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INTRODUCTION 
 
There are many concepts of universal algebras generalizing an associative ring (R, +, .). Some of them in particular, 
near rings and several kinds of semirings have been proven very useful. Semirings (called also half rings) are algebras 
(R,+ ,.) share the same properties as a ring except that (R, +) is assumed to be a semi group rather than a commutative 
group. Semi rings appear in a natural manner in some applications to the theory of automata and formal languages. An 
algebra (R, +, .) is said to be a semi ring (R, +) and (R, .) are semi groups satisfying a.(b+c)=a.b+a.c and 
(b+c).a=b.a+c.a for all a,b and c in R. A semi ring R is said to be additively commutative if a+b=b+a for all a, b and c 
in R. A semi ring R may have an identity 1, defined by 1.a=a=a.1 and a zero 0, defined by 0+a=a=a+0 and a.0=0=0.a 
for all a in R. A semi ring R is said to be a hemi ring if it is an additively commutative with zero. Interval valued fuzzy 
sets were introduced independently by Zadeh [10], Grattan-Guiness [4], Jahn [6], in the seventies, in the same year. An 
interval valued fuzzy set (IVF) is defined by an interval-valued membership function Jun. Y.B and Kin.K [7] defined 
an interval valued fuzzy R-subgroups of nearrings. Solairaju. A and Nagarajan.R [9] defined the characterization of 
interval valued Anti fuzzy Left h-ideals over hemirings. Azriel Rosenfeld [2] defined fuzzy groups. Osman Kazanci, 
Sultan yamark and serife yilmaz in [11] have introduced the Notion of intuitionistic Q-fuzzification of N-subgroups 
(subnear rings) in a near-ring and investigated some related properties. Solairaju. A and Nagarajan.R [14], have given a 
new structure in the construction of Q-fuzzy groups and subgroups [15]. We introduced the concept of interval valued 
Q-fuzzy subhemiring of a hemiring under homomorphism, anti homomorphism and established some results. 
 
1. PRELIMINARIES 
 
1.1 Definition: Let X be any nonempty set. A mapping  [M]: X → D[0,1] is called an interval valued fuzy 
subset(briefly, IVFS) of X, where D[0,1] denoted the family of all closed subintervals of [0,1] and 
[M](x)=[M−(x), M+(x)], for all x in X, where M−and M+ are fuzzy subsets of X such that M−(x)  ≤ M+(x), for all x in 
X. Thus [M](x) is an interval (a closed subset of [0,1]) and not  number from the intervak [0,1] as in the case of fuzzy 
subset. Note that [0] = [0, 0] and [1] = [1, 1]. 
 
1.2 Remark: Let DX   be the set of all interval valued fuzzy subsets of X, where D means D[0,1]. 
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1.3 Definition: Let [M] = {〈x, [M−(x), M+(x)]〉/x ∈ X}, [N] = {〈x, [N−(x), N+(x)]〉/x ∈ X} be any two interval valued 
fuzzy subsets of x. We define the following relations and operations: 

(i)   [M] ⊆ [N] if and only if M−(x) ≤ N−(x)  and  M+(x) ≤ N+(x), for all x in X. 
(ii)  [M]= [N] if and only if M−(x) = N−(x)  and  M+(x) = N+(x), for all x in X. 
(iii) [M] ∩ [N] ={〈x, [min{M−(x), N−(x)} , min{M+(x), N+(x)}]〉/x ∈ X}. 
(iv) [M] ∪ [N] ={〈x, [max{M−(x), N−(x)}, max{M+(x), N+(x)}]〉/x ∈ X}. 
(v)  [M]C = [1] − [M] = {〈x, [1 − M+(x), 1 − M−(x) 〉/x ∈ X} 

 
1.4 Definition: Let X be a non-empty set and Q be a non-empty set. A (Q, L)--fuzzy subset A of X is function      
 A: X × Q → [0,1]. 
 
