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ABSTRACT

In this paper, we study some of the properties of bipolar-valued multi fuzzy subsemiring of a semiring and prove some
results on these.
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INTRODUCTION

In 1965, Zadeh [13] introduced the notion of a fuzzy subset of a set, fuzzy sets are a kind of useful mathematical
structure to represent a collection of objects whose boundary is vague. Since then it has become a vigorous area of
research in different domains, there have been a number of generalizations of this fundamental concept such as
intuitionistic fuzzy sets, interval-valued fuzzy sets, vague sets, soft sets etc [6]. Lee [8] introduced the notion of bipolar-
valued fuzzy sets. Bipolar-valued fuzzy sets are an extension of fuzzy sets whose membership degree range is enlarged
from the interval [0, 1] to [-1, 1]. In a bipolar-valued fuzzy set, the membership degree 0 means that elements are
irrelevant to the corresponding property, the membership degree (0, 1] indicates that elements somewhat satisfy the
property and the membership degree [-1, 0) indicates that elements somewhat satisfy the implicit counter property.
Bipolar-valued fuzzy sets and intuitionistic fuzzy sets look similar each other. However, they are different each other
[8, 9]. Anitha.M.S., Muruganantha Prasad & K.Arjunan[1] defined as Bipolar-valued fuzzy subgroups of a group. We
introduce the concept of bipolar-valued multi fuzzy subsemiring and established some results.

1. PRELIMINARIES

1.1 Definition: A bipolar-valued fuzzy set (BVFS) A in X is defined as an object of the form A = {< x, A*(X), A" (x) >/
xeX}, where A*. X— [0, 1] and A: X— [-1, 0]. The positive membership degree A*(x) denotes the satisfaction
degree of an element x to the property corresponding to a bipolar-valued fuzzy set A and the negative membership
degree A"(x) denotes the satisfaction degree of an element x to some implicit counter-property corresponding to a
bipolar-valued fuzzy set A. If A" (x) # 0 and A (X) = 0, it is the situation that x is regarded as having only positive
satisfaction for A and if A" (x) = 0 and A(X) # 0, it is the situation that x does not satisfy the property of A, but
somewhat satisfies the counter property of A. It is possible for an element x to be such that A" (x) # 0 and A™(xX) # 0
when the membership function of the property overlaps that of its counter property over some portion of X.

1.2 Example: A={<a, 0.5,-0.3>,<b,0.1,-0.7 >, <, 0.5,-0.4 >} is a bipolar-valued fuzzy subset of X={a, b, c}.

1.3 Definition: A bipolar-valued multi fuzzy set (BVMFS) A in X is defined as an object of the form A = {< x, A;"(x),
A (X) >/ xeX}, where A", X— [0, 1] and A; : X— [-1, 0]. The positive membership degrees A;"(x) denote the
satisfaction degree of an element x to the property corresponding to a bipolar-valued multi fuzzy set A and the negative
membership degrees A;(x) denote the satisfaction degree of an element x to some implicit counter-property
corresponding to a bipolar-valued multi fuzzy set A. If A" (x) # 0 and A; (x) = 0, it is the situation that x is regarded as
having only positive satisfaction for A and if A;"(x) = 0 and A; (X) # 0, it is the situation that x does not satisfy the
property of A, but somewhat satisfies the counter property of A. It is possible for an element x to be such that
A'(X) # 0 and A; (x) # 0 when the membership function of the property overlaps that of its counter property over some
portion of X, wherei=1ton.
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1.4 Example: A={<a, 05, 0,6, 0.3, 0.3, -0.6, -0.5 >, < b, 0.1, 0.4, 0.7, -0.7, -0.3, -0.6 >, < ¢, 0.5, 0.3, 0.8, -0.4,
—0.5, —0.3 >} is a bipolar-valued multi fuzzy subset of X = {a, b, c}.

1.5 Definition: Let R be a semiring. A bipolar-valued multi fuzzy subset A of R is said to be a bipolar-valued multi
fuzzy subsemiring of R (BVMFSSR) if the following conditions are satisfied,

(i) A"(x+y) > min{A" (x), A" ()}

(i) A(xy) = min{A" (x), A" ()}

(iii) A (x+y) < max{A;" (x), A" (Y)}

(iv) A (xy) <max{A; (X), Ai ()} forall xand y in R.

