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ABSTRACT 
The aim of the present paper is to study the effect of MHD flows due to rotating porous disk and a third grade fluid at     
infinity with partial slip. The arising non-linear problem is solved numerically using modified crank-Nicolson implicit 
scheme through MATLAB. The variation of the velocity profile with distance from the disk for various values of slip 
parameter λ is discussed graphically and the results are reported for conclusion. 
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INTRODUCTION 
 
The equations which govern the flows of viscous fluids are the Navier-stokes equations. In nature, there are many 
fluids which do not obey the Newtonian law of viscosity and the Navier-stokes equations are inadequate for such 
fluids. These fluids are termed as the non-Newtonian fluids. Non – Newtonian fluid flow play an important roles in 
several industrial manufacturing processes. That are used in various branches of science, engineering technology: 
particularly in material processing, chemical industry, geophysics and bio-engineering. Moreover, the non-Newtonian 
fluids such as mercury amalgams, liquid metals, biological fluids, plastic extrusions, paper coating lubrication oils and 
greases have applications in many areas with or without magnetic field. Due to complexity of fluids in nature, non-
Newtonian fluids are classified on the basis of their behaviour in shear. Among the many fluid models which have been 
used to describe the viscoelastic behaviour exhibited by these fluids, the fluid of second grade and third grade have 
received a special attention. The normal stress differences are described in second grade of non-Newtonian fluid, but 
they cannot predict shear thinning or thickening properties due to their constant apparent viscosity. The third grade 
fluid model attempt includes such characteristics of visco-elastic fluids. Despite various complexities in the constitutive 
equations, several researchers have investigated the flows of third – grade fluids taking into account various aspects. 
Several researchers discussed the slip effect on fluid flow. For instance, S. Asghar, M. Mudassar Gulzar, M. Ayub 
(2006) discussed an analytical study of on the rotating flow of third grade fluid past a porous plate with the partial slip 
effects. Sajid and Hayat (2007) discussed the two – dimensional boundary layer flow of a third grade fluid over 
stretching sheet. Sajit et al. (2007) considered heat transfer characteristics in an electrically conducting third grade 
fluid. Miccal and James (2008) discussed the effect of replacing the standard no slip boundary condition of fluid 
mechanics applying for the so called Falkner-Skan solutions, with a boundary condition that allows some degree of 
tangential fluid slip. Ellahi (2009) discuss the slip condition of an Oldroyd 8 – constant fluid. Sahoo (2010) computed 
the numerical solutions for heat transfer in Heimenz flow of third –grade fluid. Hayat et al. (2010) examined the 
simultaneous effects of heat and mass transfer on an unsteady flow of third-grade fluid. Rashidi and Pour (2010) 
examined the three dimensional problem of a condensation film inclined on a rotating disk by a differential transform 
method. Recently Hayat and Nawaz (2011) discussed unsteady stagnation point flow over a rotating disk. However, the 
effect of MHD flows due to rotating porous disk and a third grade fluid at infinity with partial slip is not established in 
the literature. The present work deals with the variation of the velocity profiles for the different values of the partial slip 
parameter. 
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MATHEMATICAL FORMULATION 
 
Consider the Cartesian coordinate system with z-axis normal to the porous disk which lies in the plane 𝑧𝑧 = 0. The 
common angular velocity of the disk and the fluid at infinity is Ω. The fluid is electrically conducting in the presence of 
an applied constant magnetic field 𝐵𝐵0. 
 
The velocity field is of the form  
𝑢𝑢 = −𝛺𝛺𝛺𝛺 + 𝑓𝑓(𝑧𝑧, 𝑡𝑡),    𝑣𝑣 = 𝛺𝛺𝛺𝛺 + 𝑔𝑔(𝑧𝑧, 𝑡𝑡),     𝑤𝑤 = −𝑤𝑤0                                                                                                      (1) 
where 𝑢𝑢, 𝑣𝑣,𝑤𝑤 are the components of the velocity vector 𝑉𝑉, in the directions 𝛺𝛺,𝛺𝛺, 𝑧𝑧 respectively. Obviously 𝑤𝑤0 > 0 is the 
suction velocity and 𝑤𝑤0 < 0 is the blowing velocity. The velocity field satisfies 𝛻𝛻.𝑉𝑉 = 0  
 
For magnetohydrodynamic fluid, the governing equation of motion is, 
𝜌𝜌 𝑑𝑑𝑽𝑽
𝑑𝑑𝑡𝑡

= 𝑑𝑑𝑑𝑑𝑣𝑣 𝑻𝑻 + 𝑱𝑱 × 𝑩𝑩                                                                                                                                                        (2)   
where 𝑱𝑱 is the current density and 𝑩𝑩 is the total magnetic field. 
 
The constitutive equation of the third – grade fluid is 
𝑇𝑇 = −𝑝𝑝1𝐼𝐼 + 𝜇𝜇𝐴𝐴1 + 𝛼𝛼1𝐴𝐴2+𝛼𝛼2𝐴𝐴1

2 + 𝛽𝛽1𝐴𝐴3 +𝛽𝛽2(𝐴𝐴1𝐴𝐴2 + 𝐴𝐴2𝐴𝐴1) + 𝛽𝛽3(𝑡𝑡𝑡𝑡𝐴𝐴1
2)𝐴𝐴1                                                                          (3)  

Where 𝑇𝑇 is the stress tensor, 𝐼𝐼 is the identity, 𝐴𝐴1,𝐴𝐴2 and 𝐴𝐴3 are the Rivlin - Ericsen tensors of the first, second and third 
orders respectively, 𝑝𝑝1is the static fluid pressure (𝑝𝑝=𝑝𝑝(𝛺𝛺,𝛺𝛺, 𝑧𝑧)), μ is the dynamic viscosity, coefficients 
𝛼𝛼1,𝛼𝛼2,𝛽𝛽1 ,𝛽𝛽2, 𝛽𝛽3 are the material constants.  Rivlin - Ericksen tensors of order first and nth order are given by 
𝐴𝐴1 = (𝑔𝑔𝑡𝑡𝑔𝑔𝑑𝑑𝑉𝑉) + (𝑔𝑔𝑡𝑡𝑔𝑔𝑑𝑑𝑉𝑉)𝑇𝑇 ,    𝐴𝐴𝑛𝑛 = 𝑑𝑑𝐴𝐴𝑛𝑛−1

