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ABSTRACT 
In this paper, we introduce some new classes of sets namely Pairwise  𝑏𝑏𝑏𝑏 closed set, Pairwise * 𝑏𝑏𝑏𝑏 closed set. We obtain 
the basic properties and their relationships with other classes of sets in bitopological spaces. We devote the concept of  
Pairwise  𝑏𝑏𝑏𝑏 and Pairwise * 𝑏𝑏𝑏𝑏 continuous functions. The relationship between Pairwise 𝑏𝑏𝑏𝑏 continuous and Pairwise * 𝑏𝑏𝑏𝑏 
continuous and other defined continuous functions are being deliberated.  
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II..  IINNTTRROODDUUCCTTIIOONN  AANNDD  PPRREELLIIMMIINNAARRIIEESS  
 
INTRODUCTION 
 
In 1963, J.C.Kelly [11] initiated the study of bitopological spaces. Following him several authors [3, 9, 11, 13, 15] have 
extended the concepts of topological spaces to bitopological spaces. Mean while Fukutake[8] introduced generalized closed 
sets and pairwise generalized closure operator in bitopological spaces in 1986. Abo khadra and Nasef [1] discussed b-open 
sets in bitopological spaces. In this paper we generalize the notions of Pairwise 𝑏𝑏𝑏𝑏 closed set, Pairwise * 𝑏𝑏𝑏𝑏 closed set in 
bitopological spaces and their characterizations are discussed. In 1991, K.Balachandran, P.Sundaram and H.Maki [17] 
defined a new class of mappings called generalized continuous mappings which contains the class of continuous mappings. 
We use the class of Pairwise 𝑏𝑏𝑏𝑏 closed and Pairwise * 𝑏𝑏𝑏𝑏 closed sets to develop the concept of continuity in bitopological 
spaces.  
 
PPRREELLIIMMIINNAARRIIEESS 
 
Definition: 1.1 [15] Let (𝑋𝑋, 𝜏𝜏) be a topological space. A set A is called semi-open set if A⊆ C1 (Int (A)). The 
complement of semi - open set is semi - closed set.  
 
Definition: 1.2 [16] Let (𝑋𝑋, 𝜏𝜏) be a topological space. A set A is called pre - open set if A⊆ Int (Cl (A)). The complement 
of pre - open set is pre - closed set. 
 
DDeeffiinniittiioonn::  11..33  [[1199]]  Let (𝑋𝑋, 𝜏𝜏) be a topological space. A set A is called α- open set if A ⊆ int (C1 (int(A))). The 
complement of  α - open set is  α - closed set.   
 
DDeeffiinniittiioonn::  11..44  [[22]] Let (𝑋𝑋, 𝜏𝜏) be a topological space. A set A is called b - open set if A⊆ C1 (Int (A)) ∪ Int (C1 (A)) The 
complement of b - open set is called b - closed set. 
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DDeeffiinniittiioonn::  11..55  [[99]]  A subset A of a bitopological space (𝑋𝑋, 𝜏𝜏1, 𝜏𝜏2) is called 𝜏𝜏1𝜏𝜏2 − 𝑠𝑠𝑏𝑏 𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐𝑐𝑐 if 𝜏𝜏2 − 𝑠𝑠𝑐𝑐𝑐𝑐(𝐴𝐴) ⊆ U whenever 
A ⊆ U and U is  𝜏𝜏1-semi open in X. 
  
DDeeffiinniittiioonn::  11..66  [[1122]]  A subset A of a bitopological space (𝑋𝑋, 𝜏𝜏1, 𝜏𝜏2) is called 𝜏𝜏1𝜏𝜏2 − 𝜔𝜔 𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐𝑐𝑐 if 𝜏𝜏2 − 𝑐𝑐𝑐𝑐(𝐴𝐴) ⊆ U whenever 
A ⊆ U and U is  𝜏𝜏1-semi open in X. 
 
2. Pairwise 𝒃𝒃𝒃𝒃 closed and Pairwise * 𝒃𝒃𝒃𝒃 closed set 
 
Definition: 2.1 A set A of a bitopological space (𝑋𝑋, 𝜏𝜏1, 𝜏𝜏2) is called Pairwise 𝑏𝑏𝑏𝑏 closed if 𝜏𝜏2 − b𝑐𝑐𝑐𝑐(𝐴𝐴) ⊆ U whenever       
A⊆ U and U is 𝜏𝜏1-semi open in X. 
 
Definition: 2.2 A set A of a bitopological space (𝑋𝑋, 𝜏𝜏1, 𝜏𝜏2) is called Pairwise * 𝑏𝑏𝑏𝑏 closed if 𝜏𝜏2 − b𝑐𝑐𝑐𝑐(𝐴𝐴) ⊆ U whenever     
A⊆ U and U is 𝜏𝜏1- α open in X. 
 
Theorem: 2.3 

(a) Every Pairwise 𝑏𝑏𝑏𝑏 closed set is Pairwise * 𝑏𝑏𝑏𝑏 closed set. 
(b) Every 𝜏𝜏1𝜏𝜏2 − 𝜔𝜔 closed set is Pairwise 𝑏𝑏𝑏𝑏 closed set. 
(c) Every 𝜏𝜏1𝜏𝜏2 − 𝜔𝜔 closed set is Pairwise * 𝑏𝑏𝑏𝑏 closed set. 
(d) Every 𝜏𝜏1𝜏𝜏2 − sg closed set is Pairwise 𝑏𝑏𝑏𝑏 closed set. 
(e) Every 𝜏𝜏1𝜏𝜏2 − sg closed set is Pairwise * 𝑏𝑏𝑏𝑏 closed set. 

 
Proof: a) Let A be Pairwise 𝑏𝑏𝑏𝑏 closed set. We have to prove A is Pairwise * 𝑏𝑏𝑏𝑏 closed set. Let A⊆ U and U is 𝜏𝜏1- α open 
in X. Since every α open set is semi open set then U is 𝜏𝜏1-semi open in X. Also since A⊆ U and U is 𝜏𝜏1-semi open in X 
and A is Pairwise 𝑏𝑏𝑏𝑏 closed set, then 𝜏𝜏2 − b𝑐𝑐𝑐𝑐(𝐴𝐴) ⊆ U. Therefore A is Pairwise * 𝑏𝑏𝑏𝑏 closed set.The other results follows 
from the definitions. 
 