1.6 Example: Let R = Z3 = {0, 1, 2} be a semiring with respect to the ordinary addition and multiplication. Then
A={<0,0508,06,-06,-05-0.7><1,040705-05-04,-06><204,0.7,05, - 0.5 -0.4,-0.6 >}
is a bipolar-valued multi fuzzy subsemiring of R.

1.7 Definition: Let A = (A;", A/") and B = (B;", B;") be any two bipolar-valued multi fuzzy subsets of sets G and H,
respectively. The product of A and B, denoted by AxB, is defined as AxB = {{(x, ¥), (AixB)*(x, ¥), (AixB)) (X, y)) / for
all x in G and y in H} where (AixB;)"(x, y) = min{A;"(X), Bi'(y) } and (AixB;) (x, y) = max {A; (X), Bi (y)} for all x in
GandyinH.

1.8 Definition: Let A = (A", Ai") be a bipolar-valued multi fuzzy subset in a set S, the strongest bipolar-valued multi
fuzzy relation on S, that is a bipolar-valued multi fuzzy relation on A is V = {((X, ¥), Vi'(X, ¥), Vi (X, ¥))/ x and y in S}
given by Vi*(x, y) = min {A(X), A" (Y)} and Vi (X, y) = max{A; (), A (y)} for all xand y in S.

1.9 Definition: Let A be a bipolar valued multi fuzzy subset of X. Then the following operations are defined as
(i) 2(A) = {x, min {%, A"(X)}, max{-%2, A7 (X)}) / for all xeX}.

(i) '(A) = {( x, max {¥, A" (x)}, min {-%, A7 (X)}) / for all xeX}.

(iii) Qup(A)={(x, min{a, A;"(x)}, max{B, A (X)})/ for all xeX and a.in [0, 1], B in [-1, O]}.

(iv) Py, p(A)={(x, max{a, A;"(x)}, min{B, Ay (X)})/ for all xeX and a in [0, 1], B in [-1, O]}

(V) Gy p(A) ={(x, aA*(X), -BA (X)}) / for all xeX and o in [0, 1] and B in [-1, 0]}

1.10 Definition: Let A = (A;", A") be a bipolar valued multi fuzzy subsemiring of a semiring R and a in R. Then the
pseudo bipolar valued multi fuzzy coset (aA)? = (@A), (aA;)P) is defined by (aA;")P(x) = p(a) Ai"(X) and (aA;)P(X)
= p(a)A;i (x), for every x in R and for some p in P.

2. PROPERTIES

2.1 Theorem: Let A = (A", A) be a bipolar-valued multi fuzzy subsemiring of a semiring R. (i) If A;"(x+y) = 0 then
either A;"(x) =0 or A’(y) =0 for xand y in R.

(i) If A;" (xy) = 0 then either A;*(x) =0 or A;"(y) =0 forxand y in R.

(iii) If Ay (x+y) = 0 then either A;” (X) =0or A;” (y) =0forxandyinR.

(iv) If A (xy) = 0 then either A, (x) =0or A; (y)=0forxandyinR.

Proof: Let x and y be in R. (i) By the definition A;"(x+y) > min {A;"( x), A;*(y)} which implies that 0 > min {A;"(x),
Ai"(Y)}. Therefore either A;"(x) = 0 or Ai*(y) = 0. (ii) By the definition A;"(xy) > min {A*(x), Ai"(y)} which implies
that 0 > min {A"(x), Ai"(y)}. Therefore either A;*(x) = 0 or A;"(y) = 0. (iii) By the definition A; (x+y) < max {A; (X),
A (y)} which implies that 0< max {A i (X), A (Y)}. Therefore either Ai(x) = 0 or A; (y) = 0. (iv) By the definition
A (xy) <max {A; (X), A (y)} which implies that 0 < max {A; (X), A (Y)}. Therefore either A; (x) =0 or A; (y) =0.

2.2 Theorem: If A = (A", A") is a bipolar-valued multi fuzzy subsemiring of a semiring R then H = {xeR | A/"(X) = 1,
A (X) = -1} is either empty or is a subsemiring of R.

