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ABSTRACT 
The aim of this paper is to introduce the concept of µp𝒈𝒈� closed and open set and to introduce the µp𝒈𝒈�  continuous 
map and their relations. Various properties and characterizations of µp𝒈𝒈�  continuous map and study their basic 
properties in topological spaces. 
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1. INTRODUCTION 
 
In 2000, M. K. R. S. Veera kumar introduced the concept of µp – closed sets in topological spaces. Later he introduced  
𝒈𝒈� closed sets in topological spaces. In this paper I introduce the some properties of µp𝒈𝒈�  closed set and continuity in 
topological spaces. 
 
2. PRELIMINARIES 
 
Definition 2.1: A subset A of X is called generalized closed (briefly g-closed) [3]set if 𝑐𝑐𝑐𝑐(𝐴𝐴) ⊆ 𝑈𝑈  whenever             
𝐴𝐴 ⊆ 𝑈𝑈  𝑎𝑎𝑎𝑎𝑎𝑎 𝑈𝑈 𝑖𝑖𝑖𝑖 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜  in X 
 
Definition 2.2: A subset A of X is called regular open(briefly r-open) [5] set if 𝐴𝐴 = 𝑖𝑖𝑖𝑖𝑖𝑖�𝑐𝑐𝑐𝑐(𝐴𝐴)�  and regular 
closed(briefly r-closed) set if 𝐴𝐴 = 𝑐𝑐𝑐𝑐�𝑖𝑖𝑖𝑖𝑖𝑖(𝐴𝐴)�. 
 
Definition 2.3: A subset A of X is called pre-open [7] set if 𝐴𝐴 ⊆ 𝑖𝑖𝑖𝑖𝑖𝑖�𝑐𝑐𝑐𝑐(𝐴𝐴)� and pre-closed set if  𝑐𝑐𝑐𝑐�𝑖𝑖𝑖𝑖𝑖𝑖(𝐴𝐴)� ⊆ 𝐴𝐴 
 
Definition 2.4: A subset A of X is called 𝛼𝛼 − 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 [8] if 𝐴𝐴 ⊆ 𝑖𝑖𝑖𝑖𝑖𝑖(𝑐𝑐𝑐𝑐(𝑖𝑖𝑖𝑖𝑖𝑖(𝐴𝐴))) 𝑎𝑎𝑎𝑎𝑎𝑎 𝛼𝛼 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 if 𝑐𝑐𝑐𝑐(𝑖𝑖𝑖𝑖𝑖𝑖�𝑐𝑐𝑐𝑐(𝐴𝐴)�) ⊆ 𝐴𝐴. 
 
Definition 2.5: A subset A of X is called θ-closed [13] if A= clθ (A), where clθ (A)={x∈ 𝑋𝑋: 𝑐𝑐𝑐𝑐(𝑈𝑈) ∩ 𝐴𝐴 ≠ 𝑈𝑈 ∈ 𝜏𝜏}. 
 
Definition 2.6: A subset A of X is called 𝛿𝛿- closed [13]  if A=clδ(A),where clδ(A)=𝑥𝑥 ∈ 𝑋𝑋: 𝑖𝑖𝑖𝑖𝑖𝑖(𝑐𝑐𝑐𝑐(𝑈𝑈)) ∩ 𝐴𝐴 ≠ 𝑈𝑈 ∈ 𝜏𝜏} 
 
Definition 2.7:A subset A of X is called 𝛿𝛿-generalized closed (briefly 𝛿𝛿-g-closed) [12] if clδ(A)⊆U whenever A⊆ 𝑈𝑈 
and U is  open in X. 
 
Definition 2.8: A subset A of X is called 𝑔𝑔𝑔𝑔⋆ closed set [6] if 𝜶𝜶cl(A)⊆ 𝑖𝑖𝑖𝑖𝑖𝑖( 𝑈𝑈), whenever A⊆ 𝑈𝑈 and U is  𝜶𝜶  open in 
X. 
 
Definition 2.9: A subset A of X is called  𝒈𝒈�  closed set [15] if cl(A)⊆ 𝑈𝑈, whenever A⊆ 𝑈𝑈 and U is  semi  open in X. 
 
Definition 2.10: A subset A of X is called  𝑔𝑔⋆  closed set [14] if cl(A)⊆ 𝑈𝑈,  whenever A⊆ 𝑈𝑈 and U is 𝒈𝒈 open in X. 
 
Definition 2.11: A subset A of X is called  gr  closed set [10] if rcl(A)⊆ 𝑈𝑈,  whenever A⊆ 𝑈𝑈 and U is open in X. 
 
Definition 2.12: A subset A of X is called midly g closed set [9] if cl(int(A)) ⊆ 𝑈𝑈,  whenever A⊆ 𝑈𝑈 and U is 𝒈𝒈 open in 
X. 
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Definition 2.13: A subset A of X is called * g  closed set [17s] if cl(A)⊆ 𝑈𝑈,  whenever A⊆ 𝑈𝑈 and U is 𝒈𝒈  open in X. 
 