Remark: 2.4 The converse of the above theorems are not true and it is shown by the following examples. 
 
Example: 2.5 Let X = {a, b, c}; 𝜏𝜏1 = {φ,𝑋𝑋, {𝑎𝑎}, {𝑐𝑐}, {𝑎𝑎, 𝑐𝑐}}; 𝜏𝜏2 = �φ,𝑋𝑋, {𝑎𝑎}, {𝑎𝑎, 𝑏𝑏}, {𝑎𝑎, 𝑐𝑐}�. Here {𝑎𝑎, 𝑏𝑏} is Pairwise * 𝑏𝑏𝑏𝑏 
closed but not Pairwise 𝑏𝑏𝑏𝑏 closed set.  
 
Example: 2.6 Let X = {a, b, c}; 𝜏𝜏1 = {φ,𝑋𝑋, {𝑎𝑎}, {𝑐𝑐}, {𝑎𝑎, 𝑐𝑐}, {a, b}}; 𝜏𝜏2 = �φ,𝑋𝑋, {𝑏𝑏}, {𝑏𝑏, 𝑐𝑐}�. Here {𝑐𝑐} is Pairwise  𝑏𝑏𝑏𝑏 closed 
but not 𝜏𝜏1𝜏𝜏2 − 𝜔𝜔 closed set. 
 
Example: 2.7 Let X = {a, b, c}; 𝜏𝜏1 = {φ,𝑋𝑋, {𝑐𝑐}, {𝑏𝑏, 𝑐𝑐}, {a, c}}; 𝜏𝜏2 = �φ,𝑋𝑋, {𝑎𝑎}, {𝑎𝑎, 𝑐𝑐}�. Here {𝑐𝑐} is Pairwise * 𝑏𝑏𝑏𝑏 closed but 
not 𝜏𝜏1𝜏𝜏2 − 𝜔𝜔 closed set. 
 
Example: 2.8 Let X = {a, b, c}; 𝜏𝜏1 = {φ,𝑋𝑋, {𝑐𝑐}, {a, b}}; 𝜏𝜏2 = �φ,𝑋𝑋, {𝑎𝑎}, {𝑎𝑎, 𝑐𝑐}�. Here {𝑎𝑎, 𝑐𝑐} is Pairwise * 𝑏𝑏𝑏𝑏 closed but not  
𝜏𝜏1𝜏𝜏2 − sg closed set. 
 
Remark: 2.9 From the above theorems and examples we have the following diagrammatic representation. 
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Here the numbers 1 to 4 represent the following: 

1. Pairwise 𝑏𝑏𝑏𝑏 closed set              2. Pairwise ∗  𝑏𝑏𝑏𝑏 closed   
2. 𝜏𝜏1𝜏𝜏2 − sg closed set                  4.  𝜏𝜏1𝜏𝜏2 −𝜔𝜔 closed set 

  
Proposition: 2.10 The finite union of Pairwise 𝑏𝑏𝑏𝑏 closed (Pairwise *𝑏𝑏𝑏𝑏 closed) set is Pairwise 𝑏𝑏𝑏𝑏 closed (Pairwise * 𝑏𝑏𝑏𝑏 
closed). 
 
Proof: Let A and B be Pairwise 𝑏𝑏𝑏𝑏 closed (Pairwise * 𝑏𝑏𝑏𝑏 closed )  subsets of X and let U be 𝜏𝜏1- semi open (𝛼𝛼 open) in X 
such that 𝐴𝐴 ∪ 𝐵𝐵⊆𝑈𝑈 .Then 𝜏𝜏2 − 𝑏𝑏𝑐𝑐𝑐𝑐(𝐴𝐴)⊆𝑈𝑈, 𝜏𝜏2 − 𝑏𝑏𝑐𝑐𝑐𝑐(𝐵𝐵)⊆𝑈𝑈 . 
 
Therefore 𝜏𝜏2 − 𝑏𝑏𝑐𝑐𝑐𝑐(𝐴𝐴 ∪ 𝐵𝐵) =  𝜏𝜏2 − 𝑏𝑏𝑐𝑐𝑐𝑐(𝐴𝐴) ∪ 𝜏𝜏2 − 𝑏𝑏𝑐𝑐𝑐𝑐(𝐵𝐵)⊆𝑈𝑈 . This implies 𝜏𝜏2 − 𝑏𝑏𝑐𝑐𝑐𝑐(𝐴𝐴 ∪ 𝐵𝐵)⊆𝑈𝑈. Hence 𝐴𝐴 ∪ 𝐵𝐵 is 
Pairwise 𝑏𝑏𝑏𝑏 closed (Pairwise * 𝑏𝑏𝑏𝑏 closed )  set. 
 
Theorem: 2.11 If A is an Pairwise 𝑏𝑏𝑏𝑏 closed (Pairwise * 𝑏𝑏𝑏𝑏 closed) set of (𝑋𝑋, 𝜏𝜏1, 𝜏𝜏2)  such that  𝐴𝐴⊆𝐵𝐵 ⊆  𝜏𝜏2 − 𝑏𝑏𝑐𝑐𝑐𝑐(𝐴𝐴) 
then B is also an Pairwise 𝑏𝑏𝑏𝑏 closed (Pairwise * 𝑏𝑏𝑏𝑏 closed) set of X. 
 
Proof: Let B⊆U where U is 𝜏𝜏1- semi open (𝛼𝛼 open) in X. Then 𝐴𝐴⊆𝐵𝐵 implies 𝐴𝐴⊆𝑈𝑈. Since A is 𝑝𝑝airwise 𝑏𝑏𝑏𝑏 closed 

 (Pairwise ∗  𝑏𝑏𝑏𝑏 closed ) then 𝜏𝜏2 − 𝑏𝑏𝑐𝑐𝑐𝑐(𝐴𝐴) U⊆ . 
 