Proof: If no element satisfies this condition then H is empty. If x and y in H then A" (x+y) > min {A(X), Ai'(Y)} =
min {1, 1} = 1. Therefore A" (x+y) = 1. And A;*(xy) = min {A"(X), Ai'(Y)} = min {1, 1} = 1. Therefore A;"(xy) = 1.
Also A (x+y) < max {A;(X), A (y)}= max{-1, -1} = —1. Therefore A; (x+y) = —1. And A (xy) < max {A;(X), A (y)
}= max {-1, -1} = —1. Therefore A (xy) = —1. That is x+yeH and xyeH. Hence H is a subsemiring of R. Hence H is
either empty or a subsemiring of R.

2.3 Theorem: If A= (A", A7) and B = (B;", B;") are two bipolar-valued multi fuzzy subsemirings of a semiring R, then
their intersection AnB is a bipolar-valued multi fuzzy subsemiring of R.

© 2015, IIMA. All Rights Reserved 76



B. Yasodara*, Ke. Sathappan / Bipolar-Valued Multi Fuzzy Subsemirings of a Semiring / IIMA- 6(9), Sept.-2015.

Proof: Let A = {< x, A" (X), Ai (X) >/ xeG}, B = {< x, Bi"(X), Bi (X) >/ xeG}. Let C = AnB and C = {< X, C;"(X),
Ci (X) >/ xeG}. Now C;*(x+y) = min {A;*(x+y), Bi*(x+y) } = min {min {A;"(X), A" (¥)}, min {B;"(X), Bi"(y)}} = min{
min{A"(x), Bi"(x)}, min{A’(y), Bi"(y)}} = min {Ci"(x), Ci"(y)}. Therefore Ci"(x+y) > min{C;"(x), C;"(y)}. And
C'(xy) = min {A"(xy), Bi"(xy)}2min{min{A/"(x), A’(Y)}, min {Bi"(x), Bi'(y)}}=min{min{A’"(x), B;i"(x)},
min{A"(y), Bi"(y)}} = min{Ci"(x), Ci"(y) }. Therefore C;"(xy) > min{C;"(x), C;"(y)}. Also C; (x+y) = max {A; (x+y),
Bi (x+y)} < max{max {Ai"(x), A (y)}, max{Bi (x), Bi (y)}} < max{max{A; (x), Bi (x)}, max{Ai (y), B"(y) }}= max {
Ci (¥), Ci (y)}. Therefore C; (x+y) < max{Ci (x), Ci (¥)}. And Ci (xy) = max{A; (xy), Bi (xy)}< max{max{ A (%),
Ai(y) }, max {Bi"(x), Bi (y)}} < max{max {A;i (x), Bi (x)}, max{Ai (y), Bi (y)}}= max {Ci (x), Ci (y)}. Therefore
Ci (xy) < max {Ci (x), Ci (y)}. Hence AnB is a bipolar-valued multi fuzzy subsemiring of R.

2.4 Theorem: The intersection of a family of bipolar-valued multi fuzzy subsemirings of a semiring R is a bipolar-
valued multi fuzzy subsemiring of R.

Proof: The theorem can easily prove by Theorem 2.3.

2.5 Theorem: If A= (A", A7) and B = (B;*, B ) are any two bipolar-valued multi fuzzy subsemirings of the semirings
R: and R, respectively, then AxB = { (AixB;)", (AixB;)”) is a bipolar-valued multi fuzzy subsemiring of R;xR,.