Definition 2.14: A subset A of X is called µp   closed set[16] if pcl(A)⊆  𝑈𝑈, whenever A⊆ 𝑈𝑈 and U is  𝑔𝑔𝑔𝑔⋆  open in X. 
 
𝟑𝟑.𝑶𝑶𝑶𝑶  µ𝐩𝐩𝒈𝒈� Closed set  
 
Definition 3.1: A subset A of a topological space (X,𝜏𝜏) is called µp𝒈𝒈� closed set  if  µpcl(A)⊆  𝑈𝑈, whenever A⊆ 𝑈𝑈 and 
U is 𝒈𝒈�  open in X. 
 
Theorem 3.2: Every closed set is µp𝒈𝒈� closed set, but not conversely. 
 
Proof: Let A be closed set such that A⊆ 𝑈𝑈 and  U is 𝒈𝒈�  open set .  Every closed set is µp  closed set. A= Cl (A)⊆ 𝑈𝑈 ⇒
µpcl(A)⊆ 𝑈𝑈. Hence µpcl (A)⊆ 𝑈𝑈, whenever A⊆ 𝑈𝑈and U is 𝒈𝒈� open. Therefore A is µp𝒈𝒈� closed set. 
 
Example 3.3: Let X={a, b, c, d}, 𝜏𝜏={X,𝜙𝜙 , {a},{b},{a,b},{a,b,c}} here A={c} is  µp𝒈𝒈� closed but not closed set in X. 
 
Theorem 3.4: Every midly g closed set is µp𝒈𝒈� closed set. 
 
Proof: Let A be midly g closed set such that cl (int (A)) ⊆  𝑈𝑈 whenever A⊆ 𝑈𝑈 and U is g open. A = cl (int (A)) ⊆ 
cl (𝐴𝐴) ⊆  𝑈𝑈  ⇒   µpcl(A)⊆  𝑈𝑈 . Every  g open set is  𝒈𝒈� open. Therefore A is µp𝒈𝒈� closed set. 
 
Theorem 3.5: Every g closed set is  µ𝐩𝐩𝒈𝒈� closed set, but not conversely. 
 
Proof: Let A be g closed set such that cl (A) ⊆U, whenever A⊆U and U is open. Then cl(A) ⊆ 𝑈𝑈 ⇒  µ𝐩𝐩𝒄𝒄𝒄𝒄(𝑨𝑨) ⊆ 𝑈𝑈. 
Every open set is  𝒈𝒈�   open.  Therefore A is µ𝐩𝐩𝒈𝒈� closed set. 
 
Example 3.6: Let X={a, b, c, d} ,𝜏𝜏={X,𝜙𝜙,{a},{b},{a,b},{a,b,c}}. Let A={c} is µ𝐩𝐩𝒈𝒈� closed but not g closed set in X. 
 
Theorem 3.7: Every g* closed set is µ𝐩𝐩𝒈𝒈� closed set, but not conversely. 
 
Proof: Let A be g* closed set. Every g* closed set is g closed. By theorem 3.5, therefore A is µp𝒈𝒈� closed set. 
 
Example 3.8: Let X={a, b, c, d}, 𝜏𝜏 = {X,𝜙𝜙,{a},{b},{a,b},{a,b,c}}. Let A={c} is µp𝒈𝒈� closed but not g* closed set in X. 
 
Theorem 3.9: Every gr closed set is  µ𝐩𝐩𝒈𝒈� closed set, but not conversely. 
 
Proof: Let A be gr closed set. Every gr closed set is g closed. By theorem 3.5, A is µp𝒈𝒈� closed set. 
 
Example 3.10: Let X={a, b, c, d} ,𝜏𝜏={X,𝜙𝜙,{a},{b},{a,b},{a,b,c}}. Let A={c} is  µ𝐩𝐩𝒈𝒈� closed but not gr closed set in X. 
 
Theorem 3.11: Every *g closed set is µ𝐩𝐩𝒈𝒈�  closed set, but not conversely. 
 
Proof: Let A be *g closed set such that cl(A)) ⊆U, whenever A⊆U and U is  𝒈𝒈�  open. Then cl(A) ⊆ 𝑈𝑈 ⇒ µ𝐩𝐩cl(A) ⊆ U. 
Therefore A is µ𝐩𝐩𝒈𝒈� closed set. 
 
Example 3.12: Let X={a, b, c, d} ,𝜏𝜏={X,𝜙𝜙,{a},{b},{a,b},{a,b,c}}. Let A={c} is  µ𝐩𝐩𝒈𝒈� closed but not * g closed set in 
X. 
 
Theorem 3.13: Every regular closed set is µ𝐩𝐩𝒈𝒈� closed, but not conversely. 
 
Proof: Let A be a regular closed set, such that A⊆ 𝑈𝑈 and U is 𝒈𝒈�open set, Every regular closed set is closed. By 
theorem 3.2 A is µ𝐩𝐩𝒈𝒈� closed set. 
 