Given 𝐵𝐵⊆ 𝜏𝜏2 − 𝑏𝑏𝑐𝑐𝑐𝑐(𝐴𝐴)  then 𝜏𝜏2 − 𝑏𝑏𝑐𝑐𝑐𝑐(𝐵𝐵)⊆ 𝜏𝜏2 − 𝑏𝑏𝑐𝑐𝑐𝑐�𝜏𝜏2 − 𝑏𝑏𝑐𝑐𝑐𝑐(𝐴𝐴)�⊆ 𝜏𝜏2 − 𝑏𝑏𝑐𝑐𝑐𝑐(𝐴𝐴)⊆𝑈𝑈 .Therefore B is Pairwise 𝑏𝑏𝑏𝑏closed 
(Pairwise * 𝑏𝑏𝑏𝑏 closed) set.  
 
Proposition: 2.12 If A is Pairwise 𝑏𝑏𝑏𝑏 closed (Pairwise ∗  𝑏𝑏𝑏𝑏 closed )  subset of  (𝑋𝑋, 𝜏𝜏1, 𝜏𝜏2)  then [𝜏𝜏2 − 𝑏𝑏𝑐𝑐𝑐𝑐(𝐴𝐴)] − 𝐴𝐴  does 
not contain any non empty  𝜏𝜏1 − semi closed (𝛼𝛼 closed) sets.  
 
Proof: Let A be Pairwise 𝑏𝑏𝑏𝑏 closed (Pairwise ∗  𝑏𝑏𝑏𝑏 closed ) set. Suppose F ≠ φ is 𝜏𝜏1 − semi closed (𝛼𝛼 closed) set of  
[𝜏𝜏2 − 𝑏𝑏𝑐𝑐𝑐𝑐(𝐴𝐴)] − 𝐴𝐴 then  𝐹𝐹 ⊆ 𝜏𝜏2 − 𝑏𝑏𝑐𝑐𝑐𝑐(𝐴𝐴) − 𝐴𝐴 . This implies 𝐹𝐹 ⊆ 𝜏𝜏2 − 𝑏𝑏𝑐𝑐𝑐𝑐(𝐴𝐴) and  𝐹𝐹⊆ 𝑋𝑋 − 𝐴𝐴. Consider 𝐴𝐴⊆  𝑋𝑋 − 𝐹𝐹 then 

𝐹𝐹⊆  [𝜏𝜏2 − 𝑏𝑏𝑐𝑐𝑐𝑐(𝐴𝐴]𝑐𝑐 . Therefore, 𝐹𝐹⊆  [𝜏𝜏2 − 𝑏𝑏𝑐𝑐𝑐𝑐(𝐴𝐴)] ∩ [𝜏𝜏2 − 𝑏𝑏𝑐𝑐𝑐𝑐(𝐴𝐴)]𝑐𝑐 = φ. Hence  F = φ. 
 
Corollary: 2.13 Let A be Pairwise 𝑏𝑏𝑏𝑏  closed (Pairwise ∗  𝑏𝑏𝑏𝑏 closed )  set in  (𝑋𝑋, 𝜏𝜏1, 𝜏𝜏2)  then A is 𝜏𝜏2 − 𝑏𝑏 − closed iff 
[𝜏𝜏2 − 𝑏𝑏𝑐𝑐𝑐𝑐(𝐴𝐴)] − 𝐴𝐴   is 𝜏𝜏1 − semi closed (𝛼𝛼 closed) set.  
 
Proof: Let A be Pairwise 𝑏𝑏𝑏𝑏 closed (Pairwise ∗  𝑏𝑏𝑏𝑏 closed )   set. If A is 𝜏𝜏2 − 𝑏𝑏 − closed we have 𝜏𝜏2 − 𝑏𝑏𝑐𝑐𝑐𝑐(𝐴𝐴) = A then 
[𝜏𝜏2 − 𝑏𝑏𝑐𝑐𝑐𝑐(𝐴𝐴)] − 𝐴𝐴 = φ   which is 𝜏𝜏1 −semi closed (𝛼𝛼 closed) set. 
Conversely, let  [𝜏𝜏2 − 𝑏𝑏𝑐𝑐𝑐𝑐(𝐴𝐴)] − 𝐴𝐴 is 𝜏𝜏1 −semi closed (𝛼𝛼 closed) set. Then by proposition 3.3, [𝜏𝜏2 − 𝑏𝑏𝑐𝑐𝑐𝑐(𝐴𝐴)] − 𝐴𝐴 is 
𝜏𝜏1 −semi closed (𝛼𝛼 closed) subset of itself then [𝜏𝜏2 − 𝑏𝑏𝑐𝑐𝑐𝑐(𝐴𝐴)] − 𝐴𝐴 = φ. This implies that   𝜏𝜏2 − 𝑏𝑏𝑐𝑐𝑐𝑐(𝐴𝐴) = 𝐴𝐴. Therefore A is 
𝜏𝜏2 − 𝑏𝑏 − closed. 
 
Definition: 2.14 A subset  𝐴𝐴⊆  𝑋𝑋  is called Pairwise 𝑏𝑏𝑏𝑏  open (Pairwise ∗  𝑏𝑏𝑏𝑏 open ) set  iff its complement is 
Pairwise 𝑏𝑏𝑏𝑏  closed (Pairwise ∗  𝑏𝑏𝑏𝑏 closed ) set. 
 
Theorem: 2.15 A subset 𝐴𝐴⊆  𝑋𝑋  is Pairwise 𝑏𝑏𝑏𝑏  open (Pairwise ∗  𝑏𝑏𝑏𝑏 open )   set  iff  𝐹𝐹⊆

 
𝜏𝜏2 − 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝐴𝐴) whenever F is 

semi closed (𝛼𝛼 closed) in 𝜏𝜏1 such that   𝐹𝐹⊆
 
𝐴𝐴. 

 
Proof: Necessity:  Let A be Pairwise 𝑏𝑏𝑏𝑏 open (Pairwise ∗  𝑏𝑏𝑏𝑏 open ) set  and  F be semi closed (𝛼𝛼 closed)  in  𝜏𝜏1  such 
that 𝐹𝐹⊆𝐴𝐴. Then  𝑋𝑋 − 𝐴𝐴  is contained in 𝑋𝑋 − 𝐹𝐹  where 𝑋𝑋 − 𝐹𝐹 is semi open (𝛼𝛼 open) in  𝜏𝜏1. Since A is Pairwise bg 
open (Pairwise ∗  𝑏𝑏𝑏𝑏 open),  
 𝜏𝜏2 − 𝑏𝑏𝑐𝑐𝑐𝑐(𝑋𝑋 − 𝐴𝐴)⊆  𝑋𝑋 − 𝐹𝐹. This implies  𝑋𝑋 − [𝜏𝜏2 − 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝐴𝐴)]⊆  𝑋𝑋 − 𝐹𝐹. Thus  F ⊆   𝜏𝜏2 − 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝐴𝐴). 

