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ABSTRACT 
In this paper we introduce the notion of F- bi-near subtraction semigroup. Also we give characterizations of F- bi-near 
subtraction semigroup. 
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1. INTRODUCTION 
 
In 2007, Dheena [1] introduced Near Subtraction Algebra, Throughout his paper by a Near Subtraction Algebra, we 
mean a Right Near Subtraction Algebra. For basic definition one may refer to Pillz[5]. Zekiye Seydali Fathima et.al   
[3, 4] introduced the notation of S1-near subtraction semigroup and S2-near subtraction semigroup. Recently Firthous 
et.al [2] introduced the notation of F- Bi near subtraction semigroup. In this paper we shall obtained equivalent 
conditions for regularity in terms of K- Bi near subtraction semigroup.  
 
2. PRELIMINARIES  
 
A non-empty subset X together with two binary operations “−“   and “.” is said to be subtraction semigroup If (i) (X,−) 
is a subtraction algebra (ii) (X, .) is a semi group (iii) x(y−z)=xy−xz  and (x−y)z= xz−yz  for every x, y, z∈X.A non-
empty subset X together with two binary operations “−“ and  “.” is said to be near subtraction semigroup if (i) (X,−) is 
a subtraction algebra (ii) (X,.) is a semi group and (iii) (x−y)z= xz−yz   for every x, y, z∈X.. A non-empty subset 
X=X1∪X2 together with two binary operations“-“and “.” Is said to be bi-near subtraction semigroup (right). If (i)   
(X1,-,.) is a near-subtraction semigroup (ii) (X2,-,.) is a subtraction semigroup. A non-empty subset X is said to be       
S1-near subtraction semi group if for every a∈X there exists x∈X* such that axa=xa..  A non-empty subset X is said to 
be S2-near subtraction semi group if for every a∈X there exists x∈X* such that axa=ax. A non-empty subset X is said 
to be strong S1-near subtraction semi group if aba=ba for all a, b∈X. A non-empty subset X is said to be strong S2-
near subtraction semi group  if aba=ab for all a, b∈X. If there exists a map f: X→Y such that a = a f(a) a for all a in X 
then f is called a mate function for X. An element a∈X is said to be Boolean if a2 =a.  A sub commutative near 
subtraction semigroup is an intersection of S1-near subtraction semigroup and S2-near subtraction semigroup.  that is, 
xa=ax.   A non-empty subset X is said to be nil-near subtraction semigroup if there exists a positive integer k˃ 1 such 
that ak=0 Which implies that xa=0 where x=ak-1.A non-empty subset X is said to be zero-symmetric. if 0-x=0, ox=0  
and xo=o for all x∈X. A non-empty subset Y of X is closed under “-“and XY strictly contained in Y is called an X- 
system. A non-empty subset X=X1∪X2 together with two binary operations“-“and “.” is said to be F- bi near 
subtraction semigroups. If (i) for every a∈X1 there exists x∈X1

* such that axa=xa. (ii) for every a∈X2  there exists 
x∈X2

* such that axa=ax. 
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3. K AND K*-BI NEAR SUBTRACTION SEMIGROUP 
 
Definition: 3.1 A non-empty subset X=X1∪X2 together with two binary operations“-“and “.” Is said to be K- bi near 
subtraction semigroup. If (i) if aba=ba for all a, b∈X1. (ii) for every a∈X2  there exists x∈X2

* such that axa=ax. 
 
Example: 3.2 Let X1={0, a,b,1} in which “−“  and  “.” be defined by 
 

- 0 a b 1 

 

. 0 a b 1 
0 0 0 0 0 0 0 0 0 0 
a a 0 1 b a a a a a 
b b 0 0 b b a 0 1 b 
1 1 0 1 0 1 0 a b 1 

Thus X1 is a strong s1-near subtraction semi group  
 
Let X1= {0, a, b, 1} in which “-“and “.” be defined by 
 

- 0 a b C 

 

 . 0 a b 
0 0 0 0 0 0 0 0 0 0 
a a 0 a a a a 0 0 0 
b b b 0 b b b 0 0 0 
c c c c 0 1 c 0 0 0 

 
Then X2 is a S2-near subtraction semi group. 
 
