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ABSTRACT 
A dominating set D of a fuzzy graph G= (V, E) is an independent dominating set if the induced subgraph <D> has no 
edges. An independent dominating set D of a fuzzy graph G is an accurate independent dominating set if V − D has no 
independent dominating set of cardinality D. The fuzzy accurate independent domination number ifa(G) of G is the 
minimum cardinality of an accurate dominating set of G. In this paper we study a accurate independent domination in 
fuzzy graphs and investigate the relationship of ifa(G) with other known parameters. 
 
Index terms: Fuzzy Graph, Fuzzy Independent Dominating set, Fuzzy Accurate Independent Dominating set, Fuzzy 
Accurate Independent Domination Number. 
 
 
INTRODUCTION 
 
A fuzzy subset of a non empty set V is a mapping σ: V→[0,1].A fuzzy relation on V is a fuzzy subset of V×V. A  fuzzy 
graph G = (σ, µ ) is a pair of function σ :V→[0,1] and  µ : V×V →[0, 1], where µ (u, v) ≤ σ(u)Λ σ (v) for all u, v ∈ V. 
The order p and size q of the fuzzy graph G = (σ, µ) are define by   p = ∑ σ(𝑣𝑣)𝑣𝑣∈𝑉𝑉  and q = ∑ µ(𝑢𝑢, 𝑣𝑣)𝑢𝑢 ,𝑣𝑣∈𝐸𝐸 . The 
complement of a fuzzy graph G = (σ, µ) is a fuzzy graph   G = (σ, µ ) where σ = σ and  µc (u, v) = σ(u)Λσ (v) - µ (u, v) 
for all u, v in V. The fuzzy cardinality of a fuzzy subset D of V isDf= ∑ σ(𝑣𝑣)𝑣𝑣∈𝐷𝐷 . An edge e = {u, v} of a fuzzy 
graph is called an effective edge if µ (u, v) = σ(u) Λ σ (v). The effective degree of a vertex u is defined to be the sum of 
the weights of the effective edges incident at u and is denoted by dE(u). The  Minimum effective degree                   
δE(G) = min{dE(u) / u∈V(G)} and the maximum effective degree  ∆E(G) = max{dE(u) / u∈V(G)}. A set of fuzzy vertex 
which cover all the fuzzy edges is called a fuzzy vertex cover of G and the minimum cardinality of a fuzzy vertex cover 
is called a vertex covering number of G and is denoted by α0(G). A set of fuzzy edge which cover all the fuzzy vertices 
is called a fuzzy edge cover of G and the minimum cardinality of a fuzzy edge cover is called a edge covering number 
of G and is denoted by α1(G). The vertex independence number β0(G) of G is the maximum cardinality among the 
independent sets of vertices. The edge independence number β1(G) of G is the maximum cardinality among the 
independent sets of edges. For any graph G is a complete subgraph of G is called a Clique of G. The number of vertices 
in a largest Clique of G is called the Clique number ω(G) of G. If µ(u, v) = 0 for every v∈V then u is called isolated 
node. A set S ⊆V in a fuzzy graph G is said to be independent if µ (u, v) < σ(u)Λ σ (v) for all u, v ∈ S. A dominating 
set is called an independent dominating set if D is independent. An independent dominating set S of a fuzzy graph G is 
said to be a maximal independent dominating set if there is no independent dominating set S1 of G such that S1⊂ S. An 
independent dominating set S of a fuzzy graph G is said to be a maximum independent dominating set if there is no 
independent dominating set S1 of G such that S1> S. The minimum scalar cardinality of an maximum independent 
dominating set of G is called the independent domination number of G and is denoted by i(G). Let x, y ∈V. We say that 
x dominates y in G if µ (u, v) = σ(u) Λ σ (v). A subset S of V is called a dominating set in G if for every v ∉ S, there 
exists u∈S such that u dominates v. The minimum cardinality of a dominating set in G is called the domination number 
of G and is denoted by γ(G). Let G = (σ, µ) be a fuzzy graph. A subset D of V is said to be fuzzy dominating set of G if 
for every v∈V−D there exists u ∈D such that (u, v) is a strong arc. A dominating set D of a graph G is called minimal 
dominating set of G if for every node v∈ D, D−{v} is not a dominating set of the domination number γ(G) is the 
minimum cardinalities taken over all minimal dominating sets of G. A dominating set D of a graph G is an accurate 
dominating set, if V−D has no dominating set of cardinality D. The accurate domination number γa(G) of G is the  
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minimum cardinality of an accurate dominating set. A dominating set D of a fuzzy graph G is an fuzzy accurate 
dominating set, if V−D has no dominating set of cardinality D. The fuzzy accurate domination number γfa(G) of G is 
the minimum cardinality of an accurate dominating set. An independent dominating set D of a graph G is an accurate 
independent dominating set if V−D has no independent dominating set of cardinality D. The accurate independent 
domination number ia(G) of G is the minimum cardinality of an accurate dominating set of G. An independent 
dominating set D of a fuzzy graph G is an fuzzy accurate independent dominating set if V−D has no independent 
dominating set of cardinality D. The fuzzy accurate independent domination number ifa(G) of G is the minimum 
cardinality of an accurate independent dominating set of G.  
 
