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ABSTRACT 
In this paper, we study some of the properties of interval valued fuzzy subsemiring of a semiring under homomorphism 
and anti-homomorphism and prove some results on these. 
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INTRODUCTION 
 
Interval valued fuzzy sets were introduced independently by Zadeh [11], Grattan-Guiness [4], Jahn [6], in the seventies, 
in the same year. An interval valued fuzzy set (IVF) is defined by an interval valued membership function. Jun.Y.B and 
Kin.K.H [7] defined an interval valued fuzzy R-subgroups of nearsemirings. Solairaju.A and Nagarajan.R [10] defined 
the charactarization of interval valued anti fuzzy Left h-ideals over hemisemirings. Azriel Rosenfeld [2] defined a fuzzy 
group. K.Murugalingam & K.Arjunan [8] defined an interval valued fuzzy subsemiring of a semiring. We introduce the 
concept of interval valued fuzzy subsemiring of a semiring under homomorphism and anti-homomorphism and 
established some results. 
 
1. PRELIRMINARIES 
 
1.1 Definition [8]: Let X be any nonempty set. A mapping [M] : X → D[0, 1] is called an interval valued fuzzy subset 
(briefly, IVFS) of X, where D[0,1] denotes the family of all closed subintervals of [0,1] and [M](x) = [M−(x), M+(x)], 
for all x in X, where M− and M+ are fuzzy subsets of X such that M−(x) ≤ M +(x), for all x in X. Thus M−(x) is an 
interval (a closed subset of [0, 1]) and not a number from the interval [0, 1] as in the case of fuzzy subset. Note that    
[0] = [0, 0] and [1] = [1, 1]. 
 
1.2 Remark [8]: Let DX be the set of all interval valued fuzzy subset of X, where D means D[0, 1].  
 
1.3 Definition: Let [A] be an interval valued fuzzy subset of X. Then the following operations are defined as 

(i) ?([A]) = {〈 x, rmin{[½, ½], [A](x)} / for all x∈X}.  
(ii) !([A) = {〈 x, rmax{[½,½], [A](x) } / for all x∈X}.  
(iii) Qα([A]) = {〈x, rmin{α, [A](x)} / for all x∈X and α in D[0, 1]}. 
(iv) Pα([A]) = {〈x, rmax{α, [A](x)} / for all x∈X and α in D[0, 1]}. 
(v) Gα([A]) = {〈x, α [A](x)}〉 / for all x∈X and α in [0, 1]}. 

 
1.4 Definition [8]: Let (R, +, ∙) be a semiring. An interval valued fuzzy subset [M] of R is said to be an interval valued 
fuzzy subsemiring of R if the following conditions are satisfied: 

(i) [M](x+y) ≥ rmin{[M](x), [M](y)}  
(ii) [M](xy) ≥ rmin {[M](x), [M](y)} for all x and y in R. 
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1.5 Definition: Let (R, +, ∙) and (R be any two semirings. Let f : R → R (∙ ,+ ,׀  be any function and [M] be an interval ׀
valued fuzzy subsemiring in R, [V] be an interval valued fuzzy subsemiring in f(R) = R׀, defined by                        

[V](y) = sup
)(1 yfx −∈

[M](x), for all x in R and y in R׀. Then [M] is called a pre-image of [V] under f and is denoted by        

f -1([V]). 
 
1.6 Definition: Let [M] be an interval valued fuzzy subsemiring of a semiring (R, +, ∙) and a in R. Then the pseudo 
interval valued fuzzy coset (a[M])p is defined by ((a[M])p )(x) = p(a)[M](x) for every x in R and for some p in P. 
 
2. SOME PROPERTIES 
 
2.1 Theorem: Let (R, +, ·) and (R׀, +, ·) be any two semirings. The homomorphic image of an interval valued fuzzy 
subsemiring of R is an interval valued fuzzy subsemiring of R׀. 
 
