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ABSTRACT 
Two point boundary value problems where the interval is unknown cannot be handled by standard numerical methods. 
By using transformation the problem is brought to usual boundary value problem with interval length occurring in the 
ordinary differential equation. Two methods are used to obtain the solution of this differential equation while finding 
the interval length an extra condition is used. First method is by the application of Newton’s method to find the interval 
length and second method is Quasilinearization technique where method of finding interval length uses criteria worth 
noting for such problems. 
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INTRODUCTION 
 
This paper is concerned with the development of numerical methods to solve two point boundary value problem 
defined over [a, T] where T is unknown. If the differential equation is of nth order we need n conditions defined at both 
ends of the interval and also T is unknown.  
 
Consider, 

              
2

2 , ,d x dxf t x
dt dt
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                                                                                                                                      (1.1)                      
 

with conditions (0) ,x a= ( ) & ( ) 0dxx T b T
dt

= = . As T is unknown so usual methods for solving two point 

boundary value problems are not directly applicable. We have applied the well known Newton’s method to find T and 
its solution. We have also applied the well known Bellman’s quasilinearization technique [2] to solve this problem. We 
have presented following sections for choosing the method for solving any practical problem.  
 
SECTION-2: STANDARD BOUNDARY VALUE PROBLEM 
With the help of transformation 

1 t
T

θ = −   

the problem (1.1) takes the form  
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And the boundary conditions are    

(0) , (1) & (0) 0dxx b x a
dθ

= = =  

 
Now differentiating equation (2.2) with respect to S , we get an initial value problem, with T being unknown. 
Assuming an initial approximation for S , and next approximation is obtained by Newton’s method . 

( ) ( )
( )( )
( )( )

0
1 0

0

1,

1,

x S
S S dx S

ds

= −  

 
We apply this technique to specific problem presented in section 3. 
 
SECTION-3:  PROBLEM 
 
A problem treated in ([3],[4]) describes the motion of the mass acted upon by a force, xxe−− with x as the 
displacement at time t and which initially at origin. The problem is to find the duration of the mass to reach 0x x=  to 
be at rest. Mathematically the problem is 

2

2
xd x xe

dt
−= −                                                                                                                                                                (3.1) 

(0) 0,x = 0( ) & ( ) 0dxx T x T
dt

= =  
                           

 
The author ([3], [4]) assumed an initial approximation x  as (0)x  and developed an iterative method defined by 

( 1)nx y Sz+ = +  with  
( )ndxS

dt
=  . He then obtain two separate equations for y & z and built a sequence ( )nx .  

 
We have found that although the method is logical the solution is found to be not correct. We apply our technique to 
this problem (3.1) 
 

Differentiating (3.1) with respect to the parameter S & denoting , ,dx dx dxX X X
dS dS dS

′ ′′
′ ′′= = =
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(0) 0, (0) 0X X ′= =  

 
Assuming  (0)S S=  
 

Solve (3.1) up to 1θ =  with  (0)(1, )x S  known.   Knowing ( , )x S θ  solve (3.2) for X  to obtain (1) (1)dxX
dS

= . 

Next approximation to S is 
(0)

(1) (0)
(0)

(1, )
(1, )

x SS S
X S

= −  .  

 

Starting with 3S = , the iteration converged up to four significant digits 3.7675S =  and hence 1.9410T S= =  
as against 0.45T = given by [4]. 
 
SECTION-4: QUASILINEARIZATION TECHNIQUE   
 
Above problem is also solved by quasilinearization technique for two reasons. First finding the starting approximation 
for the quasilinearization technique satisfying all the boundary conditions is not a simple exercise. Secondly, the 
methodology involves for finding the interval length T is different and may help in tackling in some other problem. 
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The starting approximation for the problem (3.1) is found to be  

                                      
22(0)

0x x e
e
θθ − = −

  
 

satisfies all the three boundary conditions. The linearization problem by ([1], [2]) is 
2 2 (0) (0)(0) (0)( 1)2

d x x xS x e e x x
dθ

 − −= − + − 
  

                                                                                              (4.1)                       

 
0(0) , (0) 0 , (1) 0dxx x x

dθ
= = =  

 
From the linearized problem we obtain tridiagonal system of equations  

(0) (0)
2(0) (0)2 22 ( 1)1 1

x xj jx x Sh x e x Sh x ej j j j j

 − − − + − + = − − +
  

                                             (4.2)  

           
 

01, 2,3,..., 1 ( 0.5 , 0)Nwhere j N Here x x= − = = and S  is unknown. The third condition (0) 0dx
dθ

=  
through its discrete equivalent (by forward difference approximation with second order)     

1 2 04 3 0F x x x= − − =                                                                                                                                               (4.3)                                                                                                                                                                               

is used to find S . 
 
Algorithm to find S  

1. Assume SL  and SF  as two values of S between which the true value lies by the criteria (4.2). 

2. Solve the discrete analogue of the equation by using Thomas algorithm. 
3. Obtain FL  and FF  using (4.3). By the method of Bisection we find the value of S satisfying all the 

conditions of the problem and obtain the next approximation for quasilinearization technique. 
4. Go back to step 1 until convergence occur.  

 
The unknown duration T is found to be T=1.9406 when ( 0x =0.5). 
 
A summary of the numerical solutions by using above algorithm is given in following Table 1. Sample solution of 
Equation (3.1) ( )0 0.5 .x =  

Table: 1 
T 0.0000 0.0970 0.1941 0.2911 0.3881 0.4851 0.5822 0.6792 

0x  0.5000 0.4986 0.4943 0.4872 0.4772 0.4645 0.4491 0.4309 

T (Conti…) 0.7762 0 .8733 0.9703 1.0673 1.1644 1.2614 1.3584 1.4554 

0x  0.4101 0.3867 0.3609 0.3327 0.3022 0.2697 0.2352 0.1989 

T (Conti…) 1.5525 1.6495 1.7465 1.8436 1.9406 

0x  0.1611 0.1221 0.0820 0.0412 0.0000 
                                
               (Where   T- time duration, 0x -position of the mass) 
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