Example 3.14: Let  X={a ,b, c, d} ,𝜏𝜏={X,𝜙𝜙,{a},{b},{a,b},{a,b,c}}.Let A={a, b, d} is  µ𝐩𝐩𝒈𝒈� closed  but not regular 
closed. 
 
Remark: Every θ-closed and 𝛿𝛿- closed is closed. Therefore every θ-closed and 𝛿𝛿- closed is µ𝐩𝐩𝒈𝒈� closed 
 
Theorem 3.15: The Union of two  µ𝐩𝐩𝒈𝒈�  closed subsets of X is also an  µ𝐩𝐩𝒈𝒈� closed subsets of X. 
 
Proof: Assume that A and B are  µ𝐩𝐩𝒈𝒈�  closed sets in X, such that A⊂ 𝑈𝑈 and B⊂ 𝑈𝑈and U is 𝒈𝒈�  open. Since A and B are 
 µ𝐩𝐩𝒈𝒈�   closed set, therefore  µ𝐩𝐩cl(A)⊂ 𝑈𝑈 and  µ𝐩𝐩cl(B)⊂ U. Hence  µ𝐩𝐩cl(A∪B)=  µ𝐩𝐩cl(A) ∪  µ𝐩𝐩cl(B)⊂U.That is A∪B is 
 µ𝐩𝐩𝒈𝒈�  closed set. 
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Theorem 3.16: The intersection of two  µ𝐩𝐩𝒈𝒈�  closed subsets of X is also an  µ𝐩𝐩𝒈𝒈�  closed subsets of X. 
 
Proof: Assume that A and B are  µ𝐩𝐩𝒈𝒈�  closed sets in X, such that A⊂ 𝑈𝑈 and B⊂ 𝑈𝑈and U is  𝒈𝒈�  open. Since A and B are 
µ𝐩𝐩𝒈𝒈�  closed set, therefore  µ𝐩𝐩cl(A)⊂ 𝑈𝑈 and  µ𝐩𝐩cl(B)⊂ U. Hence  µ𝐩𝐩cl(A∩B)=  µ𝐩𝐩 cl(A)∩  µ𝐩𝐩cl(B)⊂U.That is A∩B is 
µ𝐩𝐩𝒈𝒈�  closed set. 
 
Theorem 3.17: Let A⊆ B⊆ µ𝐩𝐩cl(A) and A is a µ𝐩𝐩𝒈𝒈� closed subset of (X,𝜏𝜏) then B is also a µ𝐩𝐩𝒈𝒈� closed subset of  
(X,𝜏𝜏). 
 
Proof: Since A is a µ𝐩𝐩𝒈𝒈�  closed subset of (X,𝜏𝜏), So µ𝐩𝐩cl(A) ⊆ U,whenever A ⊆ U, U is 𝒈𝒈�  open subset of X. Let         
A⊆ B⊆ µ𝐩𝐩cl(A). That is µ𝐩𝐩cl(A)= µ𝐩𝐩cl(B).Let if possible there exists an 𝒈𝒈�  open subset V of X such that B ⊆ V.So 
A ⊆ V and A being µ𝐩𝐩𝒈𝒈� closed subset of X, µ𝐩𝐩 cl(A) ⊆ V. That is µ𝐩𝐩cl(B) ⊆ V. Hence B is also a µ𝐩𝐩𝒈𝒈� closed subset 
of X. 
 
Theorem 3.18: Let A⊆ B⊆X, where B is 𝒈𝒈� open in X. If A is µ𝐩𝐩𝒈𝒈� closed in X, then A is µ𝐩𝐩𝒈𝒈� closed in B. 
 
Proof: Let A ⊆ U, where U is 𝒈𝒈� open set of X. Since U=V∩B, for Some 𝒈𝒈�  open set V of X and  B is 𝒈𝒈� open in X. 
Using assumption A is µ𝐩𝐩𝒈𝒈�  closed in X. We have µ𝐩𝐩cl(A)⊆U and so µ𝐩𝐩cl(A)=cl(A)∩B ⊆ U∩B ⊆ U. Hence A is 
µ𝐩𝐩𝒈𝒈� closed in B. 
 
Theorem 3.19: A subset A of X is µ𝐩𝐩𝒈𝒈� closed sets iff µ𝐩𝐩cl(A) ∩ Ac contains no non-zero closed set in X. 
 