Hence, X=X1∪X2 is a K-bi near Subtraction Semigroup. 
 
Note: 3.3 Obviously, every K-bi near subtraction is a F- bi-near subtraction semi group. But the converse need not be 
true 
 
Example: 3.4 Let X1={0,a,b,c}  in which “−“  and  “.” be defined by 
 

- 0 a b c 

 

. 0 a b c 
0 0 0 0 0 0 0 0 0 0 
a a 0 a a a a a b c 
b b b 0 b b 0 0 0 0 
c c c c 0 c 0 a b c 

 
Thus X1 is a strong s1-near subtraction semi group but not s1- near subtraction semigroup. 
 
Let X2= {0, a, b, c} in which “−“and “.” be defined by 
 

- 0 a b 1 

 

. 0 a b 1 
0 0 0 0 0 0 0 0 0 0 
a a 0 1 b a a a a a 
b b 0 0 b b a 0 1 b 
1 1 0 1 0 1 0 a b 1 

 
Thus X2 is an S2-near subtraction semigroup  
 
Hence, every  K- bi-near subtraction semi group need  not be a   F-bi near subtraction semi group.                                    
 
Definition: 3.5 A non-empty subset X=X1∪X2 together with two binary operations “-“and “.” Is said to be K*- bi near 
subtraction semigroup. If (i) if for every a∈X1 there exists  x∈X1

* such that axa=xa. (ii) aba=ab for all a, b∈X2. 
 
Example: 3.6 Let X1= {0, a, b, 1} in which “-“and “.” be defined by 
 

- 0 a b 1 

  

. 0 a b 1 
0 0 0 0 0 0 0 0 0 0 
a a 0 a a a 0 a 0 0 
b b b 0 b b 0 0 b b 
1 1 b a 0 1 0 a b 1 

Then X1 is a s1-near-subtraction semi group 
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Let X2={0, a, b, 1} in which “−“  and  “.” be defined by 
 

- 0 a b 1 

 

. 0 a b 1 
0 0 0 0 0 0 0 0 0 0 
a a 0 1 b a a 0 a 0 
b b 0 0 b b 0 0 b b 
1 1 0 1 0 1 0 a b 1 

 
Thus X2 is a strong S2-near subtraction semigroup.  
 
Hence, X= X1∪X2 is a strong K*-bi-near subtraction semi group. 
 
Note: 3.7 Obviously, every K*-bi near subtraction is a F- bi-near subtraction semi group. But the converse is not true 
 
Example: 3.8 Let X1={0, a, b, 1} in which “-“  and  “.” be defined by 
 

- 0 a b 1 

  

. 0 a b 1 
0 0 0 0 0 0 0 0 0 0 
a a 0 a a a 0 a 0 0 
b b b 0 b b 0 0 b b 
1 1 b a 0 1 0 a b 1 

 
Then X1 is a s1-near-subtraction semi group 
 
Let X2={0, a, b, c} in which “−“  and  “.” be defined by 
 

- 0 a b c 

 

. 0 a b c 
0 0 0 0 0 0 0 0 0 0 
a a 0 a b a a a b a 
b b b 0 b b 0 0 0 0 
c c c c 0 c 0 0 0 c 

 
Thus (X2, -, .)   is a strong  S2-near-subtraction semi group  but not a S2-near  subtraction semigroup (since bab≠ab). 
Hence, X= X1∪X2 is not a k*-bi-near subtraction semi group. 
 