𝑑𝑑𝑡𝑡
+ 𝐴𝐴𝑛𝑛−1(𝑔𝑔𝑡𝑡𝑔𝑔𝑑𝑑𝑉𝑉) + (𝑔𝑔𝑡𝑡𝑔𝑔𝑑𝑑𝑉𝑉)𝑇𝑇𝐴𝐴𝑛𝑛−1, 𝑛𝑛 ≥ 1,                                                       (4) 

 
The equation (4) to be compatible with thermodynamics and the free energy to be minimum when the fluid is at rest, 
the material constant should satisfy the relation  
𝜇𝜇 ≥ 0,   𝛼𝛼1 ≥ 0,   |𝛼𝛼1 + 𝛼𝛼2| ≤ �24𝜇𝜇𝛽𝛽3,   𝛽𝛽1 = 0,    𝛽𝛽2 = 0,   𝛽𝛽3 ≥ 0                                                                                  (5) 
and specific Helmholtz free energy  𝜑𝜑 has the form   
𝜑𝜑 = 𝜑𝜑(𝜃𝜃, 𝐿𝐿) = 𝜑𝜑(𝜃𝜃, 0) + 𝛼𝛼1

4𝜌𝜌
                                                                                                                                             (6) 

where 𝐿𝐿 = 𝑔𝑔𝑡𝑡𝑔𝑔𝑑𝑑𝑉𝑉 
 
Here, the fluid is thermodynamically compatible; hence the stress constitutive relation (2) reduces to  
𝑇𝑇 =  −𝑝𝑝𝐼𝐼 +  𝜇𝜇𝐴𝐴1+𝛼𝛼1𝐴𝐴2 + 𝛼𝛼2𝐴𝐴1

2+𝛽𝛽3(𝑡𝑡𝑡𝑡𝐴𝐴1
2)𝐴𝐴1                                                                                                                 (7) 

 
The flow is governed through the following equation  
𝛼𝛼1
𝜌𝜌
� 𝜕𝜕

3𝐹𝐹∗

𝜕𝜕𝑡𝑡𝜕𝜕 𝑧𝑧2 − 𝑤𝑤0
𝜕𝜕3𝐹𝐹∗

𝜕𝜕𝑧𝑧3 � + �𝑣𝑣 − 𝑑𝑑 𝛼𝛼1𝛺𝛺
𝜌𝜌
� 𝜕𝜕

2𝐹𝐹∗

𝜕𝜕𝑧𝑧2 + 𝑤𝑤0
𝜕𝜕𝐹𝐹∗

𝜕𝜕𝑧𝑧
− 𝜕𝜕𝐹𝐹∗

𝜕𝜕𝑡𝑡
 − 𝛺𝛺(𝑑𝑑 + 𝑁𝑁1)𝐹𝐹∗ + 2𝛽𝛽3

𝜌𝜌
𝜕𝜕
𝜕𝜕𝑧𝑧
���𝜕𝜕𝐹𝐹

∗

𝜕𝜕𝑧𝑧
�

2 𝜕𝜕𝐹𝐹∗

𝜕𝜕𝑧𝑧
�� = 0                             (8) 

𝐹𝐹∗(0, 𝑡𝑡) = −cos𝑘𝑘∗𝑡𝑡 ,   𝐹𝐹∗(∞, 𝑡𝑡) = 0, 𝐹𝐹∗(𝑧𝑧, 0) = 0                                                                                                         (9) 
 
where  𝐹𝐹∗ = 𝑓𝑓+𝑑𝑑𝑔𝑔

𝛺𝛺𝛺𝛺
− 𝑐𝑐𝑐𝑐𝑐𝑐 𝑘𝑘∗𝑡𝑡 ,   𝐹𝐹∗ = 𝑓𝑓−𝑑𝑑𝑔𝑔

𝛺𝛺𝛺𝛺
− 𝑐𝑐𝑐𝑐𝑐𝑐 𝑘𝑘∗𝑡𝑡,               

                                                                                     
On introducing non-dimensional parameter 

𝜉𝜉 = �Ω
2𝜈𝜈

𝑧𝑧,   𝜏𝜏 = Ω𝑡𝑡,   𝐹𝐹∗∗(𝜉𝜉, 𝜏𝜏) =
𝐹𝐹∗(𝑧𝑧, 𝑡𝑡)

Ω𝛺𝛺
,   𝐹𝐹∗∗���� (𝜉𝜉, 𝜏𝜏) =

𝐹𝐹∗(𝑧𝑧, 𝑡𝑡)
Ω𝛺𝛺

   𝑐𝑐 =
𝑘𝑘
Ω

 

𝛽𝛽 = Ω3𝛺𝛺2𝛽𝛽3
𝜌𝜌𝜈𝜈2 , 𝛼𝛼 = Ω𝛼𝛼1

𝜌𝜌𝜈𝜈
, 𝑛𝑛 = 𝑁𝑁1

Ω
, 𝜖𝜖 =  𝑤𝑤0

√2𝜈𝜈Ω
 ,   𝑁𝑁1 =  𝜎𝜎

𝜌𝜌Ω
𝐵𝐵0

2,                                                                                              (10) 
 
Using equation (10) and equation  (8) becomes 

𝛼𝛼 𝜕𝜕3𝐹𝐹∗∗

𝜕𝜕𝜏𝜏𝜕𝜕 𝜉𝜉2 −  𝛼𝛼𝜖𝜖 𝜕𝜕
3𝐹𝐹∗∗

𝜕𝜕𝜉𝜉3 + (1 − 𝑑𝑑𝛼𝛼) 𝜕𝜕
2𝐹𝐹∗∗

𝜕𝜕𝜉𝜉2 + 2𝜖𝜖 𝜕𝜕𝐹𝐹
∗∗

𝜕𝜕𝜉𝜉
  −2 𝜕𝜕𝐹𝐹

∗∗

𝜕𝜕𝜏𝜏
−  2(𝑑𝑑 + 𝑛𝑛)𝐹𝐹∗∗  + 𝛽𝛽 𝜕𝜕

𝜕𝜕𝜉𝜉
 ���𝜕𝜕𝐹𝐹

∗∗

𝜕𝜕𝜉𝜉
�

2
�𝜕𝜕𝐹𝐹

∗∗

𝜕𝜕𝜉𝜉
���  = 0                      (11) 

𝐹𝐹∗∗(0, 𝜏𝜏) = −𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝜏𝜏,  𝐹𝐹∗∗(∞, 𝜏𝜏) = 0,  𝐹𝐹∗∗(𝜉𝜉, 0) = 0.                                                                                                     (12) 
 
It is noted that equation (11) is a third order and non - linear partial differential equation. 
 