Proof: Let A and B be two bipolar-valued multi fuzzy subsemirings of the semirings R; and R, respectively. Let x;, X,
be in Ry, y; and y, be in Ry. Then (Xy, Y1) and (Xa, Y) are in RyxRy. Now, (AxB) [(X1, Y1) + (X2, Y2)] = (AiXB}) (X1 +Xs,
y1ty2) = min{A (xg+x2), Bi'(y1+y2)}> min{min{A;"(x1), Ai"(x2)}, min{B;"(y1), Bi"(y2)}} = min{min{A"(x1), Bi"(y)},
min{A"(x2), Bi"(y2)}} = min{(AxB) (X1, y1), (AxBi)'(X2 y2)}. Therefore (AxB)'[ (X1, Y1) + (X2 Y2)12min{
(AXB) (X1, Y1), (AiXB)) (X2, Y2)}. And (AXB)[(X1, Y1) (X2 Y2)] = (AXBi) (X1Xa, Yay2) = min {A(X1xz), Bi'(Y1y2)} >
min{min {A"(x1), A'(x)}, min{Bi"(ys), Bi"(y2)}} = min{min{A"(x;), Bi'(y)}, min{A’(x;), Bi'(y2)}}=min{
(AXB) (X1, Y1), (AiXB)) (X2, Y2)}. Therefore, (AxBi) [(X1, y1)(Xa ¥2) 1= min{(AxBy)"(x1, Y1), (AXBi)"(X2, y2)}. Also
(AXB) (X1, Y1) + (X2, ¥2)] = (AXBi) (XitXa, Yi+yz) = max {Ai(Xi+X2), Bi (yity2)} < max{max {Ai (X)), A (X2)},
max{Bi (y1), Bi (y2)}} = max{max{A;"(x1), Bi (Y1)}, max{Ai (x2), Bi (y2)}} = max {(AixBi) (X1, Y1), (AixBi) (X2, ¥2)}-
Therefore (AxBi) (X1, Y1)+(Xz, Y2)] < max {(AxBi)) (X1, Y1), (AxBi)” (X2, ¥2)}. And (AxBi) [(X1, Y1)(X2, Y2)] =
(AXBi) (X1Xz, Y1Y2) = max{Ai (XiX2), Bi(y1y2)} < max {max{Ai (Xi), A (X2)}, max{Bi (y1), Bi (y2)}} = max{max
{AT(x1), Bi (y1)}, max {A(X2), Bi (y2)}} = max {(AxBi) (X1, Y1), (AixBi) (X2, Y2)} Therefore (AixBi) [(X1, Y1)(X2, ¥2)
] < max {(AixB;) (X1, Y1), (AixBi) (X2, ¥2)}. Hence AxB is a bipolar-valued multi fuzzy subsemiring of R;xR.

2.6 Theorem: Let A = (A", A7) be a bipolar-valued multi fuzzy subset of a semiring R and V = (V;*, V") be the
strongest bipolar-valued multi fuzzy relation of R. If A is a bipolar-valued multi fuzzy subsemiring of R, then V is a
bipolar-valued multi fuzzy subsemiring of RxR.

Proof: Suppose that A is a bipolar-valued multi fuzzy subsemiring of R. Then for any X = (X, X,) and y = (y1, ¥,) are in
RxR. We have Vi'(x+y) = Vi'[(x1, X2)*+(Y1, ¥2)] = Vi'(Xa+ys, Xa+y2) = min{A"(xg+y1), A" (Xa+y2)}2min{min{A"(x,),
A" (yn}, min {A7(x2), Ai"(y2)3} = min {min{A"(x1), A" (x2)}, min {A"(y1), A (Y2) 3} = min{Vi"(xy, X2), Vi'(ya, ¥2)} =
min{Vi"(x), Vi'(y)}. Therefore V;"(x+y) > min {V;"(x), Vi'(y)} for all x and y in RxR. And V;"(Xy) = Vi'[(Xw, X2)(Y1, Y2)
1 = Vi'(xays, Xay2) = min{Ai"(xay1), Ai'(%2y2)} = min{min {A"(x1), A"(yn)}, min {A"(x2), A" (¥2)}} = min {min
{A7(x2), A'(x2)}, min {A(y2), A'(Y2)}} = min{Vi"(xs, X2), Vi'(y1, ¥2)}= min {Vi"(x), Vi'(y)}. Therefore Vi"(xy) >
min {Vi"(X), Vi'(y)} for all x and y in RxR. Also we have V; (x+y) = Vi [(X1, X2)+(Y1, ¥2)] = Vi (Xe+Y1, Xo+Y2) = max {
A (Xaty), AT(Xaty2)} < max {max {Ai(xd), Ay}, max {Ai(x2), Ai(y2)}} = max {max{Ai (x1), A (x2)}, max{
A (Y1), A (Y2) 3= max {Vi (X, X2), Vi (Y, ¥2)} = max {Vi'(x), Vi (y)}. Therefore Vi (x+y) < max {Vi(x), Vi (y)} for
all x, y in RxR. And Vi (xy) = Vi [(X1, X2)(Y1, ¥2) 1 = Vi (Xay1, XaY2) = max {A; (Xoy1), A (Xay2)} < max {max {Ai (xy),
Ai (1)}, max {A(X2), A (Y2)}} = max {max {Ai (1), Ai (x2)}, max {A (Y1), A (¥2)}} = max {Vi (Xi, X2), Vi (Y1, ¥2)
T = max {Vi (x), Vi (y)}. Therefore Vi (xy) < max {Vi (x), Vi (y)} for all x, y in RxR. This proves that V is a bipolar-
valued multi fuzzy subsemiring of RxR.