Proof: Let A be a µ𝐩𝐩𝒈𝒈� closed subset of X. Also if possible let M be closed subset of X such that M ⊆ µ𝐩𝐩 cl(A) ∩ Ac. 
That is M ⊆ µ𝐩𝐩cl(A) and M ⊆ Ac. Since M is a closed subset of X, Mc is an open subset of X ⊆ A, and A being µ𝐩𝐩𝒈𝒈� 
open subset of X, µ𝐩𝐩cl(A) ⊆ Mc. But M⊆ µ𝐩𝐩cl(A).So we get a contradiction. Therefore M=∅. So the condition is true. 
Conversely, let A ⊆ N, and N is a open subset of X. Then Nc ⊆Ac, And Nc is a closed subset of X. Let if possible 
µ𝐩𝐩cl(A) ⊆ N .Then µ𝐩𝐩cl(A) ∩ Nc is a nonzero closed subset of µ𝐩𝐩cl(A) ∩ Ac, which is a contradiction .Hence A is a 
µ𝐩𝐩𝒈𝒈� closed subset of X. 
 
Theorem3.20: A subset A of X is µ𝐩𝐩𝒈𝒈�  closed set in X iff µ𝐩𝐩cl(A)-A contain no non-empty 𝒈𝒈 �  closed set in X. 
 
Proof: Suppose that F is a non-empty 𝒈𝒈�  closed subset if µ𝐩𝐩cl(A)-A. Now F ⊆ µ𝐩𝐩cl(A)-A. Then F ⊆ µ𝐩𝐩cl(A) ∩ Ac. 
Therefore F⊆  Ac. Since Fc is  𝒈𝒈�  open set and A is µ𝐩𝐩𝒈𝒈�  closed, µ𝐩𝐩 cl(A )  ⊆  Fc. That is F⊆ µ𝐩𝐩 cl(A)c. Hence                  
F⊆ µ𝐩𝐩cl(A) ∩[µ𝐩𝐩cl(A)]c=∅. That is F=∅. Thus µ𝐩𝐩cl(A)-A contains no non empty 𝒈𝒈� closed set. Conversely assume that 
µ𝐩𝐩cl(A)-A contains no nonempty 𝒈𝒈� closed set. Let A ⊆ U, U is 𝒈𝒈�  open. Suppose that µ𝐩𝐩cl(A) is not contained in U. 
Then µ𝐩𝐩 cl(A)  ∩  Uc is a non-empty 𝒈𝒈�  closed set and contained in  µ𝐩𝐩 cl(A)-A, which is a contradiction. 
Therefore µ𝐩𝐩cl(A) ⊆ U and hence A is µ𝐩𝐩𝒈𝒈� closed set. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
4. On µ𝐩𝐩𝒈𝒈� open set 
 
Definition 4.1: A subset A of a topological space X is called µ𝐩𝐩𝒈𝒈� open sets if Ac is µ𝐩𝐩𝒈𝒈�  closed. 
 
Theorem 4.2: A subset A of a topological space (X,𝜏𝜏) is µ𝐩𝐩𝒈𝒈� open if and only if B ⊆ µ𝐩𝐩 int(A) whenever B is 𝒈𝒈�  
closed in X and B⊆A. 
 
 

Regular closed 

𝛿𝛿 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 

𝛿𝛿𝛿𝛿 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 

      gr closed 

     g closed 𝑔𝑔∗  closed Midly  g  closed 

𝜃𝜃 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 

          closed 
𝜇𝜇𝜇𝜇𝑔𝑔�  𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 
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Proof: Necessity: Suppose B ⊆  µ𝐩𝐩 (int(A)) where B is 𝒈𝒈� closed in (X,𝜏𝜏) and B⊆A. Let Ac ⊆M where M is  𝒈𝒈�  open. 
Hence Mc  ⊆A, where Mc is 𝒈𝒈�  closed. Hence by assumption Mc  ⊆ µ𝐩𝐩  (int(A)) which implies( µ𝐩𝐩 (int(A)))c  ⊆M. 
Therefore µ𝐩𝐩 (cl(Ac))  ⊆M. Thus Ac is µ𝐩𝐩𝒈𝒈� closed, implies A is µ𝐩𝐩𝒈𝒈� open. 
 
Sufficiency: Let A is µ𝐩𝐩𝒈𝒈� open in X with N ⊆A, Where N is 𝒈𝒈� closed. We have Ac is µ𝐩𝐩𝒈𝒈� closed with Ac⊆Nc where 
Nc is  𝒈𝒈� open. Then we have µ𝐩𝐩 (cl(Ac)) ⊆Nc implies N⊆X- µ𝐩𝐩 (cl(Ac))= µ𝐩𝐩 (int(X-Ac))= µ𝐩𝐩 (int(A)) 
 
Theorem 4.3: If µ𝐩𝐩 (int(A))  ⊆B ⊆A  and A is µ𝐩𝐩𝒈𝒈� open subset of (X,𝜏𝜏) then B is also µ𝐩𝐩𝒈𝒈� open subset of (X,𝜏𝜏). 
 
Proof: Let µ𝐩𝐩  (int(A))  ⊆B  ⊆A implies Ac  ⊆Bc  ⊆  µ𝐩𝐩  (cl(Ac)). Given Ac isµ𝐩𝐩𝒈𝒈� closed. By theorem 3.17, Bc is 
µ𝐩𝐩𝒈𝒈�  closed. Therefore B is µ𝐩𝐩𝒈𝒈� open. 
 