For case of partial slip  the boundary condition at 𝑧𝑧 = 0 is of the following form  
𝑢𝑢 − 𝜆𝜆2𝜏𝜏𝛺𝛺𝑧𝑧 = 𝛺𝛺𝛺𝛺 − cos𝑘𝑘∗𝑡𝑡 , 𝑣𝑣 −  𝜆𝜆2𝜏𝜏𝛺𝛺𝑧𝑧 =  𝛺𝛺𝛺𝛺    𝑔𝑔𝑡𝑡 𝑧𝑧 = 0  𝑓𝑓𝑐𝑐𝑡𝑡 𝑡𝑡 > 0  ,                                                                              (13) 

where 𝜆𝜆 = 𝜆𝜆2�
𝛺𝛺
𝑣𝑣
  is slip parameter 
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The governing problem consist of  

𝛼𝛼 𝜕𝜕3𝐹𝐹∗∗

𝜕𝜕𝜏𝜏𝜕𝜕 𝜉𝜉2 −  𝛼𝛼𝜖𝜖 𝜕𝜕
3𝐹𝐹∗∗

𝜕𝜕𝜉𝜉3 + (1 − 𝑑𝑑𝛼𝛼) 𝜕𝜕
2𝐹𝐹∗∗

𝜕𝜕𝜉𝜉2 + 2𝜖𝜖 𝜕𝜕𝐹𝐹
∗∗

𝜕𝜕𝜉𝜉
  −2 𝜕𝜕𝐹𝐹

∗∗

𝜕𝜕𝜏𝜏
−  2(𝑑𝑑 + 𝑛𝑛)𝐹𝐹∗∗  + 𝛽𝛽 𝜕𝜕

𝜕𝜕𝜉𝜉
 ���𝜕𝜕𝐹𝐹

∗∗

𝜕𝜕𝜉𝜉
�

2
�𝜕𝜕𝐹𝐹

∗∗

𝜕𝜕𝜉𝜉
���  = 0                      (14) 

            

𝐹𝐹∗∗(0, 𝜏𝜏) =  − cos 𝑐𝑐𝜏𝜏 + 𝜆𝜆 �𝜕𝜕𝐹𝐹
∗∗

𝜕𝜕𝜉𝜉
+ 𝛼𝛼 � 𝜕𝜕

2𝐹𝐹∗∗

𝜕𝜕𝜏𝜏𝜕𝜕𝜉𝜉
−   𝜖𝜖 𝜕𝜕

2𝐹𝐹∗∗

𝜕𝜕𝜉𝜉2 −  𝑑𝑑 𝜕𝜕𝐹𝐹
∗∗

𝜕𝜕𝜉𝜉
 �  + 𝛽𝛽 ��𝜕𝜕𝐹𝐹

∗∗

𝜕𝜕𝜉𝜉
�

2
�𝜕𝜕𝐹𝐹

∗∗

𝜕𝜕𝜉𝜉
���                                              (15) 

 
NUMERICAL SOLUTION OF THE PROBLEM 
 
The governing equation (14) is highly non-linear partial differential equation together with the initial and boundary 
condition (15). Also the boundary condition at z=0 is non-linear. Using finite difference method the following algebraic 
equation is obtained from equation (14)  
𝛼𝛼

  𝑘𝑘∗ℎ2 �
�𝐹𝐹𝑑𝑑+1,𝑗𝑗+1

∗∗ − 2𝐹𝐹𝑑𝑑 ,𝑗𝑗+1
∗∗ + 𝐹𝐹𝑑𝑑−1,𝑗𝑗+1

∗∗ �
−�𝐹𝐹𝑑𝑑+2,𝑗𝑗

∗∗ − 2𝐹𝐹𝑑𝑑+1,𝑗𝑗
∗∗ + 𝐹𝐹𝑑𝑑 ,𝑗𝑗∗∗�

� −  𝛼𝛼𝜖𝜖
4ℎ3  ��𝐹𝐹𝑑𝑑+2,𝑗𝑗+1

∗∗ − 2𝐹𝐹𝑑𝑑+1,𝑗𝑗+1
∗∗ + 2𝐹𝐹𝑑𝑑−1,𝑗𝑗+1

∗∗ +𝐹𝐹𝑑𝑑−2,𝑗𝑗+1
∗∗ � + �𝐹𝐹𝑑𝑑+2,𝑗𝑗

∗∗ − 2𝐹𝐹𝑑𝑑+1,𝑗𝑗
∗∗ +

2𝐹𝐹𝑑𝑑−1,𝑗𝑗
∗∗ − 𝐹𝐹𝑑𝑑−2,𝑗𝑗

∗∗ )� + 1
2ℎ2 (1 − 𝑑𝑑𝛼𝛼)��𝐹𝐹𝑑𝑑+1,𝑗𝑗+1

∗∗ − 2𝐹𝐹𝑑𝑑 ,𝑗𝑗+1
∗∗ + 𝐹𝐹𝑑𝑑−1,𝑗𝑗+1

∗∗ � +  �𝐹𝐹𝑑𝑑+1,𝑗𝑗
∗∗ − 2𝐹𝐹𝑑𝑑 ,𝑗𝑗∗∗ + 𝐹𝐹𝑑𝑑−1,𝑗𝑗

∗∗ �� + 2𝜖𝜖
4ℎ
��𝐹𝐹𝑑𝑑+1,𝑗𝑗+1

∗∗ −

𝐹𝐹𝑑𝑑−1,𝑗𝑗+1
∗∗ ) + �𝐹𝐹𝑑𝑑+1,𝑗𝑗

∗∗ −  𝐹𝐹𝑑𝑑−1,𝑗𝑗
∗∗ ��  − 2

𝑘𝑘∗
�𝐹𝐹𝑑𝑑 ,𝑗𝑗+1

∗∗ − 𝐹𝐹𝑑𝑑 ,𝑗𝑗∗∗� − 1(𝑑𝑑 + 𝑛𝑛) �𝐹𝐹𝑑𝑑 ,𝑗𝑗+1
∗∗ + 𝐹𝐹𝑑𝑑 ,𝑗𝑗∗∗� +

                                               𝛽𝛽
   4ℎ4 �

2�𝐹𝐹𝑑𝑑+1,𝑗𝑗
∗∗ −  𝐹𝐹𝑑𝑑−1,𝑗𝑗

∗∗ ��𝐹𝐹𝑑𝑑+2,𝑗𝑗
∗∗ − 2𝐹𝐹𝑑𝑑+1,𝑗𝑗

∗∗ + 𝐹𝐹𝑑𝑑 ,𝑗𝑗∗∗� �
𝐹𝐹∗∗𝑑𝑑+1,𝑗𝑗

−𝐹𝐹∗∗𝑑𝑑−1,𝑗𝑗
�

+(𝐹𝐹𝑑𝑑+1,𝑗𝑗
∗∗ − 𝐹𝐹𝑑𝑑−1,𝑗𝑗

∗∗ )2�𝐹𝐹∗∗𝑑𝑑+2,𝑗𝑗 − 2𝐹𝐹∗∗𝑑𝑑+1,𝑗𝑗 + 𝐹𝐹∗∗𝑑𝑑 ,𝑗𝑗 �
� = 0.                                      (16) 

