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ABSTRACT 
This work investigates the affect of toxicant which is structured into two stages, primary and secondary on a single 
species fishery model. Boundedness and positivity of solution has been shown in order to ensure feasibility of 
biological model. The time lag required for transmission of primary toxicant to secondary toxicant is incorporated and 
resulting delayed model is analyzed for stability. Optimal harvesting policy has been discussed by using Pontryagin’s 
Principal. Butler-Mc Gehee lemma is used to identify the condition which influences the persistence of the system. 
Finally, some numerical simulations are given to verify the mathematical conclusions. 
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1. INTRODUCTION 
 
With the rapid development of modern technology, industry and agriculture, a large quantity of toxicant and 
contaminants enter into the ecosystem one after another. These toxicants seriously threaten the survival of the exposed 
population. In order to regulate toxic substances wisely, we must assess the risk of the population exposed to toxicant. 
Therefore, it is important to study the effects of toxicant on biological population and to find a theoretical threshold 
value, which determines permanence or extinction of biological population. 
 
In recent years, some investigations have been conducted to study the effect of toxicant emitted into the environment 
from industrial and household resources on biological species by using mathematical models. In particular, Hallam 
et.al. [2–5] in series of their papers studied qualitative approach of toxicants on population. They assumed growth rate 
density of single species as decreasing function of toxicant concentration whereas carrying capacity is taken as 
constant. 
 
Freedman and Shukla in their paper [1] studied the effect of toxicant on a single species and on a prey–predator 
community by taking into account the introduction of toxicant from an external source and both growth rate and 
carrying capacity are taken as decreasing function of toxicant. They assumed the same nature of toxicant and not taken 
into consideration different stages of toxicant. But in reality, we can structure toxicant according to its level of intensity 
or according to its chemical composition. Since in some cases, toxicant at low intensity level does not effect the growth 
of biological species but when its intensity is increased, it affects the biological population adversely. One example is 
the emission of carbon and sulphur dioxide through industries and vehicles. These pollutants do not affect fishery 
habitat in initial stage but in more toxic stage, in the form of acid rain these pollutant affect the growth of marine 
ecosystem seriously.  
 
Shukla et al. [6] studied the effects of primary and secondary toxicants on resource biomass. They showed that the 
decrease in biomass density of resource is more than one, in corresponding case of a single toxicant due to large 
transformation, uptake rates and high toxicity of secondary toxicant. 
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Keeping the above thing in mind, we propose a fishery model to discuss the effects of primary (low intensity) and 
secondary (more toxic) toxicant on the stability and harvesting of marine species. The organization of paper is as 
follows : Section 2 deals with the mathematical model and some basic results on positivity and boundedness of the 
system. In section 3 existence of equilibrium points and their stability behaviour is discussed in the absence of delay. 
The critical value of delay is calculated at which stability change can occur and occurrence of Hopf bifurcation. 
Optimal harvesting policy is discussed in section 4. In Section 5, we derive the sufficient conditions for persistence and 
numerical simulations are included to illustratre the applicability of the results obtained in Section 6, and lastly  
discussion is presented in Section 7. 
 
2.THE MATHEMATICAL MODEL 
 
We consider a single species fishery model with toxicant affect governed by following differential equations: 

( ) ( ) ,1,
2

12 qxE
TK
xxTTr

dt
dx

−







−∈=  

( ) ( ),, 11110
1 TxhtTTQ

dt
dT

∈−−−−= τβα                                                                                                               (1) 

( ) ( ),, 2221
2 TxgTtT

dt
dT

γατθβ −−−=  

with initial conditions 
( ) ( ) ( ) ( ) ( ) 0,0,00 2211 >=>=> ttTttTx φφ   for  .0≤≤− tτ  

Here ( )tx is the concentration of single fish species, ( )tT1  is the concentration of primary toxicant that is of low 

intensity and ( )tT2 is highly toxic secondary toxicant concentration at any time 0>t . In modelling the system (1), we 
made following assumption: 
 
H1: The fish population grows logistically with its secondary toxicant dependent carrying capacity ( )2TK and toxicant 

dependent growth  function ( )12 , TTr ∈ . It is assumed that growth is slightly affected by primary toxicant i.e. 
1∈<<< . These functions satisfy the following properties:  

( ) ( )

( )

0 2 2

0 1 2
2 1

0 0, ' 0  0,

0 0, 0, 0,  , 0,

K K K T T
r rr r T T
T T
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∂ ∂
= > < < ∀ >
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there exists some values of 1T and 2T  such that  

( ) ( ) .0~,~,0 122 =∈= TTrTK  
 
H2: The fish population is harvested with constant harvesting effort E  in direct proportion to its concentration with 
constant catchability coefficient .0>q  
 
H3: The primary toxicant is emitted into the environment with a prescribed rate 0Q  by an external source and 

transmitted into highly toxic form after time τ  with toxicant dependent conversion function as ( )τθβ −tT1 where β  
is constant conversion rate which converted into secondary toxicant from primary toxicant. 
 

