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ABSTRACT 
In this article, we investigate the nonlinear steady boundary layer flow and heat transfer of an incompressible Eyring-
Powell non-Newtonian fluid from a Horizontal Circular Cylinder.  The transformed conservation equations are solved 
numerically subject to physically appropriate boundary conditions using a second-order accurate implicit finite-
difference Keller Box technique. The numerical code is validated with previous studies.  The influence of a number of 
emerging non-dimensional parameters, namely the Eyring-Powell rheological fluid parameter (ε), the local non-
Newtonian parameter based on length scale (δ), Prandtl number (Pr), Biot number (γ) and dimensionless tangential 
coordinate (ξ) on velocity and temperature evolution in the boundary layer regime are examined in detail.  
Furthermore the effects of these parameters on surface heat transfer rate and local skin friction are also investigated.  
Validation with earlier Newtonian studies is presented and excellent correlation achieved.  It is found that the velocity 
and the Nusselt number (heat transfer rate) are reduced with increasing fluid parameter  (𝜀𝜀), whereas temperature and 
skin friction are enhanced.  Increasing fluid parameter, the local non-Newtonian parameter based on length scale (δ) 
enhances the velocity, local skin friction and the Nusselt number (heat transfer rate) but reduces the temperature.  An 
increase in the Biot number (γ) is observed to enhance velocity, temperature, local skin friction and Nusselt number. An 
increasing Prandtl number, Pr, is found to decrease both velocity and temperature.  The study is relevant to chemical 
materials processing applications. 
 
Keywords: Non-Newtonian Eyring-Powell model; Horizontal Cylinder; finite difference numerical method; heat 
transfer; boundary layers; skin friction; Nusselt number; Biot number. 
 
 
NOMENCLATURE 
 
Cf skin friction coefficient 
C fluid parameter 
f non-dimensional steam function 
Gr  Grashof number 
g acceleration due to gravity 
k thermal conductivity of fluid 
Nu local Nusselt number 
Pr Prandtl number 
T temperature of the fluid 
u, v  non-dimensional velocity components along the x- and y- directions, respectively 
V velocity vector 
x stream wise coordinate 
y transverse coordinate 
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Greek  

 thermal diffusivity 
 fluid parameter 
 non-dimensional concentration 
 dimensionless radial coordinate  
 dynamic viscosity 
 kinematic viscosity 
 dimensionless temperature 
 density of non-Newtonian fluid 
 dimensionless tangential coordinate 
 dimensionless stream function 

ε fluid parameter 
γ Biot number 
 
Subscripts 
w conditions at the wall (cylinder surface) 
∞ free stream conditions 
 
1. INTRODUCTION 
 
The dynamics of non-Newtonian fluids has been a popular area of research owing to ever-increasing applications in 
chemical and process engineering. Examples of such fluids include coal-oil slurries, shampoo, paints, clay coating and 
suspensions, grease, cosmetic products, custard, physiological liquids (blood, bile, synovial fluid) etc. The classical 
equations employed in simulating Newtonian viscous flows i.e. the Navier–Stokes equations fail to simulate a number 
of critical characteristics of non-Newtonian fluids. Hence several constitutive equations of non-Newtonian fluids have 
been presented over the past decades. The relationship between the shear stress and rate of strain in such fluids are very 
complicated in comparison to viscous fluids. The viscoelastic features in non-Newtonian fluids add more complexities 
in the resulting equations when compared with Navier–Stokes equations.  Significant attention has been directed at 
mathematical and numerical simulation of non-Newtonian fluids. Recent investigations have implemented, respectively 
the Casson model [1], second-order Reiner-Rivlin differential fluid models [2], power-law nanoscale models [3], 
Eringen micro-morphic models [4] and Jefferys viscoelastic model [5].  
 
Convective heat transfer has also mobilized substantial interest owing to its importance in industrial and environmental 
technologies including energy storage, gas turbines, nuclear plants, rocket propulsion, geothermal reservoirs, 
photovoltaic panels etc.  The convective boundary condition has also attracted some interest and this usually is 
simulated via a Biot number in the wall thermal boundary condition. Recently, Ishak [6] discussed the similarity 
solutions for flow and heat transfer over a permeable surface with convective boundary condition. Aziz [7] provided a 
similarity solution for laminar thermal boundary layer over a flat surface with a convective surface boundary condition. 
Aziz [8] further studied hydrodynamic and thermal slip flow boundary layers with an iso-flux thermal boundary 
condition. The buoyancy effects on thermal boundary layer over a vertical plate subject a convective surface boundary 
condition was studied by Makinde and Olanrewaju [9]. Further recent analyses include Makinde and Aziz [10]. Gupta 
et al. [11] used a variational finite element to simulate mixed convective-radiative micropolar shrinking sheet flow with 
a convective boundary condition. Swapnaet al. [12] studied convective wall heating effects on hydromagnetic flow of a 
micropolar fluid. Makinde et al. [13] studied cross diffusion effects and Biot number influence on hydromagnetic 
Newtonian boundary layer flow with homogenous chemical reactions and MAPLE quadrature routines. Bég et al. [14] 
analyzed Biot number and buoyancy effects on magnetohydrodynamic thermal slip flows. Subhashini et al. [15] 
studied wall transpiration and cross diffusion effects on free convection boundary layers with a convective boundary 
condition.  
 