 
The problem consisting of the above equation along with initial and boundary condition becomes 
𝑔𝑔𝑑𝑑𝐹𝐹𝑑𝑑−2,𝑗𝑗+1

∗∗ + 𝑏𝑏𝑑𝑑𝐹𝐹𝑑𝑑−1,𝑗𝑗+1
∗∗ + 𝑐𝑐𝑑𝑑𝐹𝐹𝑑𝑑 ,𝑗𝑗+1

∗∗ + 𝑑𝑑𝑑𝑑𝐹𝐹𝑑𝑑+1,𝑗𝑗+1
∗∗  + 𝑒𝑒𝑑𝑑𝐹𝐹𝑑𝑑+2,𝑗𝑗+1

∗∗ = ℎ𝑑𝑑 ,                                                                                  (17)     
𝐹𝐹0,𝑗𝑗
∗∗ = − cos 𝑐𝑐𝑗𝑗𝑘𝑘∗,𝐹𝐹𝑁𝑁,𝑗𝑗

∗∗ = 0,  𝐹𝐹𝑑𝑑 ,0 
∗∗ = 0𝑑𝑑 = 0,1,2 … ,𝑁𝑁,                                                                                                    (18) 

 
In which 
𝑔𝑔𝑑𝑑 = 𝑘𝑘∗𝛼𝛼𝜖𝜖

4ℎ3  ,                                                                                                                                                                                (19)                                                                                                  

𝑏𝑏𝑑𝑑 = −𝑘𝑘∗𝛼𝛼𝜖𝜖
2ℎ3 + 2𝛼𝛼

ℎ2 + 𝑘𝑘∗(1−𝑑𝑑𝛼𝛼 )
2ℎ2 − 𝑘𝑘∗𝜖𝜖

4ℎ
 ,                                                                                                                                  (20) 

𝑐𝑐𝑑𝑑 = − 2𝛼𝛼
ℎ2 −

𝑘𝑘∗(1−𝑑𝑑𝛼𝛼 )
ℎ2 − 2 − (𝑑𝑑 + 𝑛𝑛)𝑘𝑘∗,                                                                                                                             (21) 

𝑑𝑑𝑑𝑑 = 𝑘𝑘∗𝛼𝛼𝜖𝜖
2ℎ3 + 𝛼𝛼

ℎ2 + 𝑘𝑘∗(1−𝑑𝑑𝛼𝛼 )
2ℎ2 + 𝑘𝑘∗𝜖𝜖

2ℎ
 ,                                                                                                                                       (22) 

𝑒𝑒𝑑𝑑 = − 𝑘𝑘∗𝛼𝛼𝜖𝜖
4ℎ3 ,                                                                                                                                                                            (23) 

ℎ𝑑𝑑 =
𝛼𝛼
ℎ2 �𝐹𝐹𝑑𝑑+2,𝑗𝑗

∗∗ − 2𝐹𝐹𝑑𝑑+1,𝑗𝑗
∗∗ + 𝐹𝐹𝑑𝑑 ,𝑗𝑗∗∗�    +

𝛼𝛼𝜖𝜖
4ℎ3 �𝐹𝐹𝑑𝑑+2,𝑗𝑗

∗∗ − 2𝐹𝐹𝑑𝑑+1,𝑗𝑗
∗∗ + 2𝐹𝐹𝑑𝑑−1,𝑗𝑗

∗∗ − 𝐹𝐹𝑑𝑑−2,𝑗𝑗
∗∗ � −

𝑘𝑘∗(1 − 𝑑𝑑𝛼𝛼)
2ℎ2 �𝐹𝐹𝑑𝑑+2,𝑗𝑗

∗∗ −  2𝐹𝐹𝑑𝑑+1,𝑗𝑗
∗∗ + 𝐹𝐹𝑑𝑑 ,𝑗𝑗∗∗� 

−    𝑘𝑘∗𝛽𝛽
4ℎ4 �2�𝐹𝐹𝑑𝑑+1,𝑗𝑗

∗∗ − 𝐹𝐹𝑑𝑑−1,𝑗𝑗
∗∗ ��𝐹𝐹𝑑𝑑+2,𝑗𝑗

∗∗ − 2𝐹𝐹𝑑𝑑+1,𝑗𝑗
∗∗ + 𝐹𝐹𝑑𝑑 ,𝑗𝑗∗∗� �𝐹𝐹∗∗𝑑𝑑+1,𝑗𝑗   − 𝐹𝐹∗∗𝑑𝑑−1,𝑗𝑗 �+(𝐹𝐹𝑑𝑑+1,𝑗𝑗

∗∗ − 𝐹𝐹𝑑𝑑−1,𝑗𝑗
∗∗ )2�𝐹𝐹∗∗𝑑𝑑+2,𝑗𝑗 − 2𝐹𝐹∗∗𝑑𝑑+1,𝑗𝑗 +

𝐹𝐹∗∗𝑑𝑑,𝑗𝑗             .                                                                                                                                                                 (24) 
 
when 𝑑𝑑 = 1 then equation (17) becomes 
𝑔𝑔1𝐹𝐹−1,𝑗𝑗+1

∗∗ + 𝑏𝑏1𝐹𝐹0,𝑗𝑗+1
∗∗ + 𝑐𝑐1𝐹𝐹1,𝑗𝑗+1

∗∗ + 𝑑𝑑1𝐹𝐹2,𝑗𝑗+1
∗∗ + 𝑒𝑒1𝐹𝐹3,𝑗𝑗+1

∗∗ = ℎ1.                                                                                       (25) 
 
The value of  𝐹𝐹∗∗ at the fictitious point 𝜉𝜉−1 is approximated by means of the Lagrange polynomial of third degree                                                                                                                                
𝐹𝐹−1,𝑗𝑗+1
∗∗ = 𝛺𝛺0𝐹𝐹0,𝑗𝑗+1

∗∗ + 𝛺𝛺1𝐹𝐹1,𝑗𝑗+1
∗∗ + 𝛺𝛺2𝐹𝐹2,𝑗𝑗+1

∗∗ + 𝛺𝛺3𝐹𝐹3,𝑗𝑗+1
∗∗ ,                                                                                                       (26)                                  

 
in which 

𝛺𝛺𝑞𝑞 = 𝛱𝛱
(𝜉𝜉−1 − 𝜉𝜉𝑝𝑝)
(𝜉𝜉𝑞𝑞 − 𝜉𝜉𝑝𝑝)

, 𝑝𝑝 = 0,1,2,3 𝑔𝑔𝑛𝑛𝑑𝑑 𝑝𝑝 ≠ 𝑞𝑞. 