Theorem 4.4: If a subset A of a topological space (X,𝜏𝜏) is µ𝐩𝐩𝒈𝒈� open in X then F=X, whenever F is regular open and 
µ𝐩𝐩 (int(A))  ⊆ 𝐴𝐴𝑐𝑐 ⊆ F. 
 
Proof: Let A be a µ𝐩𝐩𝒈𝒈�  open and F be 𝒈𝒈�   open, µ𝐩𝐩  (int(A))∪ 𝐴𝐴𝑐𝑐 ⊆  F. This gives Fc  ⊆ (X-  µ𝐩𝐩  (int(A)))∩A= µ𝐩𝐩 
(cl(Ac))  ∩A= µ𝐩𝐩 (cl(Ac))-Ac. Since Fc is  𝒈𝒈�  closed and Ac is µ𝐩𝐩𝒈𝒈� closed. By theorem 3.19, we have Fc=∅. Thus F=X. 
 
Theorem 4.5: If a subset A of a topological space (X,𝜏𝜏) is µ𝐩𝐩𝒈𝒈� closed, then µ𝐩𝐩 (cl(A))-A is µ𝐩𝐩𝒈𝒈� open. 
 
Proof: Let A⊆ 𝑋𝑋  be a µ𝐩𝐩𝒈𝒈�  closed and let F be 𝒈𝒈�   closed such that F⊆ µ𝐩𝐩 (cl(A))-A. By theorem 3.19, we have 
F=∅. So ∅ = F⊆ µ𝐩𝐩(int(µ𝐩𝐩(cl(A))-A)).Therefore µ𝐩𝐩(cl(A))-A is µ𝐩𝐩𝒈𝒈� open. 
 
Theorem 4.6:  If A and B are µ𝐩𝐩𝒈𝒈� open sets in X then A∩B is also µ𝐩𝐩𝒈𝒈� open sets in X. 
 
Proof: Let A and B be two µ𝐩𝐩𝒈𝒈� open sets in X. Then Ac and Bc are µ𝐩𝐩𝒈𝒈�  closed sets in X. By theorem3.15, Ac∪Bc is a 
µ𝐩𝐩𝒈𝒈� closed in X. That is (A∩B)c is a µ𝐩𝐩𝒈𝒈�  closed in X. Therefore (A∩B) is µ𝐩𝐩𝒈𝒈� open set in X. 
 
Theorem 4.7:If A and B are µ𝐩𝐩𝒈𝒈� open sets in X then A∪B also µ𝐩𝐩𝒈𝒈�  open set in X. 
 
Proof: Let A and B be two µ𝐩𝐩𝒈𝒈�  open sets in X. Then Ac and Bc are µ𝐩𝐩𝒈𝒈� closed sets in X. By theorem 3.16, Ac∩Bc is a 
µ𝐩𝐩𝒈𝒈� closed in X. That is (A∩B)c is a µ𝐩𝐩𝒈𝒈� closed in X. Therefore A∪B is µ𝐩𝐩𝒈𝒈�  open sets in X. 
 
Theorem 4.8: A × B  is a µ𝐩𝐩𝒈𝒈� open subset of (X ×Y,𝜏𝜏 ×  𝜎𝜎), iff A is a µ𝐩𝐩𝒈𝒈� open subset in (X,𝜏𝜏) and  B is a µ𝐩𝐩𝒈𝒈� 
open subset in (Y, 𝜎𝜎) . 
 
Proof: Let A × B be a µ𝐩𝐩𝒈𝒈� open subset of (X ×Y,𝜏𝜏 ×  𝜎𝜎). Let H be a closed subset of (X,𝜏𝜏) and G be a closed subset 
of (Y,𝜎𝜎) such that H⊆A,G⊆B.Then H×G is closed in (X ×Y,𝜏𝜏 ×  𝜎𝜎) such that H×G⊆A×B.By assumption A×B is a 
µ𝐩𝐩𝒈𝒈�  open subset of (X × Y,𝜏𝜏 ×  𝜎𝜎)  and so H× G⊆  µ𝐩𝐩  (int(A× B))  ⊆  µ𝐩𝐩  (int(A)) × µ𝐩𝐩  (int(B)).That is H⊆  µ𝐩𝐩 
(int(A)),G⊆  µ𝐩𝐩(int(B)) and hence A is a µ𝐩𝐩𝒈𝒈� open subset in (X,𝜏𝜏) and  B is a µ𝐩𝐩𝒈𝒈� open subset in (Y,𝜎𝜎).Conversely , 
let M be a closed subset of (X×Y,𝜏𝜏 ×  𝜎𝜎) such that M⊆A×B.For each (x,y) ⊆ M, cl(X) ×cl(Y) ⊆cl(M)=M⊆A × B. 
Then the two closed sets cl(X) and cl(Y) are contained in A and B respectively. By assumption cl(X) ⊆ µ𝐩𝐩 (int(A)) and 
cl(Y) ⊆  µ𝐩𝐩 (int(B)) hold. This implies that for each (x,y) ⊆M, (x,y) ⊆  µ𝐩𝐩 (int(A×B)).Thus AxB is a µ𝐩𝐩𝒈𝒈� open subset 
of (X ×Y,𝜏𝜏 ×  𝜎𝜎). 
 