H4: In the absence of toxicant, when ,0,00 <<−
dt
dxqEr and fish population approaches to extinction. So throughout 

in this paper, we assume 00 >− qEr . 

H5 : The uptake of primary and secondary toxicant by the population is presented by increasing functions ( )1,Txh  and 

( )2,Txg  respectively : 
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∂
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The constants 1α  and 2α are depletion rate coefficients of primary and secondary toxicant respectively due to various 
factors in the environment. For simplicity, we assume simplest form of the functions as below: 
( )1 1, ,  0 1h x T xT=∈ <∈<<<  is the constant uptake coefficient of primary toxicant by the population. 

( )2 2, ,  0g x T xTγ γ= >  is the proportionality constant for the uptake of secondary toxicant by the population. 
 
Then the system (1) takes the form 

( ) ( ) ,1,
2

12 qxE
TK
xxTTr

dt
dx

−







−∈=  

( ) ,11110
1 xTtTTQ

dt
dT

∈−−−−= τβα                                                                                                                      (2) 

( ) , 2221
2 xTTtT

dt
dT

γατθβ −−−=  

 
with initial condition 
( ) ( ) ( ) ( ) ( ) 0,0,00 2211 >=>=> ttTttTx φφ   for  .0≤≤− tτ  

 
Next, we have theorems regarding the positivity and boundedness of solutions of system (2). 
 
Theorem 1: All solutions of the system (2) with initial conditions are non–negative. 
 
Proof: Let 1tt =   be the first time when ( ) .011 =tT So ( ){ },0,0min 11 =>= tTtt  

then ( ) ,0110
1

1

>−−=
=

τβ tTQ
dt

dT

tt

 

(since concentration of emitted toxicant should be sufficiently greater than transmitted toxicant). Hence for sufficiently 
small ( ) .0,0 1111 >−> ηη tT But by definition of 1t , ( ) .0111 ≤−ηtT , this contradiction proves that 

( ) 0  01 >∀> ttT .Similarly, let ( ){ },0,0min 22 =>= tTtt  then ( ) .021
2

2

>−=
=

τβ tT
dt

dT

tt

Hence for 

sufficiently small ( ) .0,0 2222 >−> ηη tT  But by definition of 2t , ( ) .0222 ≤−ηtT  again contradiction proves 

that ( ) 0  02 >∀> ttT and also    0
0

=
=xdt

dx
 proves the non–negativity of ( ).tx  

Hence, all solutions of system (2) are non–negative.  
 
Theorem 2: The region 

( ) ( ) ( ) ( )






 =≤+≤∈=Ω + 21

0
21

3
21 ,min,0:,, ααα

α
Q

tTtTRTTx  

is a region of attraction for all solutions initiating in the positive octant. 
 
Proof: From system (2) 

.1
0
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−≤

K
xxr

dt
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On integrating and taking limit ∞→t  
( ) .0Ktx ≤  

 

Also ( ),210
21 TTQ

dt
dT

dt
dT

+−≤+ α  

where ( )21,min ααα = . According to comparison principle, it follows that .0
21 α

Q
TT ≤+  
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3. THE MATHEMATICAL ANALYSIS 
 
Existence of Equilibriums: The system (2) has only two non-negative equilibrium points namely  
( )21 ,,0 TTP  and ( )**,*,* 21 TTxP . 

( )21 ,,0 TTP  is given by 

( ) .,
12

0
2

1

0
1 βαα

θβ
βα +

=
+

=
Q

T
Q

T  

 
Interior equilibrium point ( )**,*,* 21 TTxP  is given by the solution of following algebraic equations: 

( ) ( ) ,01,
2

12 =−




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
−∈ qE

TK
xTTr                                                                                                                             (3a) 

,011110 =∈−−− xTTTQ βα                                                                                                                                    (3b)                                                                                   

.0 2221 =−− xTTT γαθβ                                                                                                                                           (3c) 
 
From eqs. (3b) and (3c), we get 
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Using the values of * and  * 21 TT  in eq. (3a), we get  
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since ( )( ).020 KfKK >   
 
So, there exists an unique *x   such that 0*0 Kx << and ( ) ,0* =xF  when ( ) ,0.0 >F and ( ) .0' <xF  
 
Stability Analysis: In order to study the local behavior of system, we consider variational matrix corresponding to each 
equilibrium points: 
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From above analysis, we observe following points about the equilibrium points: 

1. The three eigenvalues of variational matrix 1M are ( ) qETTr −∈ 12 , , λτβα −−− e 1 and 2α− .The 

equilibrium point P  is stable in 21 TT −  plane and saddle point in 21 TTx −−  plane if 

( ) qETTr >∈ 12 , . 