 
From equations (25) and (26)  
(𝑔𝑔1𝛺𝛺0 + 𝑏𝑏1)𝐹𝐹0,𝑗𝑗+1

∗∗ + (𝑔𝑔1𝛺𝛺1 + 𝑐𝑐1)𝐹𝐹1,𝑗𝑗+1 
∗∗ + (𝑔𝑔1𝛺𝛺2 + 𝑑𝑑1)𝐹𝐹2,𝑗𝑗+1

∗∗ + (𝑔𝑔1𝛺𝛺3 + 𝑒𝑒1)𝐹𝐹3,𝑗𝑗+1
∗∗ =  ℎ1 .                                                (27) 

 
Since  𝐹𝐹0,𝑗𝑗+1

∗∗   is known, so equation (27) must be written as  
 𝑐𝑐1

′ 𝐹𝐹1,𝑗𝑗+1
∗∗ + 𝑑𝑑1

′ 𝐹𝐹2,𝑗𝑗+1
∗∗ + 𝑒𝑒1

′ 𝐹𝐹3,𝑗𝑗+1
∗∗ = ℎ1

′ ,                                                                                                                                (28) 
where  
𝑐𝑐1

′  = 𝑔𝑔1𝛺𝛺1 + 𝑐𝑐1,     𝑑𝑑1
′  = 𝑔𝑔1𝛺𝛺2 + 𝑑𝑑1, 

𝑒𝑒1
′  =  𝑔𝑔1𝛺𝛺3  +  𝑒𝑒1, ℎ1

′  =  ℎ1 − (𝑔𝑔1𝛺𝛺0 + 𝑏𝑏1)𝐹𝐹0,𝑗𝑗+1
∗∗ . 
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For 𝑑𝑑 = 2 we have  
𝑔𝑔2𝐹𝐹0,𝑗𝑗+1

∗∗ + 𝑏𝑏2𝐹𝐹1,𝑗𝑗+1
∗∗ + 𝑐𝑐2𝐹𝐹2,𝑗𝑗+1

∗∗ + 𝑑𝑑2𝐹𝐹3,𝑗𝑗+1
∗∗ + 𝑒𝑒2 𝐹𝐹4,𝑗𝑗+1

∗∗ = ℎ2.                                                                                        (29)  
(or) 
𝑏𝑏2𝐹𝐹1,𝑗𝑗+1

∗∗ + 𝑐𝑐2𝐹𝐹2,𝑗𝑗+1
∗∗ + 𝑑𝑑2𝐹𝐹3,𝑗𝑗+1

∗∗ + 𝑒𝑒2𝐹𝐹4,𝑗𝑗+1
∗∗ = ℎ2

′ ,                                                         
 
in which 
ℎ2

′ = ℎ2 − 𝑔𝑔2𝐹𝐹0,𝑗𝑗+1
∗∗ .                                                                                                                                                        (30) 

 
When 3 ≤  𝑑𝑑 ≤  𝑁𝑁 − 3, the equations are given by  
𝑔𝑔𝑑𝑑𝐹𝐹𝑑𝑑−2,𝑗𝑗+1

∗∗ + 𝑏𝑏𝑑𝑑𝐹𝐹𝑑𝑑−1,𝑗𝑗+1
∗∗ + 𝑐𝑐𝑑𝑑𝐹𝐹𝑑𝑑 ,𝑗𝑗+1

∗∗ + 𝑑𝑑𝑑𝑑𝐹𝐹𝑑𝑑+1,𝑗𝑗+1
∗∗  + 𝑒𝑒𝑑𝑑𝐹𝐹𝑑𝑑+2,𝑗𝑗+1

∗∗ = ℎ𝑑𝑑 .               
 
For 𝑑𝑑 = 𝑁𝑁 − 2 we have 
𝑔𝑔𝑁𝑁−2𝐹𝐹𝑁𝑁−4,𝑗𝑗+1

∗∗ + 𝑏𝑏𝑁𝑁−2𝐹𝐹𝑁𝑁−3,𝑗𝑗+1
∗∗ + 𝑐𝑐𝑁𝑁−2𝐹𝐹𝑁𝑁−2,𝑗𝑗+1

∗∗  +  𝑑𝑑𝑁𝑁−2𝐹𝐹𝑁𝑁−1,𝑗𝑗+1
∗∗ + 𝑒𝑒𝑁𝑁−2𝐹𝐹𝑁𝑁,𝑗𝑗+1

∗∗ =  ℎ𝑁𝑁−2.                                            (31) 
 
For known 𝐹𝐹𝑁𝑁,𝑗𝑗+1

∗∗  equation (31) is 
𝑔𝑔𝑁𝑁−2𝐹𝐹𝑁𝑁−4,𝑗𝑗+1

∗∗ + 𝑏𝑏𝑁𝑁−2𝐹𝐹𝑁𝑁−3,𝑗𝑗+1
∗∗ + 𝑐𝑐𝑁𝑁−2𝐹𝐹𝑁𝑁−2,𝑗𝑗+1

∗∗  + 𝑑𝑑𝑁𝑁−2𝐹𝐹𝑁𝑁−1,𝑗𝑗+1
∗∗ = ℎ𝑁𝑁−2

′ ,                                                                     (32) 
where 
ℎ𝑁𝑁−2

′ = ℎ𝑁𝑁−2 − 𝑒𝑒𝑁𝑁−2𝐹𝐹𝑁𝑁,𝑗𝑗+1
∗∗ . 