1. ACCURATE DOMINATION IN FUZZY GRAPHS 
 
Definition: 1.1 A dominating set D of G is an accurate dominating set if V−D has no dominating set of cardinality 
D. The accurate domination number γfa(G) of G is the minimum cardinality of an accurate dominating set of G. 
 
Theorem: 1.1 For any fuzzy graph p − q ≤ γfa ≤ p − δE

 where p, q and δE are the order, size and minimum effective 
incident degree of G respectively. 
 
Proof: Let D be a accurate dominating set and γfa be the minimum fuzzy domination number in G. Then the scalar 
cardinality of V−D is less than or equal to the scalar cardinality of V×V. Hence p−q ≤ γfa. Now, let u be the node with 
minimum effective incident degree δE, clearly V−{u} is a accurate dominating set and hence γfa ≤ p − δE. Hence            
p − q ≤ γfa ≤ p − δE is true for any fuzzy graph. 
 
Theorem: 1.2  𝑝𝑝

1+∆(𝐺𝐺)
 ≤  γfa ≤ p − ∆(G). 

 
Theorem: 1.3 If G is a fuzzy graph without isolated nodes then γfa(G) ≤ min{α0(G), α1(G), β0(G), β1(G)}. 
 
Example: 1.1 

 
Here D = {3, 4}, γfa(G) = 1.3 
         α0(G) =1.3, α1(G) = 1.3 
         β 0(G) = 1.7, β 1(G) = 1.7 
 
Theorem: 1.4 For any fuzzy graph G and �̅�𝐺 are both connected then γfa(G) + γfa(�̅�𝐺) ≤ p + 1. 
 
Proof: We know that γfa(G) ≤ p − ∆(G) and γfa(�̅�𝐺) ≤ p − ∆(�̅�𝐺). 
 
Therefore γfa(G)  +γfa(�̅�𝐺) ≤ p −∆(G) + p −∆(�̅�𝐺) 
                                        = 2p − (∆(G) + ∆(�̅�𝐺)) 
                                        = 2p − (∆(G) + p − 1 −δ(G)) 
                                        = p+1 + δ(G) − ∆(G) Since δ(G) − ∆(G) ≤ 0 
                                        ≤ p+1. 
 
Theorem: 1.5 For any fuzzy graph G and  �̅�𝐺 are both connected then γfa(G) + γfa(�̅�𝐺) ≤ p (p − 3). 
 
Theorem: 1.6 For any fuzzy graph G and �̅�𝐺 are both connected then 

(i) γfa(G) + γfa(�̅�𝐺) ≤ 2 ( p − 2) 
(ii) γfa(G) + γfa(�̅�𝐺) ≤ (p −2)2 

 
2. ACCURATE INDEPENDENT DOMINATION IN FUZZY GRAPHS 

 
Definition: An independent dominating set D of G is an accurate independent dominating set if V−D has no 
independent dominating set of cardinality D. The accurate independent domination number ifa(G) of G is the 
minimum cardinality of an accurate dominating set of G 
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Example: 2.1 
 

 
 
Here D = {v2, v5} and ifa(G) = 1.4 
         P = 3.7, q = 3.4, ∆(G) = 1.5 
         δ(G) = 0.4, α0(G) =1.4, β 0(G) = 1.9 
 
Theorem: 2.1 For any fuzzy graph G , ifa(G) ≤ β 0(G). 
 
Proof: Let S be an Independent set of nodes in G such that S= β 0(G). Then G contains no larger independent set. 
Then V − S has no independent dominating set of cardinalityS. Therefore S is a accurate independent dominating 
set. Thus ifa(G) ≤S, ∴ ifa(G) ≤ β 0(G). 
 
Theorem: 2.2 For any fuzzy graph G, ifa(G) ≤ p − γf (G) + 1. 
 
Theorem: 2.3 For any fuzzy graph G, 𝑝𝑝

∆+1
 ≤ ifa(G) ≤ 𝑝𝑝∆

∆+1
 + 1. 