An interesting non-Newtonian model developed for chemical engineering systems is the Eyring-Powell fluid model. 
This rheological model has certain advantages over the other non-Newtonian formulations, including simplicity, ease of 
computation and physical robustness. Furthermore it is deduced from kinetic theory of liquids rather than the empirical 
relation. Additionally it correctly reduces to Newtonian behavior for low and high shear rates [16]. Several 
communications utilizing the Eyring–Powell fluid model have been presented in the scientific literature. Zueco and Bég 
[17] numerically studied the pulsatile flow of Eyring–Powell model using the network electro-thermal solver code, 
PSPICE. Islam et al. [18] derived Homotopypertubation solutions for slider bearings lubricated with Eyring-Powell 
fluids. Patel and Timol [19] numerically examined the flow of Eyring–Powell fluids from a two-dimensional wedge. 
Further investigations implementing the Eyring-Powell model in transport phenomena include Sirohi et al. [20] for 
wedge flows, Akbar et al. [21] for peristaltic thermal convection flows of reactive biofluids, Hayat et al. [22] for 
Sakiadis flows, Etchart [23] for entry length pipe flows and Hassanien and Hady [24] for magneto-convective flows.  

α
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φ
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ν
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ρ
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Sirohiet al. [25] used orthogonal collocation, asymptotic and transformation methods to simulate Eyring-Powell flow 
from an accelerated sheet. The Eyring-Powell model was also deployed by Yürüsoy [26] to investigate bearing 
tribological flows, by Ai and Vafai [27] to simulate Stokesian impulsively-started plate flows and also by Adesanya 
and Gbadeyan [28] for channel flows.  
 
In many chemical engineering and nuclear process systems, curvature of the vessels employed is a critical aspect of 
optimizing thermal performance. Examples of curved bodies featuring in process systems include torus geometries, 
wavy surfaces, cylinders, cones, ellipses, oblate spheroids and in particular, spherical geometries. A number of 
theoretical and computational studies have been communicated on transport phenomena from cylindrical bodies, which 
frequently arise in polymer processing systems. These Newtonian studies were focused more on heat transfer aspects 
and include Eswara and Nath [29], Rotte and Beek [30] and the pioneering analysis of Sakiadis [31]. Further more 
recent studies examining multi-physical and chemical transport from cylindrical bodies include Zueco et al. [32, 33].  
An early investigation of rheological boundary layer heat transfer from a horizontal cylinder was presented by Chen 
and Leonard [34] who considered the power-law model and demonstrated that the transverse curvature has a strong 
effect on skin friction at moderate and large distances from the leading edge of the boundary layer. Lin and Chen [35] 
also studied axisymmetric laminar boundary-layer convection flow of a power-law non-Newtonian fluid over both a 
circular cylinder and a spherical body using the Merk-Chao series solution method. Pop et al. [36] simulated 
numerically the steady laminar forced convection boundary layer of power-law non-Newtonian fluids on a 
continuously moving cylinder with the surface maintained at a uniform temperature or uniform heat flux. Further non-
Newtonian models employed in analyzing convection flows from cylinders include micropolar liquids [37], viscoelastic 
materials [38, 39], micropolar nanofluids [40] and Casson fluids [41]. 
 
The objective of the present study is to investigate the laminar boundary layer flow and heat transfer of an Eyring-
Powell non-Newtonian fluid from a horizontal circular cylinder. The non-dimensional equations with associated 
dimensionless boundary conditions constitute a highly nonlinear, coupled two-point boundary value problem.  Keller’s 
implicit finite difference “box” scheme is implemented to solve the problem [42]. The effects of the emerging 
thermophysical parameters, namely the rheological parameters (𝜀𝜀, 𝛿𝛿), Biot number (𝛾𝛾) and Prandtl number (Pr), on the 
velocity, temperature, local skin friction, and heat transfer rate (local Nusselt number) characteristics are studied. The 
present problem has to the authors’ knowledge not appeared thus far in the scientific literature and is relevant to 
polymeric manufacturing processes in chemical engineering. 
 