Proof: Let f: R→R  be a homomorphism. Let [M] be an interval valued fuzzy subsemiring of R. Let [V] be the ׀
homomorphic image of [M] under f. We have to prove that [V] is an interval valued fuzzy subsemiring of f(R) = R׀. Let 
f(x) and f(y) in R׀. Then [V](f(x) +f(y)) = [V](f(x+y)) ≥ [M](x+y) ≥ rmin{[M](x), [M](y)} which implies that            
[V](f(x)+f(y)) ≥ rmin{[V](f(x)), [V](f(y))}. And [V](f(x)f(y)) = [V](f(xy)) ≥ [M](xy) ≥ rmin {[M](x), [M](y)} which 
implies that [V](f(x)f(y)) ≥ rmin{[V](f(x)), [V](f(y))}. Hence [V] is an interval valued fuzzy subsemiring of a semiring 
R׀. 
 
2.2 Theorem: Let (R, +, ·) and (R׀, +, ·) be any two semirings. The homomorphic pre-image of an interval valued 
fuzzy subsemiring of R׀ is an interval valued fuzzy subsemiring of R. 
 
Proof: Let f: R→R׀ be a homomorphism. Let [V] be an interval valued fuzzy subsemiring of f(R) = R׀. Let [M] be the 
pre-image of [V] under f. We have to prove that [M] is an interval valued fuzzy subsemiring of R. Let x and y in R. 
Then [M](x+y) = [V](f(x+y)) = [V](f(x)+f(y)) ≥ rmin {[V](f(x)), [V](f(y))}= rmin{[M](x), [M](y)} which implies that 
[M](x+y) ≥ rmin{[M](x), [M](y)} for x and y in R. And [M](xy) = [V](f(xy)) = [V](f(x)f(y)) ≥ rmin{[V](f(x)), 
[V](f(y))} = rmin{[M](x), [M](y)} which implies that [M](xy) ≥ rmin{[M](x), [M](y)} for x and y in R. Hence [M] is 
an interval valued fuzzy subsemiring of the semiring R. 
 
2.3 Theorem: Let (R, +, ·) and (R׀, +, ·) be any two semirings. The anti-homomorphic image of an interval valued 
fuzzy subsemiring of R is an interval valued fuzzy subsemiring of R׀. 
 
Proof: Let f: R→ R  be a anti-homomorphism. Let [M] be an interval valued fuzzy subsemiring of R. Let [V] be the ׀
homomorphic image of [M] under f. We have to prove that [V] is an interval valued fuzzy subsemiring of f(R) = R׀. Let 
f(x) and f(y) in R׀. Then [V](f(x)+f(y)) = [V](f(y+x)) ≥ [M](y+x) ≥ rmin{[M](x), [M](y)} which implies that            
[V](f(x)+f(y)) ≥ rmin{[V](f(x)), [V](f(y))}. And [V](f(x)f(y)) = V(f(yx)) ≥ [M]( yx) ≥ rmin{[M](x), [M](y)} which 
implies that [V](f(x)f(y)) ≥ rmin {[V](f(x)), [V](f(y))}. Hence [V] is an interval valued fuzzy subsemiring of R'.            
 
2.4 Theorem: Let (R, +, ·) and (R׀, +, ·) be any two semirings. The anti-homomorphic pre-image of an interval valued 
fuzzy subsemiring of R׀ is an interval valued fuzzy subsemiring of R. 
 
Proof: Let f: R → R  Let [M] .׀be a anti-homomorphism. Let [V] be an interval valued fuzzy subsemiring of f(R) = R ׀
be the pre-image of [V] under f. We have to prove that [M] is an interval valued fuzzy subsemiring of R. Let x and y in 
R. Then [M](x+y) = [V](f(x+y)) = [V](f(y)+f(x)) ≥ rmin{[V](f(x)), [V](f(y))} = rmin{[M](x), [M](y)} which implies 
that [M](x+y) ≥ rmin{[M](x), [M](y)} for all x and y in R. And [M](xy) = [V](f(xy)) = [V](f(y)f(x)) ≥ rmin{[V](f(x)), 
[V](f(y))} = rmin{[M](x), [M](y)} which implies that [M](xy) ≥ rmin{[M](x), [M](y)} for all x and y in R. Hence [M] 
is an interval valued fuzzy subsemiring of the semiring R. 
 