 
For 𝑑𝑑 = 𝑁𝑁 − 1, we have 
𝑔𝑔𝑁𝑁−1𝐹𝐹𝑁𝑁−3,𝑗𝑗+1

∗∗ + 𝑏𝑏𝑁𝑁−1𝐹𝐹𝑁𝑁−2,𝑗𝑗+1
∗∗ + 𝑐𝑐𝑁𝑁−1𝐹𝐹𝑁𝑁−1,𝑗𝑗+1

∗∗   + 𝑑𝑑𝑁𝑁−1𝐹𝐹𝑁𝑁,𝑗𝑗+1
∗∗ + 𝑒𝑒𝑁𝑁−1𝐹𝐹𝑁𝑁+1,𝑗𝑗+1

∗∗ =  ℎ𝑁𝑁−1                                             (33) 
 
To find the value of h1 at the time level j, we must have the value of 𝐹𝐹𝑁𝑁+1,𝑗𝑗

∗∗ . We use the augmentation process and write  
  𝜕𝜕𝐹𝐹∗∗(∞,𝜏𝜏)

𝜕𝜕𝜉𝜉
=0.                                                                                                                                                              (34) 

 
This boundary condition is discretized to give 
 𝐹𝐹𝑁𝑁+1,𝑗𝑗
∗∗ −𝐹𝐹𝑁𝑁 ,𝑗𝑗

∗∗

ℎ
= 0   𝑑𝑑. 𝑒𝑒 𝐹𝐹𝑁𝑁+1,𝑗𝑗

∗∗ = 𝐹𝐹𝑁𝑁,𝑗𝑗
∗∗  .                                                                                                                                (35) 

 
Thus for 𝑑𝑑 = 𝑁𝑁 − 1, equation (33) is 
𝑔𝑔𝑁𝑁−1𝐹𝐹𝑁𝑁−3,𝑗𝑗+1

∗∗ + 𝑏𝑏𝑁𝑁−1𝐹𝐹𝑁𝑁−2,𝑗𝑗+1
∗∗ +  𝑐𝑐𝑁𝑁−1𝐹𝐹𝑁𝑁−1,𝑗𝑗+1

∗∗ = ℎ𝑁𝑁−1
′ , 

where 
ℎ𝑁𝑁−1

′ = ℎ𝑁𝑁−1 − (𝑑𝑑𝑁𝑁−1 + 𝑒𝑒𝑁𝑁−1)𝐹𝐹𝑁𝑁,𝑗𝑗+1
∗∗                                                                                                                              (36) 

 
It is noted that there are 𝑁𝑁 − 1 equations. In matrix form, it can be written as                     

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡𝑐𝑐1

′ 𝑑𝑑1
′ 𝑒𝑒1

′ 0 0 0 0 0 . . 0
𝑏𝑏2 𝑐𝑐2 𝑑𝑑2 𝑒𝑒2 0 0 0 0 . . 0
𝑔𝑔3 𝑏𝑏3 𝑐𝑐3 𝑑𝑑3 𝑒𝑒3 0 0 0 . . 0
. . . . . . . . . . .
0 . 0 𝑔𝑔𝑑𝑑 𝑏𝑏𝑑𝑑 𝑐𝑐𝑑𝑑 𝑑𝑑𝑑𝑑 𝑒𝑒𝑑𝑑 0 . 0
. . . . . . . . . . .
0 0 0 . . 0 𝑔𝑔𝑁𝑁−3 𝑏𝑏𝑁𝑁−3 𝑐𝑐𝑁𝑁−3 𝑑𝑑𝑁𝑁−3 𝑒𝑒𝑁𝑁−3
0 0 0 0 . . 0 𝑔𝑔𝑁𝑁−2 𝑏𝑏𝑁𝑁−2 𝑐𝑐𝑁𝑁−2 𝑑𝑑𝑁𝑁−2
0 0 0 0 0 . . 0 𝑔𝑔𝑁𝑁−1 𝑏𝑏𝑁𝑁−1 𝑐𝑐𝑁𝑁−1 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 𝑋𝑋

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝐹𝐹1
∗∗

𝐹𝐹2
∗∗

𝐹𝐹3
∗∗

.
𝐹𝐹𝑑𝑑∗∗

.
𝐹𝐹𝑁𝑁−3
∗∗

𝐹𝐹𝑁𝑁−2
∗∗

𝐹𝐹𝑁𝑁−1
∗∗ ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

=  

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
ℎ1
′

ℎ2
′

ℎ3
.
ℎ𝑑𝑑
.

ℎ𝑁𝑁−3
ℎ𝑁𝑁−2
′

ℎ𝑁𝑁−1
′ ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

                                             (37)                                         

  
Obviously the matrix involved in equation (37) is pentadiagonal. 
 
It is observed that the partial slip boundary condition (15) is highly non-linear. Thus the following same procedure 
adopted for discritization of equation (14), equation (15) may be discritized as  
𝐹𝐹0,𝑗𝑗
∗∗ =  𝑡𝑡1𝐹𝐹1,𝑗𝑗

∗∗ + 𝑡𝑡2𝐹𝐹2,𝑗𝑗
∗∗ + 𝑡𝑡3�𝐹𝐹0,𝑗𝑗−1

∗∗ − 𝐹𝐹1,𝑗𝑗−1
∗∗ � +𝑡𝑡4�𝐵𝐵𝑇𝑇𝑗𝑗 − cos 𝑐𝑐𝑗𝑗𝑘𝑘∗�                                                                                  (38) 

 
In the above equation  
𝑡𝑡0 =  ℎ2𝑘𝑘∗ + 𝜆𝜆(1 − 𝑑𝑑𝛼𝛼)ℎ𝑘𝑘∗ + 𝛼𝛼𝜆𝜆ℎ + 𝛼𝛼𝜖𝜖𝜆𝜆𝑘𝑘∗                                                                                                                                (39) 
𝑡𝑡1 =  [𝜆𝜆(1 − 𝑑𝑑𝛼𝛼)ℎ𝑘𝑘∗ + 𝛼𝛼𝜆𝜆ℎ + 2𝛼𝛼𝜖𝜖𝜆𝜆𝑘𝑘∗] 𝑡𝑡0⁄                                                                                                                                    (40) 
𝑡𝑡2 = −[𝛼𝛼𝜖𝜖𝜆𝜆𝑘𝑘∗] 𝑡𝑡0⁄                                                                                                                                                                                (41) 
𝑡𝑡3 = [𝛼𝛼𝜆𝜆ℎ] 𝑡𝑡 0                                                                          ⁄                                                                                                                                  (42) 
𝑡𝑡4 = [ℎ2𝑘𝑘∗] 𝑡𝑡0⁄                                                                                                                                                                                      (43)       
𝐵𝐵𝑇𝑇𝑗𝑗  =  𝛽𝛽𝜆𝜆

ℎ3  �(𝐹𝐹1,𝑗𝑗
∗∗ −  𝐹𝐹0,𝑗𝑗

∗∗)2�𝐹𝐹∗∗1,𝑗𝑗  − 𝐹𝐹∗∗0,𝑗𝑗 ��                                                                                                                  (44)   
 



R. Lakshmi1, S. Selvanayaki*2/ Effect of MHD Flows Due io Rotating Porous Disk and a Third Grade Fluid at Infinity  
with Partial Slip / IJMA- 6(10), Oct.-2015. 