1.5 Definition: Let (R, +, .) be a hemiring. A interval valued Q-fuzzy subset [M] of R is said to be an interval valued    
Q -fuzzy subhemiring (IVFSHR) of R if the following conditions are satisified: 
(i) [M](x + y, q) ≥ min�[M](x, q), [M](y, q)� 
(ii)[M](xy, q) ≥ min�[M](x, q), [M](y, q)�, for all x and y in R, and q in Q. 
 
1.6 Definition: Let (R, +, .) be a hemiring. A interval valued Q-fuzzy subhemiring [A] of R is said to be an interval 
valued Q-fuzzy normal subhemiring (IVFNSHR) of R if [A] (xy, q) = [A] (yx, q), for all x and y in R and q in Q. 
 
1.7 Definition: Let X and 𝑋𝑋′  be any two sets. Let f: X → X′ be any function and [A] be an interval valued Q-fuzzy 
subset in X, [V] be an interval valued Q-fuzzy subset in f(X) = X′, defined by [V](y, q) = supx∈f−1(y)[A](x, q) for all   
x in X and y in X′ and q in Q. Then [A] is called a pre-image of [V] under f and is denoted by f−1([V]). 
 
2. PROPERTIES OF INTERVAL VALUED Q-FUZZY SUBHEMIRINGS 
 
2.1 Theorem: Let (R, +,.) and (R′, +, .) be any two hemirings. The homomorphic image of an interval valued Q-fuzzy 
subhemiring of R is an interval valued Q-fuzzy subhemiring of R′. 
 
Proof: Let (R, +,.) and (R′ , +, .) be any two hemirings. Let f: R → R′  be a homomorphism. Then, f(x+y)=f(x)+f(y) and 
f(xy)=f(x)f(y), for all x and y in R. Let [V] = f ([A]), where [A] is an interval valued Q-fuzzy subhemiring of R. We 
have to prove that [V] is an interval valued Q-fuzzy subhemiring of R′ . Now, for   f(x), f(y)  in  R′  & 𝑞𝑞 𝑖𝑖𝑖𝑖 𝑄𝑄 . 
[V]� (f(x), q)  + ( f(y), q)� =  [V]( f(x + y, q) ≥   [A](x + y, q) ≥ min{[A](x, q), [A](y, q))} Which implies that   
[V]�(f(x) , q) +  (f(y) , q)� ≥ min�[V](f(x), q), [V](f(y), q)�.  
Again,  
[V]�(f(x), q)(f(y), q)� =  [V]((f(xy) , q)) ≥ [A](xy , q) ≥ min{[A]( x , q), [A] (y , q))} Which implies that   
[V]�(f(x), q)(f(y), q)� ≥  min�[V](f(x), q), [V](f(y), q)�.Hence [V] is an interval valued Q-fuzzy subhemiring of R′ . 
 
2.2 Theorem: Let (R, +,.) and (R′, +,.) be any two hemirings. The homomorphic preimage of an interval valued         
Q-fuzzy subhemiring of R′is interval valued Q-fuzzy subhemiring of R. 
 
Proof: Let (R, +, .) and (R′ , +, .)  be any  two  hemirings. Let f: R → R′   be a homomorphism. Then, Then, 
f(x+y)=f(x)+f(y) and f(xy)=f(x)f(y), for all x and y in R. Let [V] = f([A]),  where   [V]   is   an  interval  valued            
Q-fuzzy  subhemiring  of  R′ .  We  have  to prove that  [A] is  an   interval   valued  Q – fuzzy  subhemiring  of  R. Let      
x and y in R and q in Q. Then 
[𝐴𝐴](𝑥𝑥 + 𝑦𝑦, 𝑞𝑞) = [𝑉𝑉] (𝑓𝑓(x + y , q)) ≥ [V](f(x, q) + f(y, q)) ≥ min{[V](f(x), q), [V](f(y, q))} = min{[A](x, q), [A](y, q)},  
which implies that  [𝐴𝐴] (𝑥𝑥 + 𝑦𝑦 , 𝑞𝑞) = min{[A] (x , q) , [A] (y , q)}   
 