Sufficiency: Suppose F is semi closed (𝛼𝛼 closed) in  𝜏𝜏1 and F ⊆   A .This implies  F ⊆   𝜏𝜏2 − 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝐴𝐴). Let 𝑋𝑋 −  𝐴𝐴⊆𝑈𝑈, 
where U is semi open (𝛼𝛼 open) set in 𝜏𝜏1.Then 𝑋𝑋 − 𝑈𝑈⊆  𝐴𝐴,where 𝑋𝑋 − 𝑈𝑈 is semi closed (𝛼𝛼 closed) in  𝜏𝜏1 .By hypothesis,  

 𝑋𝑋 − 𝑈𝑈⊆   𝜏𝜏2 − 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝐴𝐴)  (i.e) 𝑋𝑋 − [𝜏𝜏2 − 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝐴𝐴)] ⊆   U. Then 𝜏𝜏2 − 𝑏𝑏𝑐𝑐𝑐𝑐(𝑋𝑋 − 𝐴𝐴)⊆𝑈𝑈 implies X – A is Pairwise 𝑏𝑏𝑏𝑏 
closed (Pairwise ∗ bg closed) set. Therefore A is Pairwise 𝑏𝑏𝑏𝑏 open (Pairwise ∗  𝑏𝑏𝑏𝑏 open )  set.  
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Theorem: 2.16 If 𝐴𝐴⊆  𝑋𝑋  is Pairwise 𝑏𝑏𝑏𝑏 closed (Pairwise ∗  𝑏𝑏𝑏𝑏 closed) set then [𝜏𝜏2 − 𝑏𝑏𝑐𝑐𝑐𝑐(𝐴𝐴)] − 𝐴𝐴  is  Pairwise 𝑏𝑏𝑏𝑏 open 
(Pairwise ∗  𝑏𝑏𝑏𝑏 open ). 
 
Proof: Let A be Pairwise 𝑏𝑏𝑏𝑏 closed(Pairwise ∗  𝑏𝑏𝑏𝑏 closed). Let F be semi closed (𝛼𝛼 closed) set in 𝜏𝜏1 such that   
𝐹𝐹⊆  [𝜏𝜏2 − 𝑏𝑏𝑐𝑐𝑐𝑐(𝐴𝐴)] − 𝐴𝐴.Then by proposition 2.13,  𝐹𝐹 = φ . So 𝐹𝐹⊆ [𝜏𝜏2 − 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏([𝜏𝜏2 − 𝑏𝑏𝑐𝑐𝑐𝑐(𝐴𝐴)] − 𝐴𝐴)]. This implies          
[𝜏𝜏2 − 𝑏𝑏𝑐𝑐𝑐𝑐(𝐴𝐴)] − 𝐴𝐴 𝑏𝑏𝑠𝑠 Pairwise 𝑏𝑏𝑏𝑏 open (Pairwise ∗  𝑏𝑏𝑏𝑏 open)  set. 
                                    
3. Pairwise 𝒃𝒃𝒃𝒃 and Pairwise ∗ 𝒃𝒃𝒃𝒃 continuous functions 
 
Definition: 3.1  
(i) A function 𝑓𝑓: (𝑋𝑋, 𝜏𝜏1, 𝜏𝜏2) → (𝑌𝑌,𝜎𝜎1,𝜎𝜎2) where (𝑋𝑋, 𝜏𝜏1, 𝜏𝜏2) and (𝑌𝑌,𝜎𝜎1,𝜎𝜎2) are bitopological space is pairwise  𝑏𝑏𝑏𝑏 continuous 
if 𝑓𝑓−1(𝑈𝑈) is Pairwise 𝑏𝑏𝑏𝑏 closed in X for each 𝜎𝜎𝑗𝑗  closed U in Y,𝑏𝑏 ≠ 𝑗𝑗 𝑎𝑎𝑏𝑏𝑐𝑐 𝑏𝑏, 𝑗𝑗 = 1,2 
 
(ii) A function 𝑓𝑓: (𝑋𝑋, 𝜏𝜏1, 𝜏𝜏2) → (𝑌𝑌,𝜎𝜎1,𝜎𝜎2)  where (𝑋𝑋, 𝜏𝜏1, 𝜏𝜏2) and (𝑌𝑌,𝜎𝜎1,𝜎𝜎2) are bitopological space is pairwise * 𝑏𝑏𝑏𝑏 
continuous if 𝑓𝑓−1(𝑈𝑈) is pairwise * 𝑏𝑏𝑏𝑏 closed in X for each 𝜎𝜎𝑗𝑗  closed U in    Y,𝑏𝑏 ≠ 𝑗𝑗 𝑎𝑎𝑏𝑏𝑐𝑐 𝑏𝑏, 𝑗𝑗 = 1,2 
 
Theorem: 3.2 

(a) Every pairwise  𝑏𝑏𝑏𝑏 continuous function is pairwise * 𝑏𝑏𝑏𝑏 continuous function. 
(b) Every 𝜏𝜏1𝜏𝜏2 − 𝜔𝜔  continuous function is pairwise  𝑏𝑏𝑏𝑏 continuous function. 
(c) Every 𝜏𝜏1𝜏𝜏2 − 𝜔𝜔  continuous function is pairwise * 𝑏𝑏𝑏𝑏 continuous function. 
(d) Every 𝜏𝜏1𝜏𝜏2 – 𝑠𝑠𝑏𝑏 continuous function is pairwise  𝑏𝑏𝑏𝑏 continuous function. 
(e) Every 𝜏𝜏1𝜏𝜏2 – 𝑠𝑠𝑏𝑏 continuous function  is pairwise * 𝑏𝑏𝑏𝑏 continuous function. 