2. NON-NEWTONIAN CONSTITUIVE EYRING-POWELL FLUID MODEL 
 
In the present study a subclass of non-Newtonian fluids known as the Eyring-Powell fluid is employed owing to its 
simplicity. The Cauchy stress tensor, in an Eyring-Powell non-Newtonian fluid [16] takes the form:   

11 1sinhi i
ij

j j

u u
x C x

τ µ
β

−
 ∂ ∂

= +   ∂ ∂ 
                      (1) 

whereµ is dynamic viscosity, 𝛽𝛽 and C are the rheological fluid parameters of the Eyring-Powell fluid model.  
Considering the second-order approximation of the sinh-1 function as: 

3

1 1 1 1 1 1sinh , 1,
6

i i i i

j j j j

u u u u
C x C x C x C x

−
   ∂ ∂ ∂ ∂

≅ −      ∂ ∂ ∂ ∂   


                                               (2) 

 
The introduction of the appropriate terms into the flow model is considered next. The resulting boundary value problem 
is found to be well-posed and permits an excellent mechanism for the assessment of rheological characteristics on the 
flow behaviour. 
 
3. MATHEMATICAL FLOW MODEL 
 
Steady, double-diffusive, laminar, incompressible flow of an Eyring-Powell fluid from a horizontal cylinder, is 
considered, as illustrated in Figure 1. The x-coordinate (tangential) is measured along the circumference of the 
horizontal cylinder from the lowest point and the y-coordinate (radial) is directed perpendicular to the surface, with a 
denoting the radius of the horizontal cylinder. is the angle of the y-axis with respect to the vertical

. The gravitational acceleration g, acts downwards. We also assume that the Boussineq approximation 
holds i.e. that density variation is only experienced in the buoyancy term in the momentum equation.  
 
 
 
 

x aΦ =
(0 )π≤ Φ ≤
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Figure 1: Physical model and coordinate system 
 
Both horizontal cylinder and Eyring-Powell fluid are maintained initially at the same temperature. Instantaneously they 
are raised to a temperature the ambient temperature of the fluid which remains unchanged.  In line with the 
approach of Yih [43] and introducing the boundary layer approximations, the equations for mass, momentum, and 
energy, can be written as follows:  

0u v
x y
∂ ∂

+ =
∂ ∂                                    (3)

( )
22 2

12 3 2

1 1 sin
2

u u u u u xu v g T T
x y C y ay C y

ν β
ρβ ρβ ∞

  ∂ ∂ ∂ ∂ ∂  + = + − + −    ∂ ∂ ∂∂ ∂                                     (4) 
2

2

T T Tu v
x y y

α∂ ∂ ∂
+ =

∂ ∂ ∂                                 (5) 

Where u and vare the velocity components in the x - and y - directions respectively,  is the kinematic viscosity 

of the Eyring-Powell fluid, 1β  is the coefficient of thermal expansion. The Eyring-Powell fluid model therefore 
introduces a mixed derivative (second order, second degree) into the momentum boundary layer equation (4).  The non-
Newtonian effects feature in the shear terms only of eqn. (4) and not the convective (acceleration) terms. The third term 
on the right hand side of eqn. (4) represents the thermal buoyancy force and couples the velocity field with the 
temperature field equation (5) 

( )At  0, 0, 0, w w
Ty u v k h T T
y

∂
= = = − = −

∂
   

As  , 0,y u T T∞→∞ → →                                (6) 
 
Here is the free stream temperature, wh is the convective heat transfer coefficient, wT is the convective fluid 
temperature.   
 

The stream function ψ is defined by  u
y

∂ψ
=
∂

and v
x

∂ψ
= −

∂
, and therefore, the continuity equation is automatically 

satisfied. In order to render the governing equations and the boundary conditions in dimensionless form, the following 
non-dimensional quantities are introduced. 
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All terms are defined in the nomenclature.  In view of the transformation defined in eqn. (7), the boundary layer eqns. 
(4)-(6) are reduced to the following coupled, nonlinear, dimensionless partial differential equations for momentum and 
energy for the regime: 

( ) ( ) ( )2 22 'sin1 ''' '' ' '' ''' ' ''f ff ff f f f f fξε εδξ θ ξ
ξ ξ ξ

 ∂ ∂
+ + − − + = − ∂ ∂ 

                               

(8) 

'' ' ' '
Pr

ff fθ θθ ξ θ
ξ ξ

 ∂∂
+ = − ∂ ∂ 

                                            (9) 

 
The transformed dimensionless boundary conditions are: 

'0, 0, ' 0, 1At f f θη θ
γ

= = = = +
 

, ' 0, 0As fη θ→ ∞ → →                             (10) 
 

Here primes denote the differentiation with respect to  and 1/4wah
Gr

k
γ −=  is the Biot number. The wall thermal 

boundary condition in (10) corresponds to convective cooling. The skin-friction coefficient (shear stress at the cylinder 
surface) and Nusselt number (heat transfer rate) can be defined using the transformations described above with the 
following expressions.   