2.7 Theorem: Let A = (A;", Ai") be a bipolar valued multi fuzzy subsemiring of a semiring R. Then the pseudo bipolar
valued multi fuzzy coset (aA)? = ((a A")P, (a A)P) is a bipolar valued multi fuzzy subsemiring of the semiring R, for
everyainRand pinP.

Proof: Let A be a bipolar valued multi fuzzy subsemiring of the semiring R. For every x and y in R, we have
(@A) (x+y) = p@AI(x+y) = p(a) min {A"(x), A"(Y)} = min{p(@)Ai"(x), p()AI"(Y)}= min{(a A")(x), (a A)(V)}-
Therefore (aA;")P(x+y) > min {(aA;")"(x), (@A;)P(y)} for x and y in R. And (aA;")"(xy) = p(a)A;"(xy) > p(a) min{A;"(x),
A (y)}= min{p(@)Ai*(x), p@AI"(Y)}= min{(@Ai")’(x), (@A")(y)}. Therefore (aA;")°(xy) > min{(aA")"(x), (aA")"(y)}
for x and y in R. Also (aA)°(x+y) = p()Ai (x+y) < p(a) max {A(x), A (y)} = max {p(a)Ai (x), p(@)Ai ()} = max {
(@A)PX), (@A)P(Y)}. Therefore (@A) (x+y) < max{(aA)"(x), (@A )°(y)} for x and y in R. And (aA)’(xy) =
@A (xy) < p(a) max {A7(x), A (Y)} = max{p(a)A (x), p@)A (y) }= max{(aAi)’(x), (aA")"(y)}. Therefore
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(@A)P(xy) < max{(aA)P(x), (aA)P(y)} for x and y in R. Hence (aA)P is a bipolar valued multi fuzzy subsemiring of
the semiring R.

2.8 Theorem: If A = (A", Ai") is a bipolar valued multi fuzzy subsemiring of a semiring R, then 2(A) = (?A;", ?A; ) is a
bipolar valued multi fuzzy subsemiring of R.

Proof: For every x and y in R, we have ?A;" (x+y) = min {%, A" (x+y)} = min {¥, min {A"(X), A" (y)}}= min{min{%,
AT} min {4, AT (Y)}} = min{?2A7(X), ?A*(y)}. Therefore 2A;"(x+y) > min{?A;"(x), ?A;*(y)} for all x and y in R.
Also 2A;"(xy) = min {¥, A" (xy)} = min{%, min {A(x), A"(Y)}} = min {min {¥, A*(X) }, min{%, A" (y)}}= min{
2A7(X), 2A7 (Y)}. Therefore 2A;"(xy) = min {?A"(x), ?A"(y)} for all x and y in R. And 2A; (x+y) = max {-%, A (x+y)
} < max {-%2, max {Ai(x), A7 (Y)}}= max { max {2, A7 (x)}, max { %2, A (y)}} = max {?Ai(x), ?A (V)}
Therefore ?A; (x+y) < max {?A; (X), ?A; (y)} for all xand y in R. Also ?A;"(xy) = max {-%, A (xy)} < max {-%, max
{AT(X), Ay (}} = max {max {-%, A7 (X)}, max {-%, A (Y)} = max {?A; (X), ?A; (y)}. Therefore ?A; (xy) <
max{?A; (X), ?A; (y)} for all x and y in R. Hence ?A is a bipolar-valued multi fuzzy subsemiring of R.

2.9 Theorem: If A = (A", A7) is a bipolar-valued multi fuzzy subsemiring of a semiring R, then !(A) = /A", 1A Yis a
bipolar-valued multi fuzzy subsemiring of R.