In the following Theorem ◦ is the composition operation of functions: 
 
2.5 Theorem: Let [M] be an interval valued fuzzy subsemiring of a semiring H and f is an isomorphism from a 
semiring R onto H. Then [M]◦f is an interval valued fuzzy subsemiring of R. 
 
Proof: Let x and y in R and [M] be an interval valued fuzzy subsemiring of the semiring H. Then ([M]◦f)(x+y) =      
[M](f(x+y)) = [M](f(x)+f(y)) ≥ rmin{[M](f(x)), [M](f(y)) ≥ rmin{([M]◦f)(x), ([M]◦f)(y)}which implies that 
([M]◦f)(x+y) ≥ rmin{([M]◦f)(x), ([M]◦f)(y). And ([M]◦f)(xy) = [M](f(xy)) = [M](f(x)f(y)) ≥ rmin{[M](f(x)), [M](f(y))} 
≥ rmin{([M]◦f)(x), ([M]◦f)(y)} which implies that ([M]◦f)(xy) ≥ rmin{([M]◦f)(x), ([M]◦f)(y)}. Therefore ([M]◦f ) is an 
interval valued fuzzy subsemiring of a semiring R. 
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2.6 Theorem: Let [M] be an interval valued fuzzy subsemiring of a semiring H and f is an anti-isomorphism from a 
semiring R onto H. Then [M]◦f is an interval valued fuzzy subsemiring of R. 
 
Proof: Let x and y in R and [M] be an interval valued fuzzy subsemiring of the semiring H. Then ([M]◦f)(x+y) = 
[M](f(x+y)) = [M](f(y)+f(x)) ≥ rmin{[M](f(x)), [M](f(y))}≥ rmin{([M]◦f )(x), ([M]◦f)(y)} which implies that         
([M]◦f)(x+y)≥rmin{([M]◦f)(x), ([M]◦f)(y)}. And ([M]◦f)(xy)= [M](f(xy)) = [M](f(y)f(x)) ≥ rmin{[M](f(x)), [M](f(y))} 
≥ rmin{([M]◦f)(x), ([M]◦f)(y)} which implies that ([M]◦f)(xy) ≥ rmin{([M]◦f)(x), ([M]◦f)(y)}. Therefore ([M]◦f) is an 
interval valued fuzzy subsemiring of R. 
 
2.7 Theorem: Let [M] be an interval valued fuzzy subsemiring of a semiring R, then the pseudo interval valued fuzzy 
coset (a[M] )p is an interval valued fuzzy subsemiring of the semiring R, for every a in R. 
 
Proof: Let [M] be an interval valued fuzzy subsemiring of the semiring R. For every x and y in R, we have         
((a[M])p)(x+y) = p(a)[M](x+y) ≥ p(a) rmin{[M](x), [M](y)}= rmin {p(a)[M](x), p(a)[M](y)} = rmin{((a[M])p)(x),          
((a[M])p)(y)}. Therefore ((a[M])p)(x+y) ≥ rmin{((a[M])p)(x), ((a[M])p)(y)} for x and y in R. And ((a[M])p)(xy) = 
p(a)[M](xy) ≥ p(a) rmin{[M](x), [M](y)} = rmin{p(a)[M](x), p(a)[M](y)}=rmin{((a[M])p)(x), ((a[M])p)(y)}. Therefore 
((a[M])p)(xy) ≥  rmin{((a[M])p)(x), ((a[M])p)(y)} for x and y in R. Hence (a[M] )p is an interval valued fuzzy 
subsemiring of R. 
 
