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ABSTRACT 
This article demonstrate that the problem P = NP in the factorization of odd numbers because it solves the primary 
problem. Having ∀(N ) in finite time. (ord(a) ∈ Z). 
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1. INTRODUCTION 
 
We know the existence of several algorithms for factoring odd numbers but none of them solves the problem in 
polynomial time when (N) is prime. This problem is both traditional computers and computers quantum although the 
latter reduced the time; especially with Shor's algorithm, the more it reduced by applying the equation of this work. 
 
My contribution is referenced [see 1]; all prime number is in the interval between (30a + (p)) and (42a + (p1)) with       
(p = (11, 17, 23, 29)) and (p1 = (13, 19, 31, 37, 43)). 
 
Therefore we have that: 
                                                     30c + (p) 

(1)  [(30a+ (p)] × [42b + (p1)] = 42c + (p1) 
                          
                                        30c + (p)                                 
       [30a + (p)] × (p) = 42c + (p1) 
 
                                          30c + (p) 

       [42c + (p1)] × (p1) = 42c + (p1)  
 
and, for the powers: 
       [30a + (p)]n = [(30c + (p)); (42c + (p1)] 
       [42a + (p1)]n = ………. 
       [(30a + (p)) × ((42c + (p1)]n = …… 
 
Developing these equations always has the following: 
                                                                            30c + (p) 
      30a × 42b + 30a × p1 + p × 42b + p × p1 = 42c + (p1) 
 
We note that in any them always have a last adding (right) the value of (p \times (p1) and we can define if exist, 
applying the following. 
 
Theorem: the difference of two odd numbers is always an even number (2c + 1) - (2b + 1) = 2(c + b). Where upon. 
                                             (p) 

                       [p × (p1)] - (p1)=  (3n; 5n; 7n) 
 
∀(n = even); example (11 × 23) - 23 = 5 × 46; (11 × 17) - 13 = 3 × 58  
 

Corresponding Author: Andri Lopez*, I. P. Leon (SPAIN). 
 

 
 

http://www.ijma.info/�


Andri Lopez* / P = NP, in the factorization of all odd numbers / IJMA- 6(9), Sept.-2015. 

© 2015, IJMA. All Rights Reserved                                                                                                                                                     205   

 
Arrived at this point indicated the process to see if any of them there exist or not.                                            

(i)  
( )3;5;7;11;17;23;29

N Z≠                                          

(ii) 
( )3;5;7;11;17;23;29;31;37;43

N Z≠        

                                  = Z1    → m
2n = N 

     √ N = Z  →  √ Z ≠ Z1  → N = (Z2; n2n) 
 

(iii) 
( ) ( )
( )

1

30,42
N p p

Z
− ×

≠  

       
( ) ( )
( )

1 1

30,42
N p p

Z
− ×

≠                

       
( ) ( )

( )30,42
N p p

Z
− ×

≠  

 

(iiii) 
( )

( )30,42
N p p p

Z
− × −   ≠  

       
( )

( )
1

30,42
N p p p

Z
− × −   ≠  

       
( )

( )
1 1 1

30,42
N p p p

Z
− × −   ≠                                                                                    

With this we can replace the three previous of (iiii);  
( ) ( )
( )

1;
3;5;7

N p p
Z

−    ≠  

 
If none of the equations, (N) is number prime and for the computer and if it is not prime begins the process of factoring 
with the equation where the root is an integer. This can be applied in any known algorithms [3][4], therefore we ∀(N): 
                                     30a + (p) 

                            N = 42a + (p1)  
 
In the start of the factorization we know by the value [(p); (p1)] which is the origin of one of its factors, is to say [30a if 
is (p)] y [42a if is (p1)]. 
 
2. CONCLUSION 
 
The relevance of this work is in the equations which is defined in polynomial time the computer shutdown when (N) is 
prime number whatever the value of (N). 
 
In equation (1) we have the product between odd numbers therefore the polynomial time is the same for two odd 
numbers that for two primes; if we apply the algorithm √N and dividing by the odd minor.  
 
The algorithm for the factoring all odd, begins with equations (eq (i); (ii)): 
                 = Z                                               ≠ Z                   = Z                                                                                                                                                                 
 ((i), (ii)) ≠ Z  → (eq(iii);(iiii))= Z → √N  ≠ Z → √ [N – [(p); (p1)] / (30;42)]  
 
                 = Z a  → N / [(30; 42) × Z a + [(p;(p1)]] = Z                                             
                                                          

                 ≠ Za  → (∆Za) = m2  →   
( ) ( ) ( ) ( )2

130,42 ;
N Z

m n p p
=

× − +   
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