 
Proof: a) Let  𝑓𝑓: (𝑋𝑋, 𝜏𝜏1, 𝜏𝜏2) → (𝑌𝑌,𝜎𝜎1,𝜎𝜎2)  be pairwise  𝑏𝑏𝑏𝑏 continuous. Let U be  𝜎𝜎𝑗𝑗   closed set in Y. Then  𝑓𝑓−1(𝑈𝑈) is 
Pairwise 𝑏𝑏𝑏𝑏 closed set in X. Since every Pairwise 𝑏𝑏𝑏𝑏 closed set is pairwise * 𝑏𝑏𝑏𝑏 closed set in X then 𝑓𝑓−1(𝑈𝑈) is pairwise * 
𝑏𝑏𝑏𝑏 closed set in X. Hence 𝑓𝑓  is pairwise * 𝑏𝑏𝑏𝑏 continuous function. The proof is obvious for others. 
 
Remark: 3.3 The converse of the above theorems are not true as shown by the following examples. 
 
Example: 3.4 Let 𝑋𝑋 = 𝑌𝑌 = {𝑎𝑎, 𝑏𝑏, 𝑐𝑐}; 𝜏𝜏1 = �𝜙𝜙,𝑋𝑋, {𝑎𝑎}, {𝑐𝑐}, {𝑎𝑎, 𝑐𝑐}�; 𝜏𝜏2 = �𝜙𝜙,𝑋𝑋, {𝑎𝑎}, {𝑎𝑎, 𝑏𝑏}, {𝑎𝑎, 𝑐𝑐}�;   𝜎𝜎1 = �φ, Y, {a, c}�;  
 𝜎𝜎2 = {φ, Y, {a}}. Let 𝑓𝑓: (𝑋𝑋, 𝜏𝜏1, 𝜏𝜏2) → (𝑌𝑌,𝜎𝜎1,𝜎𝜎2) be a function defined by  𝑓𝑓(𝑎𝑎) = 𝑐𝑐 , 𝑓𝑓(𝑏𝑏) = 𝑏𝑏 , 𝑓𝑓(𝑐𝑐) = 𝑎𝑎.  
Here 𝑓𝑓−1(𝑏𝑏, 𝑐𝑐) = {𝑎𝑎, 𝑏𝑏} is pairwise * 𝑏𝑏𝑏𝑏 closed but not pairwise 𝑏𝑏𝑏𝑏 closed set. Therefore 𝑓𝑓 is pairwise * 𝑏𝑏𝑏𝑏 continuous but 
not pairwise  𝑏𝑏𝑏𝑏 continuous function. 
 
Example: 3.5 Let 𝑋𝑋 = 𝑌𝑌 = {𝑎𝑎, 𝑏𝑏, 𝑐𝑐}; 𝜏𝜏1 = {𝜙𝜙,𝑋𝑋, {𝑎𝑎}, {𝑎𝑎, 𝑐𝑐}, {𝑐𝑐}, {𝑎𝑎, 𝑏𝑏}}; 𝜏𝜏2 = �𝜙𝜙,𝑋𝑋, {𝑏𝑏}, {𝑏𝑏, 𝑐𝑐}�;  𝜎𝜎1 = �φ, Y, {c}, {a, c}�; 
𝜎𝜎2 = {φ, Y, {a, b}}. Let 𝑓𝑓: (𝑋𝑋, 𝜏𝜏1, 𝜏𝜏2) → (𝑌𝑌,𝜎𝜎1,𝜎𝜎2)  be an identity function.  
Here 𝑓𝑓−1(𝑐𝑐) = {𝑐𝑐} is pairwise 𝑏𝑏𝑏𝑏 closed but not 𝜏𝜏1𝜏𝜏2 − 𝜔𝜔 closed set. Therefore 𝑓𝑓 is pairwise 𝑏𝑏𝑏𝑏 continuous but not  
𝜏𝜏1𝜏𝜏2 −𝜔𝜔 continuous function. 
 
Example: 3.6 Let 𝑋𝑋 = 𝑌𝑌 = {𝑎𝑎, 𝑏𝑏, 𝑐𝑐}; 𝜏𝜏1 = {𝜙𝜙,𝑋𝑋, {𝑐𝑐}, {𝑏𝑏, 𝑐𝑐}, {𝑎𝑎, 𝑐𝑐}}; 𝜏𝜏2 = �𝜙𝜙,𝑋𝑋, {𝑎𝑎}, {𝑎𝑎, 𝑐𝑐}�;  𝜎𝜎1 = �φ, Y, {b}, {b, c}�;  
 𝜎𝜎2 = {φ, Y, {a, b}}. Let 𝑓𝑓: (𝑋𝑋, 𝜏𝜏1, 𝜏𝜏2) → (𝑌𝑌,𝜎𝜎1,𝜎𝜎2)  be an identity function. Here 𝑓𝑓−1(𝑐𝑐) = {𝑐𝑐} is pairwise * 𝑏𝑏𝑏𝑏 closed but 
not 𝜏𝜏1𝜏𝜏2 − 𝜔𝜔 closed set. Therefore  𝑓𝑓  is pairwise * 𝑏𝑏𝑏𝑏 continuous but not  𝜏𝜏1𝜏𝜏2 − 𝜔𝜔 continuous function. 
 
Example: 3.7 Let 𝑋𝑋 = 𝑌𝑌 = {𝑎𝑎, 𝑏𝑏, 𝑐𝑐}; 𝜏𝜏1 = {𝜙𝜙,𝑋𝑋, {𝑐𝑐}, {𝑎𝑎, 𝑏𝑏}}; 𝜏𝜏2 = �𝜙𝜙,𝑋𝑋, {𝑎𝑎}, {𝑎𝑎, 𝑐𝑐}�;  𝜎𝜎1 = {φ, Y, {a}, {a, b}};  
 𝜎𝜎2 = {φ, Y, {a}}. Let 𝑓𝑓: (𝑋𝑋, 𝜏𝜏1, 𝜏𝜏2) → (𝑌𝑌,𝜎𝜎1,𝜎𝜎2)  be a function defined by 𝑓𝑓(𝑎𝑎) = 𝑏𝑏, 𝑓𝑓(𝑏𝑏) = 𝑎𝑎, 𝑓𝑓(𝑐𝑐) = 𝑐𝑐. Here     
𝑓𝑓−1(𝑏𝑏, 𝑐𝑐) = {𝑎𝑎, 𝑐𝑐} is pairwise * 𝑏𝑏𝑏𝑏 closed but not 𝜏𝜏1𝜏𝜏2 – 𝑠𝑠𝑏𝑏  closed set.  Therefore  𝑓𝑓  is   but not  𝜏𝜏1𝜏𝜏2 – 𝑠𝑠𝑏𝑏  continuous 
function. 
 