© 2015, IJMA. All Rights Reserved                                                                                                                                                                         21   

 
To evaluate 𝐹𝐹0,𝑗𝑗+1

∗∗ , first take 𝐵𝐵𝑇𝑇𝑗𝑗+1 = 𝐵𝐵𝑇𝑇𝑗𝑗  in the system of algebraic equation and the solution of the system is sought 
which results in known values of   𝐹𝐹𝑑𝑑 ,𝑗𝑗+1

∗∗ , 𝑑𝑑 =   1,2,3 … . .𝑁𝑁 − 1. Second, we update 𝐹𝐹0,𝑗𝑗+1
∗∗  by using iterative method as 

follows  
        
𝐹𝐹∗∗ 0,𝑗𝑗+1

𝑘𝑘∗+1 =  𝑡𝑡1𝐹𝐹1,𝑗𝑗+1
∗∗ + 𝑡𝑡2𝐹𝐹2,𝑗𝑗+1

∗∗ + 𝑡𝑡3�𝐹𝐹∗∗0,𝑗𝑗
𝑘𝑘∗ −  𝐹𝐹1,𝑗𝑗

∗∗�   + 𝑡𝑡4 
𝛽𝛽𝜆𝜆
ℎ3  �(𝐹𝐹1,𝑗𝑗+1

∗∗ − 𝐹𝐹∗∗0,𝑗𝑗+1
𝑘𝑘∗ )2 � 𝐹𝐹∗∗𝑑𝑑 ,𝑗𝑗+1 −   𝐹𝐹∗∗𝑘𝑘∗0,𝑗𝑗+1�� 

                                  +𝑡𝑡4[−cos 𝑐𝑐(𝑗𝑗 + 1)𝑘𝑘∗]                                                                                                                   (45) 
where,𝐹𝐹∗∗0,𝑗𝑗+1

0 =  𝐹𝐹0,𝑗𝑗+1
∗∗ , and this iterative procedure is continued until 𝐹𝐹∗∗0,𝑗𝑗+1

𝑘𝑘∗+1 ≈ 𝐹𝐹∗∗0,𝑗𝑗+1
𝑘𝑘∗ . Futhermore, 𝐹𝐹0,0

∗∗  is 
evaluated by letting 𝐹𝐹0,−1

∗∗ =  𝐹𝐹1,−1
∗∗ = 0, and by using iterative method as described above with 𝐹𝐹∗∗0,0

0 = 0 as initial 
guess. 
 
For 𝑑𝑑 = 1, 𝑑𝑑 =  2, 3 ≤  𝑑𝑑 ≤  𝑁𝑁 − 3, 𝑑𝑑 = 𝑁𝑁 − 2 𝑔𝑔𝑛𝑛𝑑𝑑  𝑑𝑑 = 𝑁𝑁 − 1, We respectively have        
𝑐𝑐1
′ 𝐹𝐹∗∗1,𝑗𝑗+1 + 𝑑𝑑1

′ 𝐹𝐹∗∗2,𝑗𝑗+1+𝑒𝑒1
′ 𝐹𝐹∗∗3,𝑗𝑗+1 =  ℎ1

′,                                                                                                                                  (46) 
𝑏𝑏2
′𝐹𝐹∗∗1,𝑗𝑗+1+𝑐𝑐2

′  𝐹𝐹∗∗2,𝑗𝑗+1+𝑑𝑑2𝐹𝐹∗∗3,𝑗𝑗+1+𝑒𝑒2𝐹𝐹∗∗4,𝑗𝑗+1 =  ℎ2
′,                                                                                                              (47) 

𝑔𝑔𝑑𝑑𝐹𝐹∗∗𝑑𝑑−2,𝑗𝑗+1 + 𝑏𝑏𝑑𝑑𝐹𝐹∗∗𝑑𝑑−1,𝑗𝑗+1
+ 𝑐𝑐𝑑𝑑𝐹𝐹∗∗𝑑𝑑 ,𝑗𝑗+1  + 𝑑𝑑𝑑𝑑𝐹𝐹∗∗𝑑𝑑+1,𝑗𝑗+1+𝑒𝑒𝑑𝑑𝐹𝐹∗∗𝑑𝑑+2,𝑗𝑗+1 = ℎ𝑑𝑑    ,                                                                      (48) 

𝑔𝑔𝑁𝑁−2𝐹𝐹𝑁𝑁−4,𝑗𝑗+1
∗∗ +𝑏𝑏𝑁𝑁−2𝐹𝐹∗∗𝑁𝑁−3,𝑗𝑗+1+𝑐𝑐𝑁𝑁−2𝐹𝐹∗∗𝑁𝑁−2,𝑗𝑗+1  + 𝑑𝑑𝑁𝑁−2𝐹𝐹∗∗𝑀𝑀−1,𝑗𝑗+1 = ℎ𝑁𝑁−2

′ ,                                                                      (49) 
𝑔𝑔𝑁𝑁−1𝐹𝐹∗∗𝑁𝑁−3,𝑗𝑗+1+𝑏𝑏𝑁𝑁−1𝐹𝐹∗∗𝑁𝑁−2,𝑗𝑗+1+𝑐𝑐𝑁𝑁−1𝐹𝐹∗∗𝑁𝑁−1𝑗𝑗+1  =  ℎ𝑁𝑁−1

′                                                                                                      (50) 
where 𝑔𝑔𝑑𝑑 , 𝑏𝑏𝑑𝑑 , 𝑐𝑐𝑑𝑑 ,𝑑𝑑𝑑𝑑 , 𝑒𝑒𝑑𝑑  and ℎ𝑑𝑑  are given through equations (19) to (24) 
 
In the above equations 
𝑐𝑐1
′ = 𝑔𝑔1𝛺𝛺1 +  𝑐𝑐1 + 𝑡𝑡1(𝑏𝑏1 + 𝛺𝛺0𝑔𝑔1),                                                                                                                                                      (51) 
𝑑𝑑1
′ =  𝑔𝑔1𝛺𝛺2 + 𝑑𝑑1 + 𝑡𝑡2(𝑏𝑏1 + 𝛺𝛺0𝑔𝑔1)                                                                                                                                                      (52) 
𝑒𝑒1
′  =  𝑔𝑔1𝛺𝛺3 + 𝑒𝑒1,                                                                                                                                                                                    (53) 
ℎ1 
′ =  ℎ1 −  (𝑔𝑔1𝛺𝛺0 + 𝑏𝑏1)�𝑡𝑡3�𝐹𝐹0,𝑗𝑗

