is a β-closed set in (M, TM). Therefore, M \G is a β-open set in ((M, TM).  
 
But M\G = M ∩GC = M∩(A ∪ MC) = (M∩A)∪ (M∩ MC) =(M∩A)∪ φ = M ∩ A. 
 
Consequently, M∩ A is a β-open set in (M, TM). 
 
Theorem 2.14: πβ –Normality is a hereditary property with respect to closed domain subspaces. 
 
Proof: Let (M, TM) be a closed domain subspace of a πβ-normal space (X, T). Let A & B be any disjoint closed sets in 
(M, TM) such that B is π-closed. Then A& B are disjoint closed sets in (X, T) such that B is π-closed in (X, T). 
 
Now, πβ –Normality of (X, T), there exist β-open sets U & V of X such that A ⊆ U & B ⊆ V where U ∩ V = φ. By 
lemma (2.13), U ∩ M & V ∩ M are disjoint β-open sets in (M, TM) such that A ⊆U ∩ M & B ⊆V ∩ M so that (M, TM) 
is a πβ-normal space. 
 
Corollary 2.15: Since, every closed and open (clopen) set in a space is a regular closed set i.e. a closed domain, hence, 
every clopen subspace of a πβ-normal space is a πβ-normal space. 
 
CONCLUSION 
 
πβ-normality, being a weaker version of β-normality, has been introduced. It has been shown that πβ-normality is a 
topological property as well as hereditary property with regard to closed domain spaces. Characterization as well as 
preservation theorem for πβ-normality has been established. Some counter examples and the criteria for the space to 
bear πβ-normality in terms of disjoint dense subset have been derived.  
 
Surly the literature content for the πβ-normality is a motivation to analyse π𝛾𝛾 -normality with fundamental properties 
which creates the future scope of the study. 
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