Again, 
[𝐴𝐴] ( 𝑥𝑥𝑦𝑦 , 𝑞𝑞) = [𝑉𝑉]�𝑓𝑓(xy , q)� ≥ [V]�f(x, q)f(y, q)� ≥ min�[V](f(x), q), [V]�f(y), q)�� = min{[A](x, q), [A](y, q)}  
which   implies that [𝐴𝐴](𝑥𝑥𝑦𝑦, 𝑞𝑞) = min{[A](x , q), [A]( y , q)}. 
Hence [A] is an interval valued Q-fuzzy subhemiring of R. 
 
2.3 Theorem: Let (R, +, .) and (R′, +, .) be any two hemirings. The anti-homomorphic image of an interval valued      
Q-fuzzy subhemiring of R is an interval valued Q-fuzzy subhemiring of 𝐑𝐑′. 
 
Proof: Let (R, +,.) and (R′ , +,.) be any two hemirings.Let f: R → R′  be a anti-homomorphism. Then, f(x+y)=f(x)+f(y) 
and f(xy)=f(x)f(y), for all x and y in R. Let [V] = f([A]), where [A] is an interval valued Q-fuzzy  subhemiring   of   R. 
We have to prove that [V] is an interval valued Q-fuzzy subhemiring of R′. Now, for f(x), f(y) in R′& 𝑞𝑞 𝑖𝑖𝑖𝑖          
𝑄𝑄 [𝑉𝑉]�(f(x), q) + (f(y), q)� = [𝑉𝑉]�(f(𝑦𝑦), q) + (f(𝑥𝑥), q)� ≥ [A](y + x, q) ≥ min{[A](y, q), [A](x, q))}  whichimplies 
that [V]�(f(x), q) + (f(y), q)� ≥ 𝑚𝑚𝑖𝑖𝑖𝑖�[V](f(x), q), [𝑉𝑉](f(y), q)�.   
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Again,       
[𝑉𝑉]�(f(x), q)(f(y), q)� = [𝑉𝑉](𝑓𝑓(yx), q) ≥ [A](yx, q) ≥ min{[A](y, q), [A](x, q))} = min{[A](x, q), [A](y, q))} which 
implies that [V]�(f(x), q)(f(y), q)� ≥ 𝑚𝑚𝑖𝑖𝑖𝑖�[V](f(x), q), [𝑉𝑉](f(y), q)�.   
Hence [V] is an interval valued Q-fuzzy subhemiring of R′. 
 
2.4 Theorem: Let (R, +,.) and (R′ , +, .) be any two hemirings. The anti-homomorphic preimage of an interval valued 
Q-fuzzy subhemiring of R′ is an interval valued Q-fuzzy subhemiring of R. 
 
Proof: Let (R, +,.) and (R′ , +,.) be any two hemirings. Let f: R → R′  be a anti-homomorphism. Then f(x+y)=f(y)+f(x) 
and f(xy)=f(y)f(x),for all x and y in R. 
 
Let  [V] = f([A])where V is an anti (Q, L) − fuzzysubhemiring of R′ . Let x and y in R & q in Q. where [V] is an 
interval valued Q-fuzzy subhemiring of R′ . We have to prove that [A] is an   interval   valued Q – fuzzy subhemiring of 
R. Let x and y in R and q in Q. Then   
[A] (x + y , q)  =  [V] � f(x + y , q)� = [V] ( f(y + x , q) ≥ min{[V](f(y), q), [V](f(x), q))} ≥
min{[V](f(x), q), [V](f(y), q))} = min{[A](x, q), [A](y, q)}, which implies that  
[A] (x + y , q) = min{[A] (x , q) , [A] (y , q)}  .Again,[A] ( xy , q) = [V]�(f(xy) , q)� ≥ [V]�f(x), q)(f(y), q)� ≥
min�[V](f(y), q), [V]�f(x), q)�� ≥ min�[V](f(x), q), [V]�f(y), q)��= min{[A](x, q), [A](y, q)} which implies that 
[A](xy, q) =  min{[A](x , q), [A](y, q)}.  Hence [A] is an interval valued Q-fuzzy subhemiring of R. 
 