∗∗ −  𝐹𝐹1,𝑗𝑗
∗∗� + 𝑡𝑡4(𝐵𝐵𝑇𝑇𝑗𝑗+1 −  cos 𝑐𝑐(𝑗𝑗 + 1)𝑘𝑘∗�                                                                                (54) 

𝑏𝑏2
′  =  𝑏𝑏2 + 𝑡𝑡1𝑔𝑔2                                                                                                                                                                                     (55) 
𝑐𝑐2
′  =  𝑐𝑐2 + 𝑡𝑡2𝑔𝑔2                                                                                                                                                                                    (56) 
ℎ2
′ =  ℎ2 −  𝑔𝑔2�𝑡𝑡3�𝐹𝐹0,𝑗𝑗

∗∗ − 𝐹𝐹1,𝑗𝑗
∗∗� + 𝑡𝑡4�𝐵𝐵𝑇𝑇𝑗𝑗+1 −  cos 𝑐𝑐 (𝑗𝑗 + 1)𝑘𝑘∗��,                                                                                              (57) 

ℎ𝑁𝑁−2
′ = ℎ𝑁𝑁−2 −  𝑒𝑒𝑁𝑁−2𝐹𝐹𝑁𝑁,𝑗𝑗+1

∗∗ ,                                                                                                                                                              (58) 
ℎ𝑁𝑁−1
′ =  ℎ𝑁𝑁−1 −  (𝑑𝑑𝑁𝑁−1 + 𝑒𝑒𝑁𝑁−1)𝐹𝐹𝑁𝑁,𝑗𝑗+1

∗∗                                                                                                                                            (59) 
 
The matrix form of the above set of N-1 equation is  

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝑐𝑐1
′ 𝑑𝑑1

′ 𝑒𝑒1
′ 0 0 0 0 0 . . 0

𝑏𝑏2
′ 𝑐𝑐2

′ 𝑑𝑑2 𝑒𝑒2 0 0 0 0 . . 0
𝑔𝑔3 𝑏𝑏3 𝑐𝑐3 𝑑𝑑3 𝑒𝑒3 0 0 0 . . 0
. . . . . . . . . . .
0 . 0 𝑔𝑔𝑑𝑑 𝑏𝑏𝑑𝑑 𝑐𝑐𝑑𝑑 𝑑𝑑𝑑𝑑 𝑒𝑒𝑑𝑑 0 . 0
. . . . . . . . . . .
0 0 0 . . 0 𝑔𝑔𝑁𝑁−3 𝑏𝑏𝑁𝑁−3 𝑐𝑐𝑁𝑁−3 𝑑𝑑𝑁𝑁−3 𝑒𝑒𝑁𝑁−3
0 0 0 0 . . 0 𝑔𝑔𝑁𝑁−2 𝑏𝑏𝑁𝑁−2 𝑐𝑐𝑁𝑁−2 𝑑𝑑𝑁𝑁−2
0 0 0 0 0 . . 0 𝑔𝑔𝑁𝑁−1 𝑏𝑏𝑁𝑁−1 𝑐𝑐𝑁𝑁−1 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 𝑋𝑋

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝐹𝐹1
∗∗

𝐹𝐹2
∗∗

𝐹𝐹3
∗∗

.
𝐹𝐹𝑑𝑑∗∗

.
𝐹𝐹𝑁𝑁−3
∗∗

𝐹𝐹𝑁𝑁−2
∗∗

𝐹𝐹𝑁𝑁−1
∗∗ ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

=  

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
ℎ1
′

ℎ2
′

ℎ3
.
ℎ𝑑𝑑
.

ℎ𝑁𝑁−3
ℎ𝑁𝑁−2
′

ℎ𝑁𝑁−1
′ ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

                                                   (60) 

 
RESULTS AND DISCUSSION 
  
In this paper, the effect of MHD flows due to rotating porous disk and a third grade fluid at  infinity with  partial slip is 
studied. The variations of the velocity profile with distance from the disk for various values of partial slip parameter λ 
are discussed graphically. Figures 1 to 6 are prepared for both real and imaginary parts of the velocity profile. Figures 1 
to 2 illustrate the effect of partial slip parameter 𝜆𝜆(= 0,1,2) on the flow of viscous fluid when  𝛼𝛼 = 0.08, 𝛽𝛽 =  1,      
𝑐𝑐 = 1.5, 𝑛𝑛 = 0, 𝜏𝜏 = 1. Here the real and imaginary part increases with increase of slip parameter 𝜆𝜆.  Illustration of 
Figures 3 to 4 show the effect of partial slip parameter 𝜆𝜆(= 0,1,2) on the flow of viscous fluid when  𝛼𝛼 = 0.08,   
𝛽𝛽 =  1, 𝑐𝑐 = 1, 𝑛𝑛 = 0, 𝜏𝜏 = 1. It seen that the real and imaginary part increases with increase of slip parameter 
𝜆𝜆.Illustration of  Figures 5 and 6 shows the effect of partial slip parameter 𝜆𝜆(= 0,1,2) on the flow of viscous fluid when 
𝛼𝛼 = 0.08, 𝛽𝛽 =  1, 𝑐𝑐 = 0.5, 𝑛𝑛 = 0, 𝜏𝜏 = 1.    
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The variation of the velocity profile with distance from the disk for various values of partial slip parameter 𝜆𝜆          
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The variation of the velocity profile with distance from the disk for various values of partial slip parameter 𝜆𝜆          
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                           Fig. 1                                                                       Fig. 2 

                           Fig, 3                                                                                         Fig, 4 
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The variation of the velocity profile with distance from the disk for various values of partial slip parameter 𝜆𝜆          
when   𝛼𝛼 = 0.08, 𝛽𝛽 =  1, 𝑐𝑐 = 0.5, 𝑛𝑛 = 0, 𝜏𝜏 = 1.  
 
CONCULSION 
 
In this paper, effect of MHD flows due to rotating porous disk and a third grade fluid at infinity with partial slip is 
studied. The nonlinear partial differential equations are solved numerically by finite difference method through 
MATLAB. The results are shown graphically and it is found that the real and imaginary part of the velocity profile 
increases with increase of partial slip parameter. It is further found that the partial slip causes the reduction in the 
boundary layer thickness.  
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