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ABSTRACT 
We search for three non-zero distinct integers such that each of the triples ),,( 222 yzx  and ),,( 222222 xzyxzy  
forms Harmonic progression. A few interesting properties among the solutions are also presented. 
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1. INTRODUCTION  
 
Number theory, called the Queen of Mathematics, is a broad and diverse part of Mathematics that developed from the 
study of the integers. The foundations for Number theory as a discipline were laid by the Greek mathematician 
Pythagoras and his disciples (known as Pythagoreans). One of the oldest branches of mathematics itself, is the 
Diophantine equations since its origins can be found in texts of the ancient Babylonians, Chinese,  Egyptians, Greeks 
and so on[7-8]. Diophantine problems were first introduced by Diophantus of Alexandria who studied this topic in the 
third century AD and he was one of the first Mathematicians to introduce symbolism to Algebra. The theory of 
Diophantine equations is a treasure house in which the search for many hidden relation and properties among numbers 
form a treasure hunt. In fact, Diophantine problems dominated most of the celebrated unsolved mathematical problems. 
Certain Diophantine problems come from physical problems or from immediate Mathematical generalizations and 
others come from geometry in a variety of ways. Certain Diophantine problems are neither trivial nor difficult to 
analyze [1-6].  
 
This communication consists of two sections A and B 
 
In section A, we search for three non-zero distinct integers such that the triple ),,( 222 yzx form a harmonic 
progression  
 
In section B, we search for three non-zero distinct integers such that the triple )xz,yx,z(y 222222 form a harmonic 
progression  
 
2. METHOD OF ANALYSIS  
 
SECTION A:  Let x, y, z be three non-zero distinct integers such that ),,( 222 yzx  forms a harmonic progression 
(H.P) 
 
By the definition of H.P, the above problem is equivalent to solving the Diophantine equation 

)y(xzy2x 22222 +=                                                             (1) 
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which is written as 222 2tyx =+                                                  (2) 

where 
z

xyt =                                                     (3) 

 
As x, y are integers, the value of t on the  RHS of (2) also represents an integer. This means that z divides xy as can be 
seen from (3). 
 
Let ),,gcd( tyxd =  so that cdtbdyadx === ,,                                                (4) 
where 1),,gcd( =cba  
 

Substituting (4) in (3), we have 
c

abdz =                                                               (5) 

 
For z to be an integer, c should divide d as 1),gcd(&1),gcd( == cbca  
 
Let kcd =                                                     (6) 
 
Substituting (6) in (4) and (5), we have 

kabzkctkbcykacx ==== ,,, 2                                                  (7) 
 
Again, substituting the above values of x, y, t in (2), we have 222 2cba =+ which is satisfied by  
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Thus, in view of (7), the non-zero distinct integer values of x, y, z satisfying (1) are given by 
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A few numerical examples are presented below: 
 

k  α  β  a  b  c  x  y  z  t  
1 2 1 -1 7 5 -5 35 -7 25 
2 3 2 -7 17 13 -182 442 -238 338 
2 4 1 7 23 17 238 782 322 578 
1 3 1 2 14 10 20 140 28 100 

 
Some interesting properties are as follows: 

(*) 







z
xyk6  is a Nasty number 

(*) )(8 222 yxk +  is a biquadratic integer. 
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SECTION B: Let x, y, z be three non-zero distinct integers such that )xz,yx,z(y 222222  form a harmonic 
progression(H.P), By the definition of H.P, the above problem is equivalent to solving the Diophantine equation 

222 z2yx =+                                                                           (8) 
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which is satisfied by 222222 ,2,2ax bazabbayabb +=+−=−−= representing the required values for 
x,y,z. Also, we have an another set of solutions to (8) which is obtained as follows. 
 
Rewrite (8) as  1*z2yx 222 =+                                      (9) 
 

Assume 22,
25

4i)-4i)(3(3i),1-i)(1(12 baz +=
+

=+=                                              (10) 

 
Substituting (10) in (9) and using the method of factorization, we get 
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Equating the real and imaginary parts, we get 

2 2

2 2

1 ( 14 )
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                                   (11) 

 
Since our interest is on finding integer solutions, choosing  

BbAa 5&5 ==  in (10) and (11), we have  
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A few numerical examples are as follows: 
 

A B x y z 
1 1 -70 -10 50 
2 2 -280 -40 200 
3 1 -250 250 250 
2 3 -395 -235 325 

 
Each of the expressions forms an Arithmetic progression: 
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Note: In (10), the representation for 1 may be considered as  
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 (or) 
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Employing the above representation and following the analysis presented above an infinite number of triples forming 
Harmonic Progression are obtained.  
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3. CONCLUSION 
 
In this communication, we have exhibited two different triples each forming a Harmonic progression. To conclude, one 
may search for other choices of triples forming Harmonic progression along with their corresponding properties. 
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