2. The characteristic equation corresponding to interior equilibrium ( )**,*,* 21 TTxP  is given by 

( ) ,032
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132
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1
3 =++++++ − bbbeaaa λλλλλ λτ                                                                        (4) 
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When ,0=τ  i.e. in case of instantaneous transmission of primary toxicant into secondary toxicant, characteristic 
equation becomes 

( ) ( ) .03322
2

11
3 =++++++ bababa λλλ                                                                                                            (5) 

 
Since ,011 >+ ba when ,033 >+ ba and ( )( ) ( ),332211 bababa +>++ then by Routh–Hurwitz criterion all 

roots of eq. (5) have negative real parts and *P  is locally asymptotically stable equilibrium point in the absence of 
delay. 
 
When 0≠τ , stability of system can change only if there exists at least one root of eq. (4) such that ( ) 0Re =λ . Let 

iw=λ be one such root. Substituting this in eq. (4) and on equating real and imaginary parts, we have 
( ) ,sincos 3

2
123

2
1 awawwbwbwb +−=−− ττ                                                                                                     (6) 

( ) .cossin 2
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On squaring and adding these two equations, we get 
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On substituting ,2 uw =  in above equation  
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When *P  is locally asymptotically stable equilibrium point in the absence of delay and following inequalities hold 

0,02 2
3

2
3

2
12

2
1 >−>−− babaa and ( )( ) ,222 2

3
2
331

2
231

2
2

2
12

2
1 babbbaaabaa −>++−−−                          (10) 

then all conditions of Routh Hurwitz criteria for the existence of negative roots are satisfied. Hence, the eq. (9) has only 
negative real roots and there exist no real solution of eq. (8), so *P  remains stable for all 0>τ . 
 
Again on solving eqs. (6) and (7), we get a critical value of delay that is given as follows : 

( )( ) ( )
( ) , 
b
 

sin1
22
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3
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1

3
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wcτ  this is the least positive value of delay for which 

stability change occur. 
 
4. OPTIMAL HARVESTING POLICY 
 
In the present section, we discuss the optimal policy that should be adopted by regulatory agency in order to maximize 
net revenue. That is given by 

( ) .Ecpqx −=π                                                                                                                                                (11) 
 
Our objective is to maximize following integral 

( )( ) ( ) ,
0
∫
∞

− −= dttEctpqxeJ tδ  

subject to state equations of system (2) and to control constraint
q
r

EE 0
max0 =≤≤ . Here δ  is the instantaneous 

annual rate of discount, p  is the price per unit biomass of landed fish and c  is fishing cost per unit effort. 
 
The associated Hamiltonian is given by 
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where 21 ,λλ  and 3λ are adjoint variables. 
 

The necessary condition for *E  to be optimal over the control set max*0 EE ≤≤ is ,0=
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So, the user’s cost of harvest per unit of effort equals the discounted value of the future marginal profit of the effort at 
the steady state level. 
 
According to the Pontryagin’s Maximum principle, the adjoint variables 21 ,λλ  and 3λ must satisfy 
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On considering interior equilibrium ( )**,*,* 21 TTxP  and solving above equations we get 
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On equating two values of ( )t1λ  we get  

,
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2
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                                                                                                                                                    (14) 

this expression gives the optimal equilibrium level of species i.e. δx , then the optimal equilibrium levels of both 
toxicants and harvesting effort are given by 
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It has been noted from above analysis that ( ) ( )3,2,1=iet t

i
δλ is independent of time and remains bounded as t  tends 

to infinity, so they satisfy transversality condition. 
 
From eq. (14), we observe that  

0**
1

2 →
+

=−
δC

qxCcpqx  as ,∞→δ this shows that the economic rent is completely dissipated when discount rate 

is infinite. 
 
5. PERSISTENCE  
 
Theorem 5.1: Let ( ) qETTr >∈ 12 ,  holds, then the system (2) persists (does not persist) if *P  exist (does not exist). 
 