5. On  µ𝐩𝐩𝒈𝒈�  continuity 
 
Definition 5.1: A map f: (X,𝜏𝜏) → (Y,𝜎𝜎) is called 

1. Continuous [3] if f-1(V) is closed subset in (X,𝜏𝜏) for every closed subset V in (Y,𝜎𝜎). 
2. Midly g continuous [9] if f-1(V) is midly g closed subset in (X,𝜏𝜏) for every closed subset V in (Y,𝜎𝜎). 
3. g continuous [2] if f-1(V) is g closed subset in (X,𝜏𝜏) for every closed subset V in (Y,𝜎𝜎). 
4. *g continuous [17] if f-1(V) is *g closed subset in (X,𝜏𝜏) for every closed subset V in (Y,𝜎𝜎). 
5. g* continuous [13] if f-1(V) is g* closed subset in (X,𝜏𝜏) for every closed subset V in (Y,𝜎𝜎). 
6. Regular continuous [1] if f-1(V) is r closed subset in (X,𝜏𝜏) for every closed subset V in (Y,𝜎𝜎). 
7. gr continuous [5]  if f-1(V) is gr closed subset in (X,𝜏𝜏) for every closed subset V in (Y,𝜎𝜎). 

 
Definition 5.2: A function f:(X,𝜏𝜏) →(Y,𝜎𝜎) is called µ𝐩𝐩𝒈𝒈� continuous  if f-1(V) is µ𝐩𝐩𝒈𝒈� closed subset of (X,𝜏𝜏) for every 
closed subset V of (Y,𝜎𝜎). 
 
Theorem 5.3: Every continuous map is µ𝐩𝐩𝒈𝒈� continuous, but not conversely. 
 
Proof: The proof follows from the fact that every closed set is µ𝐩𝐩𝒈𝒈� closed set. 
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Example 5.4: Let X=Y={a, b, c, d}, 𝜏𝜏 = {X,𝜙𝜙,{a},{b},{a,b},{a,b,c}} and 𝜎𝜎 ={X, 𝜙𝜙 ,{b},{a, b}} .define a map f : X→Y 
by f(a) = a, f(b) = c, f(c) = d, f(d) = c. This map is µ𝐩𝐩𝒈𝒈�  continuous, but not continuous. Since for the closed set             
U = { d} in Y. f -1(U) = {css} is not closed in X. 
 
Theorem 5.5: Every regular continuous map is µ𝐩𝐩𝒈𝒈� continuous, but not conversely. 
 
Proof: The proof follows from the fact that every regular closed set is µ𝐩𝐩𝒈𝒈�  closed set. 
 
Example 5.6: Let X=Y={a, b, c, d}, 𝜏𝜏 ={X,𝜙𝜙 , {a},{b},{a, b},{a, b, c}} and 𝜎𝜎 ={X,𝜙𝜙 , {b},{b, d}} .define a map f : 
X→Y by f(a) = a, f(b) = c, f(c) = d, f(d) = c. This map is µ𝐩𝐩𝒈𝒈�  continuous, but not regular continuous. Since for the 
closed set U={d} in Y. f -1(U) = {c} is not regular closed in X. 
 
Theorem 5.7: Every g continuous map is µ𝐩𝐩𝒈𝒈� continuous, but not conversely. 
 
Proof: The proof follows from the fact that every g closed set is µ𝐩𝐩𝒈𝒈�  closed set. 
 
Example 5.8: Let X=Y={a, b, c, d}, 𝜏𝜏={X,𝜙𝜙,{a},{b},{a,b},{a,b, c}} and 𝜎𝜎 ={X,𝜙𝜙, {b},{b, d}}. define a map f : X→Y 
by f(a) = b, f(b) = a, f(c) = d, f(d) = c. This map is µ𝐩𝐩𝒈𝒈� continuous, but not g continuous. Since for the closed set 
U={d} in Y. f-1(U)={c} is not g closed in X. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
Theorem 5.9: If f: X→Y is µ𝐩𝐩𝒈𝒈� continuous and g:Y→Z is continuous then their composition f∘g : X→Z is µ𝐩𝐩𝒈𝒈� 
continuous. 
 
Proof: Let f: X→Y is µ𝐩𝐩𝒈𝒈� continuous and g:Y→Z is continuous. Let U be a closed set in Z Therefore g-1(U) is closed 
in Y and f-1( g-1(U)) is µ𝐩𝐩𝒈𝒈� closed in X . ∴ f∘g is µ𝐩𝐩𝒈𝒈� continuous. 
 