2.5 Theorem: Let [A] be an interval valued Q-fuzzy subhemiring of hemiring H and f is an isomorphism from a 
hemiring R onto H. Then [A]∘ f is an interval valued Q-fuzzy subhemiring of R. 
 
Proof: Let   x   and  y  in  R 𝑎𝑎𝑖𝑖𝑎𝑎 [𝐴𝐴] be an interval valued Q-fuzzy subhemiring of a hemiring H. Then we have, 
([𝐴𝐴] ∘ f)( 𝑥𝑥 + y, q ) = [A] ( f(x + y), q)) = [A](f(x), q) + (f(y), q)) ≥  min{([A]( f(x) , q ) , [𝐴𝐴](f(y), q)} =
𝑚𝑚𝑖𝑖𝑖𝑖{([A] ∘ f)(x, q), ([𝐴𝐴] ∘ f)(y, q)}. which   implies   that  
([𝐴𝐴] ∘ f)( x +  𝑦𝑦 , 𝑞𝑞)  ≥ 𝑚𝑚𝑖𝑖𝑖𝑖{([A] ∘ f)(x, q), ([𝐴𝐴] ∘ f)(y, q)}. And, ([𝐴𝐴] ∘ f)( 𝑥𝑥y, q ) = [A] ( f(xy), q)) =
[A]((f(x), q)(f(y), q)) ≥ min{([A]( f(x) , q ), [𝐴𝐴](f(y), q)} = 𝑚𝑚𝑖𝑖𝑖𝑖{([A] ∘ f)(x, q), ([𝐴𝐴] ∘ f)(y, q)}. which implies   that 
([𝐴𝐴] ∘ f)( x𝑦𝑦 , 𝑞𝑞)  ≥ 𝑚𝑚𝑖𝑖𝑖𝑖{([A] ∘ f)(x, q), ([𝐴𝐴] ∘ f)(y, q)}.Therefore ([𝐴𝐴] ∘ f) is an interval valued Q-fuzzy subhemiring 
of R. 
 
2.6 Theorem: Let [A] be an interval valued Q-fuzzy subhemiring of hemiring H and f is an anti- isomorphism from a 
hemiring R onto H. Then [A]∘ f is an interval valued Q-fuzzy subhemiring of R. 
 
Proof: Let  x and   y   in   R .   Then  we  have, ([𝐴𝐴] ∘ f)( 𝑥𝑥 + y, q ) = [A] ( f(x + y), q)) = [A](f(y, q) + f(x, q)) ≥
 min{([A]( f(x) , q ) , [𝐴𝐴](f(y), q)} = 𝑚𝑚𝑖𝑖𝑖𝑖{([A] ∘ f)(x, q), ([𝐴𝐴] ∘ f)(y, q)}. which   implies   that ([𝐴𝐴] ∘ f)( x +  𝑦𝑦 , 𝑞𝑞)  ≥
𝑚𝑚𝑖𝑖𝑖𝑖{([A] ∘ f)(x, q), ([𝐴𝐴] ∘ f)(y, q)}. and, 
([𝐴𝐴] ∘ f)( 𝑥𝑥y, q ) = [A] ( f(yx), q)) = [A](f(y), q)f(x), q)) ≥ min{([A]( f(x) , q ) , [𝐴𝐴](f(y), q)} = 𝑚𝑚𝑖𝑖𝑖𝑖{([A] ∘ f)(x, q),
  𝐴𝐴∘fy,q. which   implies   that  [𝐴𝐴]∘f x𝑦𝑦 ,𝑞𝑞 ≥𝑚𝑚𝑖𝑖𝑖𝑖A∘fx,q,[𝐴𝐴]∘fy,q.  
Therefore ([𝐴𝐴] ∘ f) is an interval valued Q-fuzzy subhemiring of the hemiring R. 
 