( ) ( )33/4 31 ''( ,0) ''( ,0)
3fGr C f fδε ξ ξ εξ ξ− = + −                                    (11) 

1/4 '( ,0)Gr Nu θ ξ− = −                             (12)  
 

The location, ξ∼ 0, corresponds to the vicinity of the lower stagnation point on the cylinder.  Since → 0/ 0 i.e. 1.  

For this scenario, the model defined by eqns. (8) to (9) contracts to an ordinary differential boundary value problem:  

( ) ( )21 ''' '' ' 0f ff fε θ+ + − + =                              (13) 

1 '' ' 0
Pr

fθ θ+ =                              (14) 

 
The general model is solved using a powerful and unconditionally stable finite difference technique introduced by 
Keller [44]. The Keller-box method has a second order accuracy with arbitrary spacing and attractive extrapolation 
features. 
 
4. NUMERICAL SOLUTION WITH KELLER BOX IMPLICT METHOD 
 
The Keller-Box implicit difference method is implemented to solve the nonlinear boundary value problem defined by 
eqns. (8)–(9) with boundary conditions (10). This technique, despite recent developments in other numerical methods, 
remains a powerful and very accurate approach for parabolic boundary layer flows. It is unconditionally stable and 
achieves exceptional accuracy [44]. Recently this method has been deployed in resolving many challenging, multi-
physical fluid dynamics problems. These include hydromagnetic Sakiadisflow of non-Newtonian fluids [45], nanofluid 
transport from a stretching sheet [46], radiative rheological magnetic heat transfer [47], waterhammer modelling [48], 
porous media convection [49] and magnetized viscoelastic stagnation flows [50]. The Keller-Box discretization is fully 
coupled at each step which reflects the physics of parabolic systems – which are also fully coupled.  Discrete  calculus  
associated  with  the  Keller-Box  scheme  has also been shown  to  be  fundamentally different  from  all  other  
mimetic  (physics  capturing)  numerical  methods, as elaborated by Keller [44].  The Keller Box Scheme comprises 
four stages. 
1) Decomposition of the Nth order partial differential equation system to N first order equations.  
2) Finite Difference Discretization.  
3) Quasilinearization of Non-Linear Keller Algebraic Equations and finally. 
4) Block-tridiagonal Elimination solution of the Linearized Keller Algebraic Equations 
 
 
 
 

η

sinξ
ξ
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Stage 1: Decomposition of Nth order partial differential equation system to N first order equations 
Equations (8) – (9) subject to the boundary conditions (10) are first cast as a multiple system of first order differential 
equations. New dependent variables are introduced: 

( , ) ', ( , ) '', ( , ) , ( , ) 'u x y f v x y f s x y t x yθ θ= = = =                                                                                           (15) 
 
These denote the variables for velocity, temperature and concentration respectively. Now Equations (8) – (9) are solved 
as a set of fifth order simultaneous differential equations: 

                        (16) 
                        (17) 
                        (18) 
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ξ ξ ξ
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+ + − − + = − ∂ ∂                   (19)
'
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ft sft u tξ

ξ ξ
 ∂∂

+ = − ∂ ∂ 
                                  (20) 

Where primes denote differentiation with respect to the variable, η.  In terms of the dependent variables, the boundary 
conditions assume the form: 

'0, 0, ' 0, 1At f f θη θ
γ

= = = = +                                 (21) 

, ' 0, 0As fη θ→ ∞ → →                                                (22) 
 
Stage 2: Finite Difference Discretization 
A two dimensional computational grid is imposed on the ξ-η plane as depicted in Fig.2. The stepping process is defined 
by:  

                                            (23) 

                                              (24) 

Where  is the spacing and  is the spacing. 
 

 
Figure 2: Keller box computational domain 

 

If denotes the value of any variable at , then the variables and derivatives of Equations (16) – (20) at 

 are replaced by: 

                                 (25)
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The finite-difference approximation of eqns, (16) – (20) for the mid-point , are:  

                                                (28)
 

                                                 (29) 
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Where we have used the abbreviations 

,                                                                             (33) 
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The boundary conditions are: 

0 0 00, 1, 0, 0, 0n n n n n n
J J Jf u s u v s= = = = = =               (36) 

 
Stage 3: Quasilinearization of Non-Linear Keller Algebraic Equations 
Assuming 1 1 1 1 1, u , v ,s , tn n n n n

j j j j jf − − − − −   to be known for , then Eqns. (28) – (32) constitute a system of 5J+5 

equations for the solution of 5J+5 unknowns , u , v ,s , tn n n n n
j j j j jf ,  j = 0, 1, 2 …, J. This non-linear system of algebraic 

equations is linearized by means of Newton’s method as explained in [42, 44].  
 