2.8 Theorem [8]: If [M] and [N] are two interval valued fuzzy subsemirings of a semiring R, then their intersection 
[M]∩[N] is an interval valued fuzzy subsemiring of R. 
 
2.9 Theorem: If [M] is an interval valued fuzzy subsemiring of a semiring R, then ?([M]) is an interval valued fuzzy 
subsemiring of R.   
 
Proof: For every x and y in R, we have ?([M])(x+y) = rmin{[½,½], [M](x+y)} ≥ rmin{[½,½], rmin {[M](x), [M](y)}} 
= rmin{rmin {[½,½], [M](x)}, rmin {[½,½], [M](y)}} = rmin {?([M])(x), ?([M])(y)}. Therefore ?([M])(x+y) ≥        
rmin {?A+(x), ?A+(y)} for all x and y in R. Also ?([M])(xy) = rmin {[½,½], [M](xy)} ≥ rmin {[½,½], rmin {[M](x), 
[M](y)}} = rmin {rmin{[½,½], [M](x)}, rmin {[½,½], [M](y)}} = rmin {?([M])(x), ?([M])(y)}. Therefore ?([M])(xy) ≥ 
rmin {?A+(x), ?A+(y) } for all x and y in R. Hence ?([M]) is an interval valued fuzzy subsemiring of R. 
 
2.10 Theorem: If [M] is an interval valued fuzzy subsemiring of a semiring R, then !([M]) is an interval valued fuzzy 
subsemiring of R.   
 
Proof: For every x and y in R, we have !([M])(x+y) = rmax{[½,½], [M](x+y)} ≥ rmax {[½,½], rmin{[M](x), [M](y)}} 
= rmin {rmax{[½,½], [M](x)}, rmax {[½,½], [M](y)}} = rmin {!([M])(x), !([M])(y)}. Therefore !([M])(x+y) ≥       
rmin{!([M])(x), !([M])(y)} for all x and y in R. Also !([M])(xy) = rmax{[½,½], [M](xy)}≥ rmax {[½,½], rmin {[M](x), 
[M](y)}}= rmin{rmax {[½,½], [M](x)}, rmax {[½,½], [M](y)}}= rmin{!([M])(x), !([M])(y)}. Therefore !([M])(xy)≥ 
rmin{!([M])(x), !([M])(y)} for all x and y in R. Hence !([M]) is an interval valued fuzzy subsemiring of R. 
 
2.11 Theorem: If [M] is an interval valued fuzzy subsemiring of a semiring R, then Qα([M]) is an interval valued fuzzy 
subsemiring of R.   
 
Proof: For every x and y in R, α in D[0, 1], we have Qα([M])(x+y) = rmin {α, [M](x+y)}≥ rmin{α, rmin{[M](x), 
[M](y)}} = rmin {rmin {α, [M](x)}, rmin {α, [M](y)}} = rmin{Qα([M])(x), Qα([M])(y)}. Therefore Qα([M])(x+y) ≥ 
rmin {Qα([M])(x), Qα([M])(y)} for all x and y in R. Also Qα([M])(xy) = rmin {α, [M](xy)} ≥ rmin {α, rmin{[M](x), 
[M](y)}} = rmin {rmin {α, [M](x)}, rmin{α, [M](y)}} = rmin {Qα([M])(x), Qα([M])(y)}. Therefore Qα([M])(xy) ≥ rmin 
{Qα([M])(x), Qα([M])(y)} for all x and y in R. Hence Qα([M]) is an interval valued fuzzy subsemiring of R. 
 
2.12 Theorem: If [M] is an interval valued fuzzy subsemiring of a semiring R, then Pα([M]) is an interval valued fuzzy 
subsemiring of R.   
 