Theorem 5.10: Let X and Y be topological spaces .Let f : (X,𝜏𝜏) →(Y,𝜎𝜎).Then the following are equivalent. 

(i) (i).f is µ𝐩𝐩𝒈𝒈�  continuous. 
(ii) (ii).for every subset A of X, one has f (𝐴𝐴)����� ⊂ 𝑓𝑓(𝐴𝐴).������� 
(iii) (iii).for every closed set B of Y, the set f-1(B) is closed in X. 
(iv) for each x∈ X and each neighborhood V of f(x), there is a neighborhood U of x such that f(U) ⊂ V. 

 
Proof:  
(i)⟹(ii): Assume that f is µ𝐩𝐩𝒈𝒈� continuous. Let A be a subset of X. Let V be a neighborhood of f(x), then f-1(V) is an 
open set of X containing x, it must intersect A in some point y. Then V intersects f(A) in the point f(y). So that 
f(x) ∈ 𝑓𝑓(𝐴𝐴)������ 
 
(ii)⟹(iii): Let B be closed in Y and let A=f-1(B).Prove that, A is closed in X and we show that 𝐴̅𝐴 = A. By elementary 
set theory, we have f(A)=f(f-1(A)) ⊂B, If x∈ 𝐴̅𝐴, f(x) ∈ f (𝐴𝐴)�����  ⊂  𝑓𝑓(𝐴𝐴)������  ⊂ 𝐵𝐵�=B. f(x) ∈B, so that x ∈f-1(B)=A. Thus 
𝐴̅𝐴 ⊂ 𝐴𝐴, So that 𝐴̅𝐴 = 𝐴𝐴. 
 
 
 

Regular continuous 

𝛿𝛿 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 

𝛿𝛿𝛿𝛿 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 

      gr continuous 

     g continuous 𝑔𝑔∗  continuous Midly  g continuous 

𝜃𝜃 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 

          continuous 
𝜇𝜇𝜇𝜇𝑔𝑔�  𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 
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(iii)⟹(i): Let V be an open set of Y set B=Y-V. Then f-1(B) = f-1(Y-V) = f -1(Y)-f-1(V)=X-f1(V). Now B is a closed set 
of Y. Then f-1(B) is closed in X by hypothesis so that f-1(V) is open in X. 
 
(i)⟹(iv): Let x∈X and let V be a neighborhood of f(x). Then the set U= f -1(V) is a neighborhood of x such that            
f (U) ⊂V. 
 
(iv)⟹(i): Let V be an open set of Y. Let x be a point of f-1(V).Then f(x) ∈V, so that by hypothesis there is a 
neighborhood Ux of x such that f(Ux)  ⊂V. Then Ux  ⊂ f-1(V), and hence f1(V) =⋃ Ux𝑥𝑥∈f−1(V) .Therefore f is 
continuous⟹f is µ𝐩𝐩𝒈𝒈�  continuous. 
 
Theorem 5.16: Let X=A∪ B, where A and B are closed in X. Let f : A→ Y and g : B→ Y be continuous. If f(x) = g(x) 
for every x∈ A ∩ B then f and g combine to give a µ𝐩𝐩𝒈𝒈�  continuous function h: X→Y defined by setting h(x) = f(x) if 
x ∈ A, and h(x) = g(X) if x ∈ B. 
 
Proof: Let c be a closed subset of Y. Now h-1(c)= f-1(c) ∪g-1(c).Since f is continuous, f -1(c) is closed in A and therefore 
closed in X. Similarly g-1(c) is closed in B and therefore closed in X. Their union h-1(c) is also closed in X. Therefore h 
is continuous. By theorem 5.3, h is µ𝐩𝐩𝒈𝒈� continuous.  
 
Theorem 5.17: A function f: (X,𝜏𝜏) → (Y,𝜎𝜎) from a topological space X into a topological space Y is µ𝐩𝐩𝒈𝒈�  continuous 
if and only if  f-1(V) is µ𝐩𝐩𝒈𝒈� open set in X for every open set V in Y 
 
Proof: It is obvious 
 
Theorem 5.18: Let f: (X,𝜏𝜏) → (Y,𝜎𝜎)  be a function from a topological space X into a topological space Y. If                  
f: (X,𝜏𝜏) → (Y,𝜎𝜎)is continuous then f(µ𝐩𝐩𝒈𝒈�cl(A))⊆ 𝑐𝑐𝑐𝑐(𝑓𝑓(𝐴𝐴) for every open subset A of X. 
 