Stage 4: Block-tridiagonal Elimination Solution of Linear Keller Algebraic Equations 
The linearized system is solved by the block-elimination method, since it possesses a block-tridiagonal structure. The 
bock-tridiagonal structure generated consists of block matrices. The complete linearized system is formulated as a 
block matrix system, where each element in the coefficient matrix is a matrix itself, and this system is solved using the 
efficient Keller-box method. The numerical results are strongly influenced by the number of mesh points in both 
directions. After some trials in the η-direction (radial coordinate) a larger number of mesh points are selected whereas 
in the ξ direction (tangential coordinate) significantly less mesh points are utilized. ηmax has been set at 25 and this 
defines an adequately large value at which the prescribed boundary conditions are satisfied. ξmaxis set at 3.0 for this 
flow domain. Mesh independence is achieved in the present computations. The numerical algorithm is executed in  
 
MATLAB on a PC. The method demonstrates excellent stability, convergence and consistency, as elaborated by Keller 
[44]. 
 
5. NUMERICAL RESULTS AND INTERPRETATION  
 
Comprehensive solutions have been obtained and are presented in Tables 1-5 and Figs. 3 - 10.  The numerical problem 
comprises two independent variables (ξ,η), two dependent fluid dynamic variables (f,θ) and five thermo-physical and 
body force control parameters, namely, γ, δ, ε, Pr, ξ.  The following default parameter values i.e. γ = 0.2, δ = 0.1,           
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ε = 0.1, Pr = 7.0, ξ = 1.0 are prescribed (unless otherwise stated).  Furthermore the influence of stream-wise 
(transverse) coordinate on heat transfer characteristics is also investigated.   
 
In Tables 1 & 2, we present the influence of the Eyring-Powell fluid parameter, ε, on the skin friction and heat transfer 
rate, along with a variation in Prandtl number (Pr).  With increasing ε, the skin friction is enhanced.  The parameter ε is 
inversely proportional to the dynamic viscosity of the non-Newtonian fluid. There as ε is elevated, viscosity will be 
reduced and this will induce lower resistance to the flow at the surface of the cylinder i.e. accelerate the flow leading to 
an escalation of shear stress. Furthermore this trend is sustained at any Prandtl number. However an increase in Prandtl 
number markedly reduces the shear stress magnitudes. Similarly increasing ε, is observed to reduce heat transfer rates, 
again at all Prandtl numbers, whereas it strongly accentuates heat transfer rates. Magnitudes of shear stress are always 
positive indicating that flow reversal (backflow) never arises. 
 
Tables 3 & 4 document results forthe influence of the local non-Newtonian parameter (based on length scale x) i.e. δ 
and also the Prandtl number (Pr) on skin friction and heat transfer rate. Skin friction is generally decreased with 
increasing δ.  However heat transfer rate (i.e. local Nusselt number function) is found to be enhanced with increasing δ. 

2/3
42

2

2
Gr

aC
νδ =  and inspection of this definition shows that the direct proportionality of δto kinematic viscosity 

(ν) (with all other parameters being maintained constant) will generate a strong resistance to the flow leading to a 
deceleration i.e. drop in shear stresses. Conversely the direct proportionality of δto Grashof number (Gr) will imply 
that thermal buoyancy forces are enhanced as δ increases and this will cause a boost in heat transfer by convection 
fromthe cylinder surface manifesting with the greater heat transfer rates observed in Tables 3 and 4. These tables also 
show that with an increase in the Prandtl number, Pr, the skin friction is also depressed whereas the heat transfer rate is 
elevated.  
 
Table 5 presents the Keller box numerical values of the missing condition ( ,0)f ξ′′  (in brackets) and skin friction 

fC for various values of δ and ε.  It is found that skin friction is reduced with increasing values of δ.  Furthermore, the 

skin friction fC  is observed to be increased with a rise in the Eyring-Powell fluid parameter (ε) for all values of the 
local non-Newtonian parameter (δ). 
 
Figures 3(a) - 3(b) illustrates the effect of Eyring-Powell fluid parameterε ,on the velocity  and temperature (θ) 
distributions through the boundary layer regime. Velocity is significantly decreased with increasingε at larger distance 
from the cylinder surface owing to the simultaneous drop in dynamic viscosity. Conversely temperature is consistently 
enhanced with increasing values ofε .  The mathematical model reduces to the Newtonian viscous flow model as  ε → 
0 and δ → 0.  The momentum boundary layer equation in this case contracts to the familiar equation for Newtonian 

mixed convection from a plate, viz ( ) /2 sin '''' 1 cot '' ' ''f ff ff f f fξξ ξ θ ξ
ξ ξ ξ

 ∂ ∂
+ + − + = − ∂ ∂ 

. The thermal 

boundary layer equation (9) remains unchanged.  In fig. 3b temperatures are clearly minimized for the Newtonian case 
(ε =0) and maximized for the strongest non-Newtonian case (ε = 1.5).     
 