2.7 Theorem: Let (R, +, .) and (R′, +, .) be any two hemirings. The homomorphic image of an interval valued Q-fuzzy 
normal subhemiring of R is an interval valued Q-fuzzy subhemiring of R′. 
 
Proof: Let (R, +, .) and (R′, +, .) be any two hemirings.Let f: R → R′ be a homomorphism. Let [A] is an interval valued 
Q-fuzzy normal subhemiring   of   R. We have to prove that [V] is an interval valued Q-fuzzy normal subhemiring of 
f(R) = R′. Now, for   f(x) , f(y)  in  R′ & q in Q . clearly, [V] is an interval valued Q-fuzzy subhemiring of f(R) = R′ .   
since [A] is an interval valued Q-fuzzy subhemiring of R. 
 
Now, [V]�(f(x), q)(f(y), q)� = [𝑉𝑉](𝑓𝑓(xy), q) ≥ [A](xy, q) = [A](yx, q) ≤ [V]{f(yx), q)} = [V]�(f(𝑦𝑦), q)(f(𝑥𝑥), q)�  
which implies that [V]�(f(x), q)(f(y), q)� = [V]�(f(𝑦𝑦), q)(f(𝑥𝑥), q)�. Hence [V] is an interval valued Q-fuzzy normal 
subhemiring of the hemiring R′. 
 
2.8 Theorem: Let (R, +, .) and (R′, +, .) be any two hemirings. The homomorphic preimage of an interval valued       
Q-fuzzy normal subhemiring of R′is interval valued Q-fuzzy normal subhemiring of R. 
 
Proof: Let (R, +,.) and (R′ , +,.) be any two hemirings.Let f: R → R′  be a homomorphism. Let [V] is an interval valued 
Q-fuzzy normal subhemiring of f(R) = R′ . we have to prove that [A] is an interval valued Q – fuzzy normal 
subhemiring of R. Let x and y in R and q in Q. Then, clearly, [A] is an interval valued Q-fuzzy subhemiring of the 
hemiring R.  
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Now, [A](xy, q) = [V](f(xy), q) = [V]{(f(x), q)(f(y), q)} = [V]�(f(𝑦𝑦), q)(f(𝑥𝑥), q)� = [V](f(yx), q) = [A](yx, q)  
which implies that[A](xy, q) = [A](yx, q), for all x and y in R  and q in Q. Hence [A] is an interval valued Q-fuzzy 
normal subhemiring of the hemiring R. 
 
2.9 Theorem: Let (R, +, .) and (R′, +, .) be any two hemirings. The antihomomorphic image of an interval valued Q-
fuzzy normal subhemiring of R is an interval valued Q-fuzzy subhemiring of R′. 
 
Proof: Let (R, +,.) and (R′, +, .) be any two hemirings.Let f: R → R′ be a anti homomorphism. Let [A] is an interval 
valued Q-fuzzy normal subhemiring   of   R. We have to prove that [V] is an interval valued Q-fuzzy normal 
subhemiring of f(R) = R′.Now, for   f(x), f(y)  in  R′ & q in Q . clearly, [V] is an interval valued Q-fuzzy  subhemiring 
of R^'. since [A]  is an interval valued Q − fuzzy  subhemiring   of   R. Now, [V]�(f(x), q)(f(y), q)� = [𝑉𝑉](𝑓𝑓(𝑦𝑦𝑥𝑥), q) ≥
[A](yx, q) = [A](xy, q) ≤ [V]{f(xy), q)} = [V]�(f(𝑦𝑦), q)(f(𝑥𝑥), q)�  which implies that 
[V]�(f(x), q)(f(y), q)� = [V]�(f(𝑦𝑦), q)(f(𝑥𝑥), q)�. Hence [V] is an interval valued Q-fuzzy normal subhemiring of the 
hemiring R′. 
 