Proof: For every x and y in R, α in D[0, 1], we have Pα([M])(x+y) = rmax{α, [M](x+y)} ≥ rmax {α, rmin{[M](x), 
[M](y)}} = rmin{rmax {α, [M](x)}, rmax{α, [M](y)}} = rmin{Pα([M])(x), Pα([M])(y)}. Therefore Pα([M])(x+y) ≥ rmin 
{Pα([M])(x), Pα([M])(y)} for all x and y in R. Also Pα([M])(xy) = rmax{α, [M](xy)} ≥ rmax {α, rmin{[M](x), [M](y)}} 
= rmin {rmax {α, [M](x)}, rmax{α, [M](y)}} = rmin {Pα([M])(x), Pα([M])(y)}. Therefore Pα([M])(xy) ≥                 
rmin{ Pα([M])(x), Pα([M])(y)} for all x and y in R. Hence Pα ([M]) is an interval valued fuzzy subsemiring of R. 
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2.13 Theorem: If [M] is an interval valued fuzzy subsemiring of a semiring R, then Gα([M]) is an interval valued fuzzy 
subsemiring of R.   
 
Proof: For every x and y in R, α in [0, 1], we have Gα([M])(x+y) = α [M](x+y) ≥ α (rmin{[M](x), [M](y)}) =       
rmin{α [M](x), α [M](y)}= rmin {Gα([M])(x), Gα([M])(y)}. Therefore Gα([M])(x+y) ≥ rmin {Gα([M])(x), Gα([M])(y)} 
for all x and y in R. Also Gα([M])(xy) = α [M](xy) ≥ α(rmin{[M](x), [M](y)})=rmin {α [M](x), α [M](y)} = rmin 
{Gα([M])(x), Gα([M])(y)}. Therefore Gα([M])(xy) ≥ rmin {Gα([M])(x), Gα([M])(y)} for all x and y in R. Hence Gα([M]) 
is an interval valued fuzzy subsemiring of R. 
 
2.14 Theorem: If [M] and [N] are interval valued fuzzy subsemirings of a semiring R, then  
?([M] [N]) = ?([M])  ?([N]) is also an interval valued fuzzy subsemiring of R.  
 
Proof: By Theorem 2.8, 2.9, the statement of the Theorem is true.  
 
2.15 Theorem: If [M] and [N] are interval valued fuzzy subsemirings of a semiring R, then  
!([M] [N]) = !([M]) !([N]) is also an interval valued fuzzy subsemiring of R.  
 
Proof: By Theorem 2.8, 2.10, the statement of the Theorem is true.  
 
2.16 Theorem: If [M] is an interval valued fuzzy subsemiring of a semiring R, then !(?([M])) = ?(!([M])) is also an 
interval valued fuzzy subsemiring of R.    
 
Proof: By Theorem 2.9, 2.10, the statement of the Theorem is true.  
 
2.17 Theorem: If [M] and [N] are interval valued fuzzy subsemirings of a semiring R, then  
Qα([M] [N] = Qα([M])  Qα([N]) is also an interval valued fuzzy subsemiring of R.  
 
Proof: By Theorem 2.8, 2.11, the statement of the Theorem is true.  
 
2.18 Theorem: If [M] and [N] are interval valued fuzzy subsemirings of a semiring R, then  
Pα([M] [N]) = Pα([M])  Pα([N]) is also an interval valued fuzzy subsemiring of R.  
 
Proof: By Theorem 2.8, 2.12, the statement of the Theorem is true.  
 
2.19 Theorem: If [M] is an interval valued fuzzy subsemiring of a semiring R, then Pα(Qα([M])) = Qα(Pα([M]) ) is also 
an interval valued fuzzy subsemiring of R.    
 
Proof: By Theorem 2.11, 2.12, the statement of the Theorem is true.  
 
2.20 Theorem: If [M] and [N] are interval valued fuzzy subsemirings of a semiring R, then  
Gα([M] [N]) = Gα([M])  Gα([N]) is also an interval valued fuzzy subsemiring of R.  
 
Proof: By Theorem 2.8, 2.13, the statement of the Theorem is true.  
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