Proof: For every x and y in R, we have !A;"(x+y) = max {¥%, A (x+y)} > max {¥, min {A;"(X), A" (y)}}= min {max{
Yo, AT (X)} max{¥, A (Y)}}= min {!A"(X), 'A*(y)}. Therefore |A;*(x+y) = min{!A;"(X), !A*(y)} for all x and y in R.
And A (xy) = max {¥%, A" (xy) 3= max{%, min {A;"(X), A" (Y)}}= min {max {¥, A" (X)}, max {%, A'(y)}} = min
{IA"(X), 'A"(Y)}. Therefore |A(xy) = min {IA;"(X), !A(y)} for all x and y in R. Also !A; (x+y) = min{-Y2, A; (X+y)
3 min{—%, max{Ai (X), A (V)}}= max{min{-%, A (X)}, min{-%, A (¥)}} = max{!Ai (x), !A(y)}. Therefore
TAT(x+y) < max {!A7(X), !A(y)} for all x and y in R. And A" (xy) = min {-%, A (xy) } < min {-%, max {A; (X),
A ()3} = max{min {2, Ai"(x) }, min {-%2, A (y)}}= max {!A;7 (x), A ()}

Therefore A" (xy) < max {!A; (x), !Ai(y)} for all x and y in R. Hence !A is a bipolar-valued multi fuzzy subsemiring
of R.

2.10 Theorem: If A= (A", A7) is a bipolar-valued multi fuzzy subsemiring of a semiring R, then Q, (A) = ( Q. s(A)",
Q. p(Ai) ") is a bipolar-valued multi fuzzy subsemiring of R.

Proof: For every x and y in R, @ in [0, 1] and B in [-1, O], we have Q, s(A)'(x+y) = min {o, A(X+y) }>
min {o, min{A;"(x), A"(Y)}} = min {min{a, A(x)}, min {o, A"(y)}}= min{Qq, s(A)"(X), Qq, s(A)(¥)}. Therefore Q,
s(A) (x+y) = min{Qq, s(A) (%), Qq p(A)(y)} for all x and y in R. And Q,, s(A)"(xy) = min{a, A;"(xy)} = min {a, min{
A(X), A"(Y)}} = min {min{a, A"(x)}, min {o, A"(Y)}} = min {Qq, 5(A)"(X), Qu. s(A)(y)}. Therefore Q,, g(A)"(xy) >
min{Q,, s(A)"(X), Qo p(A)"(¥)} for all x and y in R. Also Q, s(A) (x+y) = max {B, Aj (x+y)} < max {B, max {A;(X),
A ()} } = max{max {B, A (x)}, max{B, Ai (Y)}} = max{Q, s(A) (X), Qu p(A) (y) }. Therefore Q, s(A) (x+y) < max
{ Qu, s(A) (%), Qo p(A) (y) } for all x, y in R. And Q,, 5(Ai) (xy) = max {B, Ai (xy) }< max {B, max {Ai (x), Ai (¥)}} =
max {max {B, Ay (x)}, max{B, Ai (y)}}= max{Q,, s(A) (X), Qu s(A) (¥)}. Therefore Q, s(Ai)"(xy) < max{Q, s(Ai) (X),
Qo s(Ai) (y)} for all x and y in R. Hence Q, g(A) is a bipolar-valued multi fuzzy subsemiring of R.

2.11 Theorem: If A = (A", A7) is a bipolar-valued multi fuzzy subsemiring of a semiring R, then P, 5(A) = (P, p(A)",
P.p(A)") is a bipolar-valued multi fuzzy subsemiring of R.

Proof: For every x and y in R, a in [0, 1] and B in [-1, O], we have P, s(A) (x+y) = max {0, A;"(X+y) } > max {a, min
{A(¥), A"(Y)}} = min {max {o, A"(x)}, max {a, A"(y)}} = min{P, s(A)"(X), Po, s(A)"(y)}. Therefore P, s(A)"(x+y)
> min {P,, s(A)*(X), P, s(A) (y)} for all x and y in R. And P, (A)"(xy) = max{a, A"(Xy) } = max{a, min {A;"(X),
AT ()} = min {max {a, A"(x) }, max { a, Ai"(y) }} = min { P, s(A)"(X), Py, s(A)"(y) }. Therefore P, (A)"(xy) >
min {P,, s(A)(X), Po, s(A) (Y)} for all x and y in R. Also P, (A) (X+y) = min {B, Ai (x+y)} < min {B, max {A;(X),
Ai(y) }} = max {min {f, A7 (x)}, min {B, Ai (y)}} = max {Pq, s(A) (X), Ps, s(A) (¥)}. Therefore P, s(A) (x+y) <
max{P,, s(Ai) (X), Py, p(A)(y)} for all x and y in R. And P, (A) (xy) = min{B, A (xy)} < min{B, max{A;(X),
A (y)}}= max{min{p, A/ (x)}, min{p, A (y)}}= max{Pq, s(A) (X), Pq, s(A) (y)}. Therefore Py o(A) (xy) < max{P,,
s(A)(X), Pq, s(A)(y) } for all xand y in R. Hence P,  (A) is a bipolar-valued multi fuzzy subsemiring of R.