2.10 Theorem: Let (R, +, .) and (R′, +,.) be any two hemirings. The anti homomorphic preimage of an interval valued 
Q-fuzzy normal subhemiring of R′  is interval valued Q-fuzzy normal subhemiring of R. 
 
Proof: Let (R, +,.) and (R′, +,.) be any two hemirings. Let f: R → R′ be anti homomorphism. Let [V] is an interval 
valued Q-fuzzy normal subhemiring of f(R)=R′. We have to prove that  [A]   is  an   interval valued Q – fuzzy normal 
subhemiring of R. Let x and y in R and q in Q. Then clearly, [A] is an interval valued Q-fuzzy subhemiring of the 
hemiring R. since [V] is an interval valued Q-fuzzy normal subhemiring of the hemiring R′.  
 
Now, [A](xy, q) = [V](f(xy), q) = [V]{(f(y), q)(f(x), q)} = [V]�(f(𝑥𝑥), q)(f(y), q)� = [V](f(yx), q) = [A](yx, q)  
which implies that[A](xy, q) = [A](yx, q), for all x and y in R and q in Q.  Hence [A] is an interval valued Q-fuzzy 
normal subhemiring of the hemiring R. 
 
2.11 Theorem: Let [A] be an interval valued Q-fuzzy normal subhemiring of hemiring H and f is an isomorphism from 
a hemiring R onto H. Then [A]∘ f is an interval valued Q-fuzzy normal subhemiring of R. 
 
Proof: Let   x   and  y  in  R 𝑎𝑎𝑖𝑖𝑎𝑎 [𝐴𝐴] be an interval valued Q-fuzzy normal subhemiring of a hemiring H. Then clearly, 
([𝐴𝐴] ∘ f) is an interval valued Q-fuzzy subhemiring of the hemiring R.𝑇𝑇ℎ𝑒𝑒𝑖𝑖  𝑤𝑤𝑒𝑒 ℎ𝑎𝑎𝑎𝑎𝑒𝑒  
([𝐴𝐴] ∘ f)(𝑥𝑥y, q) = [A] (f(xy), q)) = [A](�f(x), q)(f(y), q)� = [A] ��f(y), q)(f(x), q)� = [A]( f(yx), q)� = ([𝐴𝐴] ∘ f)( yx, q )  
which implies that ([𝐴𝐴] ∘ f)( x𝑦𝑦 , 𝑞𝑞) = ([𝐴𝐴] ∘ f)( 𝑦𝑦𝑥𝑥 , 𝑞𝑞) therefore ([𝐴𝐴] ∘ f) is an interval valued Q-fuzzy normal 
subhemiring of R. 
 
2.12 Theorem: Let [A] be an interval valued Q-fuzzy normal subhemiring of hemiring H and f is an anti- isomorphism 
from a hemiring R onto H. Then [A]∘ f is an interval valued Q-fuzzy normal subhemiring of R. 
 
Proof: Let x and y in R and [A] be an interval valued Q-fuzzy normal subhemiring of a hemiring H. Then clearly, 
([𝐴𝐴] ∘ f) is an interval valued Q-fuzzy subhemiring of the hemiring R. Then we have 
([𝐴𝐴] ∘ f)(𝑥𝑥y, q) = [A](f(xy), q)) = [A](�f(y), q)(f(x), q)� = [A] ��f(x), q)(f(y), q)� = [A](f(yx), q)� = ([𝐴𝐴] ∘ f)(yx, q)   
which implies that 
([𝐴𝐴] ∘ f)( x𝑦𝑦 , 𝑞𝑞) = ([𝐴𝐴] ∘ f)( 𝑦𝑦𝑥𝑥 , 𝑞𝑞), for all x and y in R and q in Q. Hence, ([𝐴𝐴] ∘ f) is an interval valued Q-fuzzy 
normal subhemiring of hemiring R. 
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