Figures 4(a) – 4(b) depict the velocity  and temperature  distributions with increasing local non-

Newtonianparameter,δ .  Very little tangible effect is observed in fig. 4a, although there is a very slight increase in 
velocity with increase in δ . Similarly there is only a very slight depression in temperature magnitudes in Fig. 4(b) 
with a rise in δ .  
 
Figures 5(a) - 5(b) depict the evolution of velocity  and temperature (θ) functions with a variation in Biot 
number, γ . Dimensionless velocity component (fig. 5a) is considerably enhanced with increasingγ .In fig. 5b, an 
increase in Biot number is seen to considerably enhance temperatures throughout the boundary layer regime. For γ< 1 
i.e. small Biot numbers, the regime is frequently designated as being “thermally simple” and there is a presence of more  
 
uniform temperature fields inside the boundary layer and the cylinder solid surface. For γ> 1 thermal fields are 
anticipated to be non-uniform within the solid body. The Biot number effectively furnishes a mechanism for comparing 
the conduction resistance within a solid body to the convection resistance external to that body (offered by the 
surrounding fluid) for heat transfer. We also note that a Biot number in excess of 0.1, as studied in figs. 5a,b 
corresponds to a "thermally thick" substance whereas Biot number less than 0.1 implies a “thermally thin” material. 
Since  γis inversely proportional to thermal conductivity (k), as γ increases, thermal conductivity will be reduced at the  

( )f ′

( )f ′ ( )θ

( )f ′
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cylinder surface and this will lead to a decrease in the rate of heat transfer from the boundary layer to within the 
cylinder, manifesting in a rise in temperature at the cylinder surface and in the body of the fluid- the maximum effect 
will be sustained at the surface, as witnessed in fig. 5b. However for a fixed wall convection coefficient and thermal 

conductivity, Biot number as defined in 1/4wxh
Gr

k
γ −=  is also directly inversely proportional to the local Grashof 

(free convection) number. As local Grashof number increases generally the enhancement in buoyancy causes a 
deceleration in boundary layer flows [51-53]; however as Biot number increases,  the local Grashof number must 
decreases and this will induce the opposite effect i.e. accelerate the boundary layer flow, as shown in fig. 5a.  
 
Figures 6(a) – 6(b) depicts the profiles for velocity  and temperature  for various values of Prandtl number, Pr.  
It is observed that an increase in the Prandtl number significantly decelerates the flow i.e., velocity decreases.  Also 
increasing Prandtl number is found to decelerate the temperature. 
 
Figures 7(a) – 7(b) depict the velocity  and temperature  distributions with dimensionless radial coordinate, 

for various transverse (stream wise) coordinate values, ξ.  Generally velocity is noticeably lowered with increasing 
migration from the leading edge i.e. larger ξ values (figure 7a).  The maximum velocity is computed at the lower 
stagnation point(ξ~0) for low values of radial coordinate (η). The transverse coordinate clearly exerts a significant 
influence on momentum development.  A very strong increase in temperature (θ), as observed in figure 7b, is generated 
throughout the boundary layer with increasing ξ values. The temperature field decays monotonically. Temperature is 
maximized at the surface of the spherical body (η= 0, for all ξ) and minimized in the free stream (η= 25).  Although the 
behaviour at the upper stagnation point (ξ~π) is not computed, the pattern in figure 6b suggests that temperature will 
continue to progressively grow here compared with previous locations on the cylinder surface (lower values of ξ).  
 
Figures 8(a) - 8(b) show the influence of Eyring-Powell fluid parameter, εon dimensionless skin friction coefficient

( ) ( ) ( )( )331 ,0 ''' ,0
3

f fδε ξ ξ εξ ξ ′′+ − 
 

 and heat transfer rate  at the cylinder surface.  It is 

observed that the dimensionless skin friction is increased with the increase in εi.e. the boundary layer flow is 
accelerated with decreasing viscosity effects in the non-Newtonian regime. Conversely the surface heat transfer rate is 
substantially decreased with increasing ε values.  Decreasing viscosity of the fluid (induced by increasing the ε value) 
reduces thermal diffusion as compared with momentum diffusion. A decrease in heat transfer rate at the wall will imply 
less heat is convected from the fluid regime to the cylinder, thereby heating the boundary layer and enhancing 
temperatures. 
 
Figures 9(a) - 9(b) illustrates the influence of the local non-Newtonian parameter, δ, on the dimensionless skin 
frictioncoefficient  and heat transfer rate. The skin friction (fig. 9a) at the cylinder surface is accentuated with 
increasing δ, however only for very large values of the transverse coordinate, ξ.  The flow is therefore strongly 
accelerated along the curved cylinder surface far from the lower stagnation point.  Heat transfer rate (local Nusselt 
number) is enhanced with increasing δ, again at large values of ξ,  as computed in fig.9b. 
 