4. RESULTS ON K AND K*-BI NEAR SUBTRACTION SEMIGROUP 
 
Proposition: 4.1 If  X  is  a  K-bi  near  subtraction  semigroup  then  X  is  a  zero-symmetric 
 
Proof: Let X= X1∪X2 be a K-bi near Subtraction  Semigroup where X1 is a strong S1-near subtraction semigroup and 
X2 is a S2-near subtraction semigroup. Since X1 is a strong S1-near subtraction semigroup that is, axa=xa for all a∈X1

 

and x∈X1
*. Subtituting a=0 we have 0x0=x0 for all x∈X1

*.  Thus X1 is a zero-symmetric. Since X2 is a strong S2-near 
subtraction semigroup that is, axa=ax for all a∈X1

 and x∈X1
*.Subtituting a=0 we have 0x0=x0 for all x∈X1

*.  Thus X1 
is a  zero-symmetric. Hence, X= X1∪X2 is a zero-symmetric. 
 
Remark: 4.2 The Converse of above Proposition need not be true 
 
Example: 4.3 Let X1={0, a, b, c} in which “−“  and  “.” be defined by 
 

- 0 a b c 

 

. 0 a b c 
0 0 0 0 0 0 0 0 0 0 
a a 0 a a a 0 0 0 a 
b b b 0 b b a 0 0 b 
c c c c 0 c 0 0 0 c 

 
Thus X1 is a zero-symmetric but not a strong s1-near subtraction semi group (Since cac≠ac). 
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Let X2 ={0, a, b, 1} in which “−“  and  “.” be defined by 
 

- 0 a b 1 

 

. 0 a b 1 
0 0 0 0 0 0 0 0 0 0 
a a 0 1 b a a 0 a 0 
b b 0 0 b b 0 0 b b 
1 1 0 1 0 1 0 a b 1 

 
Thus X2 is a zero-symmetric and also a S2-near subtraction semigroup. Hence, zero symmetric need not be a K- bi-near 
subtraction semi group. 

 
Proposition: 4.4 The intersection of strong S1-near subtraction semigroup  and S2-near subtraction semigroup is sub 
commutative near subtraction semigroup. 
 
Proof: Let X1 is a strong S1-near subtraction semigroup. there exists x∈X1

* such that axa=xa.                                     (1)    
(by [3], Every Strong S1-near subtraction semigroup is a S1-near subtraction semigroup). Let X2 is an S2-near 
subtraction semigroup, there exists x∈X2

* such that axa=ax                                                                                            (2) 
 
From (1) and (2), we get xa=ax. Thus, X is a sub commutative near subtraction semigroup. 
 
Proposition: 4.5 Let X be a Sub-commutative K-bi near Subtraction Semigroup Then X has no non zero-zero divisor 
function if and only if X is Boolean. 
 
Proof: Let X= X1∪X2 be a K-bi near Subtraction  Semigroup where X1 is a strong S1-near subtraction semigroup and 
X2 is a S2-near subtraction semigroup. Let a∈ X1. Since a a a=a a. That is, a3=a2, which implies (a2-a)a=0. Since X1 has 
no non zero-zero divisor function, a2-a=0, a2 = a Thus X1 is Boolean. Let a∈ X2. Since X2 is a strong S2-near subtraction 
semigroup, there exists x€ X2

* such that axa=xa. Which implies aax=ax. (Since X2 be a Sub-commutative). That is, 
a2x= ax that implies (a2-a)x=0. Since X2 has no non zero-zero divisor function, a2-a=0, a2 = a Thus X2 is Boolean. 
Therefore X= X1∪X2 where X1 is Boolean and X2 is Boolean. Hence, X is Boolean. 
 
Proposition: 4.6 The intersection of S1-near subtraction semigroup and strong S2-near subtraction semigroup is sub 
commutative near subtraction semigroup. 
 
Proof: Let X1 is a  S1-near subtraction semigroup.  there exists x∈X1

* such that axa=xa.                                              (1)    
Let X2 is an strong S2-near subtraction semigroup, there exists x∈X2

* such that axa=ax                                               (2) 
 
From (1) and (2), we get xa=ax (by [4], Every Strong S2-near subtraction semigroup is a S2-near subtraction 
semigroup). Thus, X is a sub commutative near subtraction semigroup. 
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