 
Proof: We know that 𝑝𝑝

∆ +1
 ≤ γf(G)  → (a) and since γf (G) ≤ ifa(G)  → (b) 

 
From equation (a) and (b) we get 𝑝𝑝

∆+1
 ≤ ifa(G). So lower bound is attained. 

  
Using the previous theorem, ifa(G) ≤ p − γf (G) + 1 
                                                       ≤ p − 𝑝𝑝

∆+1
 +1 

                                                       ≤ 𝑝𝑝∆
∆+1

 + 1  → (c) 
 
 From equation (a), (b) & (c) we get 
 𝑝𝑝
∆+1

 ≤ ifa(G) ≤ 𝑝𝑝∆
∆+1

 + 1. 
 
Theorem: 2.4 For any fuzzy graph G,  𝑝𝑝

1+∆(𝐺𝐺)
 ≤ ifa(G). 

 
Theorem: 2.5 For any fuzzy graph G with p ≥ 2 nodes, an independent dominating set with 𝑝𝑝

2
 + 1 nodes is an accurate 

independent dominating set. 
 
Proof: Let D be an independent dominating set with  𝑝𝑝

2
 + 1 nodes. Then│ V−D│< 𝑝𝑝

2
. Hence D is an accurate 

Independent dominating set of G. 
 
Theorem: 2.6 For any connected non trivial fuzzy graph G, ifa(G) + ifa[L(G)] ≤ p. Where L(G) is a line graph. 
 
Proof: Let G be a connected graph. For any Fuzzy graph ifa[L(G)] ≤ β1(G) 
 
Also ifa(G) ≤  α1(G) 
 
Hence  ifa(G) + ifa[L(G)] ≤  α1(G) + β 1(G) 
                                       = V(G) 
                                       = p 
 
Therefore  ifa(G) + ifa[L(G)] ≤ p . 
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Theorem: 2.7 If G is a fuzzy graph without isolated nodes, then ifa(G) ≤  α0(G) + 1. 
 
Theorem: 2.8 Let G be a fuzzy graph such that both G and �̅�𝐺 have no isolated nodes then 
   ifa(G) + ifa(�̅�𝐺) ≤ 2 𝑝𝑝

2
 

   ifa(G) . ifa(�̅�𝐺) ≤  𝑝𝑝
2
 2    

 

Example: 2.2 

 
G        �̅�𝐺 

 
Here D = {2,5}    D = {4,5} 
 
ifa(G) = 1.1, p=2.8   ifa(�̅�𝐺) =1.3 
 
 
Theorem: 2.9 For any fuzzy graph G and �̅�𝐺 have no isolated nodes then 
ifa(G) + ifa(�̅�𝐺) ≤ p + α0(G) − ω(G) + 2. 
 
Proof: From Theorem 2.7, ifa(G) ≤ α0(G) + 1 
 
Also ifa(�̅�𝐺) ≤ α0(�̅�𝐺) + 1 
                  ≤ p − β0(�̅�𝐺) +1 
                  ≤ p − ω(G) + 1 
 
Thus ifa(G) + ifa(�̅�𝐺) ≤ p + α0(G) − ω(G) + 2.  
 
3. RELATION BETWEEN ACCURATE DOMINATION AND ACCURATE INDEPENDENT DOMINATION 
IN FUZZY GRAPHS 
 
Theorem: 3.1 For any fuzzy graph G, γfa(G) ≤ ifa(G) →(1) 
 
Proof: Every independent accurate dominating set is an accurate dominating set. Thus (1) holds. 
 
Theorem: 3.2 For any fuzzy graph G, γf(G) ≤ γfa(G) ≤ ifa(G) 
 
Theorem: 3.3 For any fuzzy graph G, ifa(G) ≤  p − γfa(G) +1 . 
 
Proof: Let D be a minimum independent accurate dominating set G. Then for any node v∈D, (V − D) ∪{v} is an 
accurate independent dominating set of G. 
 
Thus ifa(G) ≤(V − D) ∪ {v} 
                  = p − γfa(G) +1 . 
 
Theorem: 3.4 For any non-trivial connected fuzzy graph G, γfa(G) + ifa(G) ≤ p + q. 
 
Proof: Since ifa(G) ≤  β0(G) [ From Theorem 2.1] 
 
Also γfa(G) ≤ α0(G) 
 
Further γfa(G) + ifa(G)  ≤ α0(G) + β0(G) 
                                     = γ(G) ∪ E(G) 
                                     = p + q 
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Hence γfa(G) + ifa(G) ≤ p + q. 
 
Theorem: 3.5 For any fuzzy graph G, ifa(G)  ≤ γfa(G) + δ(G). 
 
Example: 3.1 
 

 
D= { V4, V5}  γfa(G)=1.2   
D= { V2, V5 }  ifa(G)=1.4 
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