Figures10 (a) - 10(b) presents the influence of the Biot number, γ, on the dimensionless skin friction coefficient and 
heat transfer rate at the cylinder surface.  The skin friction at the cylinder surface is found to be greatly increased with 
rising Biot number, γ. This is principally attributable to the decrease in Grashof (free convection) number which results 
in an acceleration in the boundary layer flow, as elaborated by Chen and Chen [53].  Heat transfer rate (local Nusselt 
number) is enhanced with increasing γ, at large values of ξ, as computed in fig.10(b).  
 
6. CONCLUSIONS 
 
Numerical solutions have been presented for the buoyancy-driven flow and heat transfer of Eyring-Powell flow 
external to a horizontal cylinder.  The Keller-box implicit second order accurate finite difference numerical scheme has 
been utilized to efficiently solve the transformed, dimensionless velocity and thermal boundary layer equations, subject 
to realistic boundary conditions. Excellent correlation with previous studies has been demonstrated (see Appendix) 
testifying to the validity of the present code. The computations have shown that: 

(I) Increasing Eyring-Powell fluid parameter, ε, reduces the velocity and skin friction (surface shear stress) and  
heat transfer rate, whereas it elevates temperatures in the boundary layer.  

(II) Increasing local non-Newtonian parameter, δ, increases the velocity, skin friction and Nusselt number for all 
values of radial coordinate i.e., throughout the boundary layer regime whereas it depresses temperature. 

(III) Increasing Biot number, γ, increases velocity, temperature and skin friction (surface shear stress). 
(IV) Increasing Prandtl number, Pr, decreases velocity and temperature. 

( )f ′ ( )θ

( )f ′ ( )θ

( )( ),0θ ξ′
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(V) Increasing transverse coordinate (ξ) generally decelerates the flow near the cylinder surface and reduces 

momentum boundary layer thickness whereas it enhances temperature and therefore increases thermal 
boundary layer thickness in Eyring-Powell non-Newtonian fluids. 

 
Generally very stable and accurate solutions are obtained with the present finite difference code. The numerical code is 
able to solve nonlinear boundary layer equations very efficiently and therefore shows excellent promise in simulating 
transport phenomena in other non-Newtonian fluids. It is therefore presently being employed to study micropolar fluids 
[11, 12] and viscoplastic fluids [54] which also simulate accurately many chemical engineering working fluids in 
curved geometrical systems.  
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TABLES 
 

Table-1: Values of Cf  and Nu for differentε and Pr (δ = 0.1, γ = 0.2, ξ = 1.0) 

Pr ε = 0.0 ε = 0.3 ε = 0.5 ε = 0.7 
Cf Nu Cf Nu Cf Nu Cf Nu 

7 0.3501 0.3966 0.3789 0.3758 0.3954 0.3647 0.4103 0.3552 
10 0.3261 0.4403 0.3523 0.4165 0.3674 0.4034 0.3809 0.3930 
15 0.3000 0.4946 0.3236 0.4670 0.3371 0.4525 0.3492 0.4400 
20 0.2823 0.5362 0.3041 0.5058 0.3166 0.4898 0.3279 0.4761 
25 0.2690 0.5705 0.2896 0.5378 0.3014 0.5206 0.3121 0.5058 
50 0.2308 0.6891 0.2476 0.6484 0.2578 0.6270 0.2666 0.6088 
75 0.2105 0.7679 0.2259 0.7220 0.2347 0.6979 0.2427 0.6774 

100 0.1970 0.8287 0.2113 0.7787 0.2194 0.7525 0.2268 0.7303 
 

Table-2: Values of Cf  and Nu for differentε and Pr(δ = 0.1, γ = 0.2, ξ = 1.0) 

Pr ε = 1.0 ε = 1.2 ε = 1.5 
Cf Nu Cf Nu Cf Nu 

7 0.4303 0.3430 0.4424 0.3360 0.4591 0.3267 
10 0.3991 0.3792 0.4102 0.3713 0.4253 0.3608 
15 0.3656 0.4242 0.3755 0.4151 0.3891 0.4032 
20 0.3461 0.4588 0.3522 0.4488 0.3649 0.4358 
25 0.3264 0.4872 0.3350 0.4766 0.3469 0.4626 
50 0.2785 0.5859 0.2857 0.5728 0.2956 0.5557 
75 0.2534 0.6517 0.2598 0.6370 0.2687 0.6177 

100 0.2368 0.7024 0.2428 0.6864 0.2510 0.6655 
 

Table-3: Values ofCf andNu for differentδ and Pr (ε = 0.1, γ = 0.2, ξ = 1.0)
 