Theorem: 3.8 The following are equivalent for a function 𝑓𝑓: (𝑋𝑋, 𝜏𝜏1, 𝜏𝜏2) → (𝑌𝑌,𝜎𝜎1,𝜎𝜎2)  
(a)  f is pairwise  𝑏𝑏𝑏𝑏 continuous (pairwise * 𝑏𝑏𝑏𝑏 continuous). 
(𝒃𝒃)𝑓𝑓−1(𝑈𝑈) is pairwise  𝑏𝑏𝑏𝑏 open (pairwise ∗ 𝑏𝑏𝑏𝑏 open) in X for each 𝜎𝜎𝑗𝑗 − open set U in Y,𝑏𝑏 ≠ 𝑗𝑗 and 𝑏𝑏, 𝑗𝑗 = 1,2.  
 
Proof: (a) ⇒  (b) Suppose that f is pairwise  𝑏𝑏𝑏𝑏 continuous (pairwise * 𝑏𝑏𝑏𝑏 continuous). Let A be 𝜎𝜎𝑗𝑗 − open set in Y. Then 
𝑌𝑌 − 𝐴𝐴 is 𝜎𝜎𝑗𝑗 −  closed set in Y. Since f is pairwise  𝑏𝑏𝑏𝑏 continuous (pairwise * 𝑏𝑏𝑏𝑏 continuous), 𝑓𝑓−1(𝑌𝑌 − 𝐴𝐴) is pairwise 𝑏𝑏𝑏𝑏 
closed (pairwise  ∗ 𝑏𝑏𝑏𝑏 closed) in X, 𝑏𝑏 ≠ 𝑗𝑗 and 𝑏𝑏, 𝑗𝑗 = 1,2.Consequently, 𝑓𝑓−1(𝐴𝐴) is pairwise  𝑏𝑏𝑏𝑏 open (pairwise ∗ 𝑏𝑏𝑏𝑏 open) in 
X. 
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(b) ⇒  (a) Suppose that 𝑓𝑓−1(𝐴𝐴)  is pairwise 𝑏𝑏𝑏𝑏 open (pairwise ∗ 𝑏𝑏𝑏𝑏 open) in X for each 𝜎𝜎𝑗𝑗 − open set U in Y, 𝑏𝑏 ≠ 𝑗𝑗 and 
𝑏𝑏, 𝑗𝑗 = 1,2. Let V be 𝜎𝜎𝑗𝑗 − closed set in Y.Then  𝑋𝑋 − 𝑉𝑉 is 𝜎𝜎𝑗𝑗 −  open in Y. Then by our assumption, 𝑓𝑓−1(𝑋𝑋 − 𝑉𝑉)  is pairwise 
𝑏𝑏𝑏𝑏 open (pairwise ∗ 𝑏𝑏𝑏𝑏 open) in X, 𝑏𝑏 ≠ 𝑗𝑗 and 𝑏𝑏, 𝑗𝑗 = 1,2.Then  𝑓𝑓−1(𝑉𝑉) is pairwise  𝑏𝑏𝑏𝑏 closed (pairwise  ∗ 𝑏𝑏𝑏𝑏 closed) in X. 
Hence f is pairwise  𝑏𝑏𝑏𝑏 continuous (pairwise * 𝑏𝑏𝑏𝑏 continuous). 
 
Remark: 3.9 The composition of two pairwise  𝑏𝑏𝑏𝑏 continuous (pairwise ∗ 𝑏𝑏𝑏𝑏 continuous) functions is not pairwise 
𝑏𝑏𝑏𝑏 continuous (pairwise ∗ 𝑏𝑏𝑏𝑏 continuous) functions as shown by the following example. 
 
Example: 3.10 Let 𝑋𝑋 = 𝑌𝑌 = 𝑍𝑍 = {𝑎𝑎, 𝑏𝑏, 𝑐𝑐};  𝜏𝜏1 = {𝜙𝜙,𝑋𝑋, {𝑎𝑎, 𝑏𝑏}, {𝑏𝑏, 𝑐𝑐}, {𝑏𝑏}};  𝜏𝜏2 = {𝜙𝜙,𝑋𝑋, {𝑎𝑎}, {𝑎𝑎, 𝑐𝑐}, {𝑎𝑎, 𝑏𝑏}}; 
𝜎𝜎1 = {φ, Y, {b, c}};   𝜎𝜎2 = {φ, Y, {c}, {a, c}}; 𝛾𝛾1 = {φ, Z, {b}, {a, c}};   𝛾𝛾2 = {φ, Z, {b}, {b, c}}. 
 
Let 𝑓𝑓: (𝑋𝑋, 𝜏𝜏1, 𝜏𝜏2) → (𝑌𝑌,𝜎𝜎1,𝜎𝜎2)  be a function defined by 𝑓𝑓(𝑎𝑎) = 𝑎𝑎, 𝑓𝑓(𝑏𝑏) = 𝑐𝑐, 𝑓𝑓(𝑐𝑐) = 𝑏𝑏. And 𝑏𝑏: (𝑌𝑌,𝜎𝜎1,𝜎𝜎2) → (𝑍𝑍,  𝛾𝛾1,  𝛾𝛾2) 
be an identity function.Then 𝑓𝑓 𝑎𝑎𝑏𝑏𝑐𝑐 𝑏𝑏 are pairwise  𝑏𝑏𝑏𝑏 continuous function. But 𝑓𝑓−1�𝑏𝑏−1(𝑎𝑎)� = {𝑎𝑎}  is not pairwise  
𝑏𝑏𝑏𝑏 closed in (𝑋𝑋, 𝜏𝜏1, 𝜏𝜏2). Hence 𝑏𝑏 𝑐𝑐 𝑓𝑓 is  not pairwise  𝑏𝑏𝑏𝑏 continuous function.  
 