Proof:  To prove this theorem, we have to show that there are no omega limit points on the axes of orbits initiating in 
the interior of positive octant. Suppose u is a point in the positive octant and ( )uθ  is the orbit through u  and ω  is 

the omega limit set of the orbit through u .Note that ( )u ω   is bounded. 
 
We claim that P does not belong to ( )u ω . If ( )uP  ω∈ , the condition ( ) qETTr >∈ 12 ,  implies that P is a saddle 

point, by Butler McGehee lemma there exists a point v  in ( ) ( )PMu s∩ ω  where ( )PM s  denote the stable 

manifold of P .  Now ( )PM s  is the 21 TT −  plane implies that an unbounded orbit ( )vθ  lies in ( )u ω , which is a 
contrary to the boundedness of the system. 
 
Thus, ( )u ω  lies in the positive octant and system (2) is persist. Finally, since only the closed orbits and the equilibria 

form the omega limit set of the solutions on the boundary of 3
+R  and system (2) is dissipative, by main theorem in 

Butler et al. (1986) this implies that system (2) is uniformly persistent. 
 
6. NUMERICAL EXAMPLE 
 
In this section, we present numerical simulation to explain the applicability of the results obtained. We choose the 
following values of the parameters and functions in model (2) as below  
(a) ( ) ( ) ,   ,, 211021211012 TKKTKTTrrTTr −=∈−−=∈

,01.0,05.0,1,10,01.0,02.0,05.0,100,01.0,3 201111100 ========== γααθ EQKrKr
.01.0,1.0,5.0 ∈=== βq  

 
The interior equilibrium point of system (2) with data (a) is  

.01166.0*,2309.10*,7434.82* 21 === TTx  
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Figures have been plotted between dependent variables and time for different parameter values to shows changes 
occurring in population with time under different conditions. The results of numerical simulation are displayed 
graphically. In figure (1) the 1,Tx  and 2T  are plotted against time. From figure it is noted for given initial values the 
populations tend to their corresponding value of equilibrium point *P and hence exists in the form of steady state 
assuring local stability of *P . Figure shows that increasing the value of harvesting effort the population of species 
decreases and tends to zero if 74.4≥E . Figure 3 and Figure 4 show that affect of primary and secondary toxicant on 
the population of species. From figures we can see that increasing the emittion rates of primary toxicant and secondary 
toxicant the population of species decreases. It can also be checked that all inequalities given by eq. (10) are satisfied 
for above equilibrium points and chosen parameters, so our system is stable for all values of delay, if it is stable in the 
absence of delay refer Figure 5.   
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Figure-1: Stable behavior of 1,Tx  and 2T with time and other parameter values are same as (a). 
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Figure-2: Variation of the population of species with time for different values of E and other parameter values are 

same as (a). 
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Figure-3. Variation of the population of species with time for different values of 0Q and other parameter values are 

same as (a). 
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Figure-4: Variation of the population of species with time for different values of θ and other parameter values are 

same as (a). 
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Figure-5a.                                                                     Figure-5b. 

Figure 5: Graph of population of species verses concentration of primary toxicant for different values of delay. 
20=τ  in Figure 5a and 30=τ  in Figure 5b and other parameter values are same as (a). 
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7. DISCUSSION 
 
In the present paper, we have discussed non–selective harvesting of a fishery resource that is affected by toxicant. We 
have structured toxicant into two levels according to its intensity – Primary toxicant that is of low intensity and 
secondary toxicant is highly toxic. It is assumed that growth rate coefficient and carrying capacity of logistically 
growing fish species are adversely affected by presence of toxicant and decreases with increase in toxicant level. The 
primary toxicant gets transformed into secondary toxicant after a constant time lag τ . 
 
We have proved positivity and boundedness of solution of system. Using stability theory of differential equation, we 
have also proved the existence of interior equilibrium and discussed stability of the system under certain conditions and 
found the condition for persistence of the system.It has been observed that increase in toxicant above certain level leads 
to extinction of species. We obtained the conditions under which system is stable for 0=τ  and also obtained criteria 
for no stability change when 0≠τ . A least critical value of delay is also obtained at which stability change occur.  
 
An optimal policy to harvest fish population is discussed by using Pontryagin’s Maximum principle, optimal levels of 
harvesting effort, fish population and toxicants are obtained. It has been noted that increase in toxicant concentration 
decreases the optimal levels of harvesting effort and fish population. It has also been observed that sufficiently large 
value of discount rate decreases the net economic revenue to the society.  
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