2.12 Theorem: If A= (A", A7) is a bipolar-valued multi fuzzy subsemiring of a semiring R, then G, (A) = ( G, s(A)",
G, s(Ai)" ) is a bipolar-valued multi fuzzy subsemiring of R.
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Proof: For every xand y in R, ain [0, 1] and B in [-1, 0], we have G, s(A)"(X+y) = o A" (X+Y) > a (min{A;"(X), A" (Y)
} = min {oA"(x), aA"(Y)} = min {G,, s(A)'(X), G, p(A)(Y)}. Therefore G, s(A) (x+y) > min {G, s(A)"(X),
G, p(A)(y)} for all xand y in R. And G, s(A) (xy) = a Ai"(xy) = a (min {A"(X), A"(Y)}) = min{a A'(x), o A" (Y)} =
min

{G., p(A)'(X), Gy, p(A) (Y)}. Therefore G, p(A)(xy) = min{G, s(A)*(X), G, p(A) (Y)} for all x and y in R. Also
Ga, p(A) (xty) = B A (x+y) < B (max{Ai(x), A (y)}) = max {-B A7 (x), -B A7 (Y)} = max{G,, s(A) (X),
G, s(A) (V)}. Therefore G, g(A) (Xx+y) < max {G,, s(A) (X), Gq, s(A) (y)} for all x and y in R. And G, s(A) (xy) =
—B A (xy) < -B (max {Ai(x), A (Y)}) = max{-B A (x), B A (Y)} = max{G,, s(A) (X), Gq, s(A) (y)}. Therefore
Gy, p(A) (xy) < max{G,, s(A) (X), G, s(Ai) (y)} for all x and y in R. Hence G, g (A) is a bipolar-valued multi fuzzy
subsemiring of R.

2.13 Theorem: If A and B are bipolar-valued multi fuzzy subsemirings of a semiring R, then !(AMB) = !(A) MI(B) is
also a bipolar-valued multi fuzzy subsemiring of R.

Proof: By Theorem 2.3 and 2.9, it is true.

2.14 Theorem: If A and B are bipolar-valued multi fuzzy subsemirings of a semiring R, then ?(AMB) = ?(A) M ?(B) is
also a bipolar-valued multi fuzzy subsemiring of R.

Proof: By Theorem 2.3 and 2.8, it is true.

2.15 Theorem: If A is a bipolar-valued multi fuzzy subsemiring of a semiring R, then!(?(A)) = ?(!(A)) is also a bipolar-
valued multi fuzzy subsemiring of R.

Proof: By Theorem 2.8 and 2.9, it is true.

2.16 Theorem: If A and B are bipolar-valued multi fuzzy subsemirings of a semiring R, then P, s(AMB)= P, (A) M P,
p(B) is also a bipolar-valued multi fuzzy subsemiring of R.

Proof: By Theorem 2.3 and 2.11, it is true.

2.17 Theorem: If A and B are bipolar-valued multi fuzzy subsemirings of a semiring R, then Q,s(AMB) = Q,(A) M
Q, 3(B) is also a bipolar-valued multi fuzzy subsemiring of R.

Proof: By Theorem 2.3 and 2.10, it is true.

2.18 Theorem: If A is a bipolar-valued multi fuzzy subsemiring of a semiring R, then P, 3(Qq, s(A)) = Qq, ( Po, p(A)) is
also a bipolar-valued multi fuzzy subsemiring of R.

Proof: By Theorem 2.10 and 2.11, it is true.

2.19 Theorem: If A and B are bipolar-valued multi fuzzy subsemirings of a semiring R, then G, s(ArMB) = G, 4(A) N
G,, 3(B) is also a bipolar-valued multi fuzzy subsemiring of R.

Proof: By Theorem 2.3 and 2.12, it is true.
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