Proof: Since 𝑓𝑓(𝐴𝐴) ⊆ 𝑐𝑐𝑐𝑐(𝑓𝑓(𝐴𝐴) ⇒ 𝐴𝐴 ⊆ f--1(𝑐𝑐𝑐𝑐(𝑓𝑓(𝐴𝐴))). Since 𝑐𝑐𝑐𝑐(𝑓𝑓(𝐴𝐴) is closed set in Y and f is µ𝐩𝐩𝒈𝒈�  continuous, then f-

1(𝑐𝑐𝑐𝑐(𝑓𝑓(𝐴𝐴))) is a µ𝐩𝐩𝒈𝒈� closed set in X containing A. Hence µ𝐩𝐩𝒈𝒈�cl(A))⊆ f- - 1 (𝑐𝑐𝑐𝑐(𝑓𝑓(𝐴𝐴))). Therefore f(µ𝐩𝐩𝒈𝒈�cl(A))⊆ 𝑐𝑐𝑐𝑐(𝑓𝑓(𝐴𝐴) 
 
Theorem 5.19: Let f: (X,𝜏𝜏) → (Y,𝜎𝜎)be a function from a topological space X into a topological space Y. Then the 
following statements are equivalent. 

(i) For each point x in X  and each open set V in Y with f(x)∈V, there is a µ𝐩𝐩𝒈𝒈� open set U in X such that x∈U and 
f(U)⊆ 𝑉𝑉 

(ii) For each subset A of x, 𝑓𝑓(µ𝐩𝐩𝒈𝒈�cl(A)) ⊆ 𝑐𝑐𝑐𝑐(𝑓𝑓(𝐴𝐴) 
(iii) For each subset B of y, µ𝐩𝐩𝒈𝒈�cl(f-1(B)) ⊆f-1(cl(B)) 

 
Proof:  
(i)  ⇒  (ii): Suppose that (i) holds and let y  ∈ f ( µ𝐩𝐩𝒈𝒈� cl(A)) and let V be any open neighborhood of y. Since 
y∈f(µ𝐩𝐩𝒈𝒈�cl(A)) ⇒ ∃ x∈ µ𝐩𝐩𝒈𝒈�cl(A) such that f(x) = y. Since f(x) ∈ V, then by (i) ∃ a µ𝐩𝐩𝒈𝒈� open set U  in x such that  
x∈U and f(U)⊆V. Since x∈ µ𝐩𝐩𝒈𝒈�cl(A) then for any x∈ 𝑋𝑋 x∈ µ𝐩𝐩𝒈𝒈�cl(A)if and only if U∩A≠ ∅for every µ𝐩𝐩𝒈𝒈� open set U 
containing  x, and hence f(A) ∩V≠ ∅. Therefore we have y = f(x) ∈cl(f(A)). Hence f(µ𝐩𝐩𝒈𝒈�cl(A)) ⊆cl(f(A)). 
 
(ii)  ⇒ (i): If (ii) holds and let x∈X and V be any open set in Y containing f(x). Let A=f -1(Vc)  ⇒ x∉A. Since 
f(µ𝐩𝐩𝒈𝒈�cl(A)) ⊆cl(f(A)) ⊆Vc⇒ µ𝐩𝐩𝒈𝒈�cl(A) ⊆f-1(Vc)=A. Since x∉A ⇒ x∉  µ𝐩𝐩𝒈𝒈�cl(A) then for any x∈ 𝑋𝑋, x∈ µ𝐩𝐩𝒈𝒈�cl(A)if 
and only if U∩A≠ ∅,there exists a µ𝐩𝐩𝒈𝒈� open set U containing x such that U ∩A= ∅ and hence f(U) ⊆f(Ac) ⊆V. 
 
(ii) ⇒(iii): Suppose that (ii) holds and let B be any subset of Y. Replacing A by f-1(B) we get from (ii), f(µ𝐩𝐩𝒈𝒈�cl(f-1(B)) 
⊆cl(f(f-1(B))) ⊆cl(B). Hence µ𝐩𝐩𝒈𝒈�(f-1(B)) ⊆f-1(cl(B)). 
 
(iii) ⇒(ii): Suppose that (iii) holds. Let B=f(B) where A is a subset of X. then we get from (iii) µ𝐩𝐩𝒈𝒈�cl(A) ⊆  µ𝐩𝐩𝒈𝒈�cl(f-

1(f(A)) ⊆f-1(cl(f(A)). Therefore f(µ𝐩𝐩𝒈𝒈�cl(A)) ⊆cl(f(A)). 
 
Theorem 5.20: Let f: (X,𝜏𝜏) → (Y,𝜎𝜎) be a function. Then the following are equivalent. 

(i) f is µ𝐩𝐩𝒈𝒈� continuous. 
(ii) The inverse image of each open set in Y is µ𝐩𝐩𝒈𝒈� open in X. 
(iii) The inverse image of each closed set in Y is µ𝐩𝐩𝒈𝒈�  closed in X. 

 
Proof: (i) ⇒(ii): Let G be any open set in Y. Then Y-G is closed in Y. Since f is µ𝐩𝐩𝒈𝒈�continuous, f-1(Y-G) is closed in 
X. But f-1(Y-G)=X- f-1(G) is µ𝐩𝐩𝒈𝒈� closed in X. Therefore f-1(G) is µ𝐩𝐩𝒈𝒈� open in X. 
 
(ii) ⇒ (iii) and (iii) ⇒ (i) are obvious. 
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