Definition: 3.11 A function 𝑓𝑓: (𝑋𝑋, 𝜏𝜏1, 𝜏𝜏2) → (𝑌𝑌,𝜎𝜎1,𝜎𝜎2)  is  

(a) pairwise  𝑏𝑏𝑏𝑏 irresolute  if  𝑓𝑓−1(𝑈𝑈) is 𝜏𝜏𝑏𝑏𝜏𝜏𝑗𝑗 − pairwise 𝑏𝑏𝑏𝑏 closed for each  𝜎𝜎𝑏𝑏𝜎𝜎𝑗𝑗 −pairwise 𝑏𝑏𝑏𝑏 closed  U in Y, 
𝑏𝑏 ≠ 𝑗𝑗 𝑎𝑎𝑏𝑏𝑐𝑐 𝑏𝑏, 𝑗𝑗 = 1,2. 

(b)  pairwise *  𝑏𝑏𝑏𝑏 irresolute  if  𝑓𝑓−1(𝑈𝑈) is 𝜏𝜏𝑏𝑏𝜏𝜏𝑗𝑗 −pairwise * 𝑏𝑏𝑏𝑏 closed for each  𝜎𝜎𝑏𝑏𝜎𝜎𝑗𝑗 − pairwise * 𝑏𝑏𝑏𝑏 closed U in  Y,  
𝑏𝑏 ≠ 𝑗𝑗 𝑎𝑎𝑏𝑏𝑐𝑐 𝑏𝑏, 𝑗𝑗 = 1,2. 

 
Proposition: 3.12 If f is pairwise  𝑏𝑏𝑏𝑏 irresolute (pairwise * 𝑏𝑏𝑏𝑏 irresolute) then f is pairwise  𝑏𝑏𝑏𝑏 continuous (pairwise  ∗ 𝑏𝑏𝑏𝑏 
continuous) function. 
 
Proof: Let V be 𝜎𝜎𝑗𝑗 −closed set in Y. Then V is  𝜎𝜎𝑏𝑏𝜎𝜎𝑗𝑗 −pairwise 𝑏𝑏𝑏𝑏 closed (pairwise * 𝑏𝑏𝑏𝑏 closed) in Y. By 
assumption, 𝑓𝑓−1(𝑉𝑉) is  pairwise 𝑏𝑏𝑏𝑏 closed (pairwise * 𝑏𝑏𝑏𝑏 closed) in X. Hence f is pairwise 𝑏𝑏𝑏𝑏 continuous (pairwise  ∗ 𝑏𝑏𝑏𝑏 
continuous) function. 
 
Remark: 3.13 The converse of the above theorem is not true as shown by the following example. 
 
Example: 3.14 Let 𝑋𝑋 = 𝑌𝑌 = {𝑎𝑎, 𝑏𝑏, 𝑐𝑐}; 𝜏𝜏1 = {𝜙𝜙,𝑋𝑋, {𝑎𝑎, 𝑐𝑐}}; 𝜏𝜏2 = �𝜙𝜙,𝑋𝑋, {𝑐𝑐}, {𝑎𝑎, 𝑐𝑐}�;  𝜎𝜎1 = {φ, Y, {b}, {a, c}};  
 𝜎𝜎2 = {φ, Y, {a}, {a, b}}.  Let 𝑓𝑓: (𝑋𝑋, 𝜏𝜏1, 𝜏𝜏2) → (𝑌𝑌,𝜎𝜎1,𝜎𝜎2)  be a function defined by  𝑓𝑓(𝑎𝑎) = 𝑎𝑎 , 𝑓𝑓(𝑏𝑏) = 𝑐𝑐 , 𝑓𝑓(𝑐𝑐) = 𝑏𝑏.   
 
Here  𝑓𝑓−1(𝑐𝑐) = {𝑏𝑏} and  𝑓𝑓−1(𝑏𝑏, 𝑐𝑐) = {𝑏𝑏, 𝑐𝑐} is pairwise 𝑏𝑏𝑏𝑏 closed in (𝑋𝑋, 𝜏𝜏1, 𝜏𝜏2). Hence f is pairwise 𝑏𝑏𝑏𝑏 continuous. But 
𝑓𝑓−1(𝑎𝑎, 𝑏𝑏) = {𝑎𝑎, 𝑐𝑐}  is not pairwise 𝑏𝑏𝑏𝑏 closed in (𝑋𝑋, 𝜏𝜏1, 𝜏𝜏2). Hence it is not pairwise  𝑏𝑏𝑏𝑏 irresolute (pairwise *  𝑏𝑏𝑏𝑏 irresolute) 
function.   
 
Theorem: 3.15 Let 𝑓𝑓: (𝑋𝑋, 𝜏𝜏1, 𝜏𝜏2) → (𝑌𝑌,𝜎𝜎1,𝜎𝜎2)  and 𝑏𝑏: (𝑌𝑌,𝜎𝜎1,𝜎𝜎2) → (𝑍𝑍, 𝜇𝜇1, 𝜇𝜇2) be two functions. Then if  𝑓𝑓 and 𝑏𝑏 are 
pairwise  𝑏𝑏𝑏𝑏 irresolute (pairwise *𝑏𝑏𝑏𝑏 irresolute) then 𝑏𝑏 𝑐𝑐 𝑓𝑓 is pairwise  𝑏𝑏𝑏𝑏 irresolute (pairwise *  𝑏𝑏𝑏𝑏 irresolute) function. 
 