Pr δ = 0.0 δ = 5 δ = 10 δ = 15 
Cf Nu Cf Nu Cf Nu Cf Nu 

7 0.3604 0.3889 0.3598 0.3901 0.3592 0.3913 0.3592 0.3913 
10 0.3354 0.4316 0.3350 0.4327 0.3345 0.4338 0.3340 0.4351 
15 0.3084 0.4844 0.3080 0.4855 0.3077 0.4866 0.3073 0.4878 
20 0.2901 0.5240 0.2898 0.5261 0.2895 0.5271 0.2892 0.5283 
25 0.2764 0.5584 0.2761 0.5594 0.2759 0.5605 0.2756 0.5616 
50 0.2369 0.6740 0.2368 0.6749 0.2366 0.6759 0.2365 0.6769 
75 0.2160 0.7509 0.2159 0.7518 0.2158 0.7527 0.2156 0.7536 

100 0.2021 0.8102 0.2020 0.8110 0.2019 0.8119 0.2018 0.8127 
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Table-4: Values of Cf and Nu for differentδ and Pr (ε = 0.1, γ = 0.2, ξ = 1.0) 

Pr δ = 20 δ = 30 δ = 40 
Cf Nu Cf Nu Cf Nu 

7 0.3579 0.3940 0.3567 0.3972 0.3557 0.4017 
10 0.3336 0.4364 0.3326 0.4394 0.3328 0.4438 
15 0.3070 0.4890 0.3063 0.4918 0.3056 0.4951 
20 0.2889 0.5295 0.2883 0.5321 0.2878 0.5350 
25 0.2754 0.5627 0.2749 0.5625 0.2744 0.5680 
50 0.2363 0.6779 0.2361 0.6800 0.2358 0.6823 
75 0.2155 0.7545 0.2153 0.7565 0.2151 0.7585 

100 0.2017 0.8136 0.2016 0.8154 0.2014 0.8173 
 

Table-5: Numerical Values of ( ,0)f ξ′′ ( in brackets) and skin friction coefficient Cf for different values of δ and ε 

δ \ ԑ 0.0 0.2 0.4 0.6 0.8 1.0 

0.0 0.3501 0.3699 
(0.3083) 

0.3874 
(0.2767) 

0.4031 
(0.2519) 

0.4173 
(0.2318) 

0.4304 
(0.2152) 

0.1 0.3501 0.3699 
(0.3084) 

0.3874 
(0.2769) 

0.4031 
(0.2521) 

0.4173 
(0.2320) 

0.4303 
(0.2153) 

0.2 0.3501 0.3699 
(0.3086) 

0.3873 
(0.2771) 

0.4030 
(0.2523) 

0.4172 
(0.2322) 

0.4303 
(0.2155) 

0.3 0.3501 0.3699 
(0.3087) 

0.3873 
(0.2773) 

0.4030 
(0.2525) 

0.4172 
(0.2323) 

0.4303 
(0.2156) 

0.4 0.3501 0.3699 
(0.3089) 

0.3873 
(0.2775) 

0.4029 
(0.2526) 

0.4172 
(0.2325) 

0.4302 
(0.2158) 

0.5 0.3501 0.3699 
(0.3090) 

0.3873 
(0.2776) 

0.4029 
(0.2528) 

0.4171 
(0.2327) 

0.4302 
(0.2159) 

0.6 0.3501 0.3698 
(0.3092) 

0.3872 
(0.2778) 

0.4029 
(0.2530) 

0.4171 
(0.2328) 

0.4302 
(0.2161) 

0.7 0.3501 0.3698 
(0.3093) 

0.3872 
(0.2780) 

0.4028 
(0.2532) 

0.4170 
(0.2330) 

0.4301 
(0.2163) 

0.8 0.3501 0.3698 
(0.3095) 

0.3872 
(0.2782) 

0.4028 
(0.2536) 

0.4170 
(0.2332) 

0.4301 
(0.2164) 

0.9 0.3501 0.3698 
(0.3096) 

0.3872 
(0.2784) 

0.4028 
(0.2536) 

0.4170 
(0.2334) 

0.4300 
(0.2166) 

1.0 0.3501 0.3697 
(0.3098) 

0.3871 
(0.2786) 

0.4028 
(0.2538) 

0.4170 
(0.2335) 

0.4300 
(0.2167) 

 
COMPARISON TABLE: In order to verify the accuracy of our present method, we have compared our results with 
those of Merkin [49] and Nazar et al. [50]. The present results are found to be in good agreement. 

( )1/4 ' , 0Nu Gr θ ξ− = −  

ξ  Merkin[55] Nazar et. al.[56] Present 

0 0.4214 0.4214 0.4215 

π/6 0.4161 0.4161 0.4162 

π/3 0.4007 0.4005 0.4006 

π/2 0.3745 0.3741 0.3742 

2π/3 0.3364 0.3355 0.3357 

5π/6 0.2825 0.2811 0.2821 

π 0.1945 0.1916 0.1935 
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