Proof: Let 𝑓𝑓: (𝑋𝑋, 𝜏𝜏1, 𝜏𝜏2) → (𝑌𝑌,𝜎𝜎1,𝜎𝜎2)  and 𝑏𝑏: (𝑌𝑌,𝜎𝜎1,𝜎𝜎2) → (𝑍𝑍, 𝜇𝜇1, 𝜇𝜇2) be pairwise  𝑏𝑏𝑏𝑏 irresolute (pairwise * 𝑏𝑏𝑏𝑏 irresolute ). 
Let V be pairwise 𝑏𝑏𝑏𝑏 closed (pairwise * 𝑏𝑏𝑏𝑏 closed) set in Z. Since 𝑏𝑏  is pairwise  𝑏𝑏𝑏𝑏 irresolute (pairwise *  𝑏𝑏𝑏𝑏 irresolute) 
function, then  𝑏𝑏−1(𝑣𝑣)  is pairwise 𝑏𝑏𝑏𝑏 closed (pairwise * 𝑏𝑏𝑏𝑏 closed) in Y. Since  𝑓𝑓 is pairwise 𝑏𝑏𝑏𝑏 irresolute (pairwise 
* 𝑏𝑏𝑏𝑏 irresolute) function, (𝑏𝑏𝑐𝑐𝑓𝑓)−1(𝑣𝑣) =  𝑓𝑓−1�𝑏𝑏−1(𝑣𝑣)�  is pairwise 𝑏𝑏𝑏𝑏 closed (pairwise * 𝑏𝑏𝑏𝑏 closed) in X. Therefore 𝑏𝑏 𝑐𝑐 𝑓𝑓 
is pairwise  𝑏𝑏𝑏𝑏 irresolute function (pairwise *  𝑏𝑏𝑏𝑏 irresolute).    
 
Theorem: 3.16 Let 𝑓𝑓: (𝑋𝑋, 𝜏𝜏1, 𝜏𝜏2) → (𝑌𝑌,𝜎𝜎1,𝜎𝜎2)  and  𝑏𝑏: (𝑌𝑌,𝜎𝜎1,𝜎𝜎2) → (𝑍𝑍, 𝜇𝜇1, 𝜇𝜇2) be two functions. Then if 𝑓𝑓 is pairwise 
𝑏𝑏𝑏𝑏 irresolute (pairwise *  𝑏𝑏𝑏𝑏 irresolute) function and 𝑏𝑏 is pairwise  𝑏𝑏𝑏𝑏 continuous (pairwise  ∗ 𝑏𝑏𝑏𝑏 continuous) function. 
Then 𝑏𝑏 𝑐𝑐 𝑓𝑓 is pairwise  𝑏𝑏𝑏𝑏 continuous (pairwise  ∗ 𝑏𝑏𝑏𝑏 continuous) function. 
 
Proof: Let 𝑓𝑓: (𝑋𝑋, 𝜏𝜏1, 𝜏𝜏2) → (𝑌𝑌,𝜎𝜎1,𝜎𝜎2) be pairwise 𝑏𝑏𝑏𝑏 irresolute (pairwise *  𝑏𝑏𝑏𝑏 irresolute) function and 𝑏𝑏: (𝑌𝑌,𝜎𝜎1,𝜎𝜎2) →
(𝑍𝑍, 𝜇𝜇1, 𝜇𝜇2) be pairwise  𝑏𝑏𝑏𝑏 continuous (pairwise ∗ 𝑏𝑏𝑏𝑏 continuous) function. Let V be 𝜎𝜎𝑗𝑗 − closed set in Z. Since 𝑏𝑏  is 
pairwise  𝑏𝑏𝑏𝑏 continuous (pairwise  ∗ 𝑏𝑏𝑏𝑏 continuous) function, then  𝑏𝑏−1(𝑣𝑣)  is pairwise  𝑏𝑏𝑏𝑏 closed (pairwise * 𝑏𝑏𝑏𝑏 closed) 
in Y. 
 
Since  𝑓𝑓 is pairwise  𝑏𝑏𝑏𝑏 irresolute (pairwise *  𝑏𝑏𝑏𝑏 irresolute) function, (𝑏𝑏𝑐𝑐𝑓𝑓)−1(𝑣𝑣) =  𝑓𝑓−1�𝑏𝑏−1(𝑣𝑣)�  is pairwise 𝑏𝑏𝑏𝑏 closed 
(pairwise * 𝑏𝑏𝑏𝑏 closed) in X.  Therefore 𝑏𝑏 𝑐𝑐 𝑓𝑓 is pairwise  𝑏𝑏𝑏𝑏 continuous (pairwise  ∗ 𝑏𝑏𝑏𝑏 continuous) function.    
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Theorem: 3.17 Let 𝑓𝑓: (𝑋𝑋, 𝜏𝜏1, 𝜏𝜏2) → (𝑌𝑌,𝜎𝜎1,𝜎𝜎2)  and  𝑏𝑏: (𝑌𝑌,𝜎𝜎1,𝜎𝜎2) → (𝑍𝑍, 𝜇𝜇1, 𝜇𝜇2) be two functions. Then if 𝑓𝑓 is pairwise 
𝑏𝑏𝑏𝑏 continuous (pairwise  ∗ 𝑏𝑏𝑏𝑏 continuous) function and 𝑏𝑏 is pairwise continuous. Then 𝑏𝑏 𝑐𝑐 𝑓𝑓 is pairwise    𝑏𝑏𝑏𝑏 continuous 
(pairwise  ∗ 𝑏𝑏𝑏𝑏 continuous) function. 
 
Proof: Let 𝑓𝑓: (𝑋𝑋, 𝜏𝜏1, 𝜏𝜏2) → (𝑌𝑌,𝜎𝜎1,𝜎𝜎2) be pairwise 𝑏𝑏𝑏𝑏 continuous (pairwise  ∗ 𝑏𝑏𝑏𝑏 continuous) function and 𝑏𝑏: (𝑌𝑌,𝜎𝜎1,𝜎𝜎2) →
(𝑍𝑍, 𝜇𝜇1, 𝜇𝜇2)  be pairwise continuous. Let V be 𝜎𝜎𝑗𝑗 − closed set in Z. Since 𝑏𝑏  is pairwise continuous function, then  𝑏𝑏−1(𝑣𝑣)  is 
𝜎𝜎𝑗𝑗  closed in Y.Since  𝑓𝑓 is pairwise  𝑏𝑏𝑏𝑏 continuous (pairwise  ∗ 𝑏𝑏𝑏𝑏 continuous) function, (𝑏𝑏𝑐𝑐𝑓𝑓)−1(𝑣𝑣) =  𝑓𝑓−1�𝑏𝑏−1(𝑣𝑣)�  is 
pairwise  𝑏𝑏𝑏𝑏  closed (pairwise * 𝑏𝑏𝑏𝑏 closed) in X. Therefore 𝑏𝑏 𝑐𝑐 𝑓𝑓 is pairwise  𝑏𝑏𝑏𝑏 continuous (pairwise  ∗ 𝑏𝑏𝑏𝑏 continuous) 
function.    
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