International Journal of Mathematical Archive-6(8), 2015, 159-163 MMA Available online through www.ijma.info ISSN 2229-5046

ON RANGE QUATERNION HERMITIAN MATRICES

K. GUNASEKARAN
Ramanujan Research centre, PG and Research Department of Mathematics, Government Arts College (Autonomous), Kumbakonam - 612 002, Tamil Nadu, India.

S. SRIDEVI*
Ramanujan Research centre, PG and Research Department of Mathematics, Government Arts College (Autonomous), Kumbakonam - 612 002, Tamil Nadu, India.

(Received On: 27-07-15; Revised \& Accepted On: 26-08-15)

Abstract

The concept of range quaternion hermitian ($q-E P$) matrices is introduced as a generalization of quaternion hermitian and EP matrices. Necessary and sufficient conditions are determined for a matrix to be $q-E P_{r}(q-E P$ and rank r), Equivalent characterization of $q-E P$ matrix are equivalent characterization at $q-E P$ matrixes are discussed. As an application, it is shown that the class of all EP matrices having the same range space form a group under multiplication.

Key words: Matrix, Quaternion Hermitian, Quaternion matrix.

1. INTRODUCTION

Let $H_{n x n}$ be the space of nxn quaternion matrices. For $A \in H_{n x n}$, Let $A^{T}, A^{*}, A^{\dagger}, R(A), N(A)$ and $r k(A)$ denote the transpose, conjugate transpose Moore-Penrose inverse range space, null space and rank of A respectively. We denote the solution of the equation $A X A=A$ by A^{-}for $A \in H_{n x n}$, The Moore-Penrose inverse A^{\dagger} of A is the unique solution of the equations $\mathrm{AXA}=\mathrm{A}, \mathrm{XAX}=\mathrm{A},(\mathrm{AX})^{*}=\mathrm{AX}$ and $(\mathrm{XA})=\mathrm{XA}[2]$. In this paper we introduce the concept of q-EP hermitian and EP matrices and extended many of the basic results on q - hernitian and q - EP matrices [2,4,5], A matrix $A \in C_{n \times n}$ is said to be $E P$ or called as range hermitian if $N(A)=N\left(A^{*}\right)$ or equivalently $R(A)=R\left(A^{*}\right)$ [3,P 163] Relation between q - EP and EP matrices are discussed.

2. Q - EP MATRICES

The Concept of range quaternion hemitian ($\mathrm{q}-\mathrm{EP}$) matrices introduced as a generalization of q - hermitian and EP matrices. Necessary and sufficient condition are determined for a matrix to be $q-E P_{r}$ (q - EP and rank r). Equivalently characterizations of a q - EP are discussed. As an application, it is shown that the class of all q - EP matrices having the same range space form a group under multiplication.

Definition: A matrix $A \in \mathbf{H}_{n \times x}$ is said to be quaternion $E P$ if $R(A)=R\left(A^{*}\right)$ or equivalently $N(A)=N\left(A^{*}\right)$.A is said to be quaternion $E P_{r}$ if A is quaternion EP and of rank r .

Remark 1: If K is any scalar and A is a quaternion matrix then $R(K A)=R(K A *)$.
Remark 2: The concept of q-EP matrix is an analogue of the concept of EP matrix [P. 163, 4].
Remark 3: Further, if A is q-hermitian then $A=A *$ implies that $R(A)=R(A *)$. Automatically holds and therefore A is q-EP. However the converse need not true.

Remark 4: Every quaternion EP matrix is complex matrix if any two axis is zero among i, j and k .
Remarks-5: A is q-EP matrix if only if A is an EP matrix.

Example:

(i) $\left[\begin{array}{ccc}2 & 1+2 i+3 j+4 k & 2+4 i+6 j+8 k \\ 1-2 i-3 j-4 k & 3 & 3+6 i+9 j+12 k \\ 2-4 i-6 j-8 k & 3-6 i-9 j-12 k & 4\end{array}\right]$ is a q - hermitian and q-EP.
(ii) $\left[\begin{array}{lll}1 & 2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$ is EP and q - EP not q - Hermitian.

Theorem 1: For $A \in H_{n \times n}$ the following are equivalent:
(1) A is $q-E P$
(2) A^{\dagger} is $\mathrm{q}-\mathrm{EP}$
(3) $N(A)=N\left(\mathrm{~A}^{\dagger}\right)$
(4) $N(A)=N\left(A^{*}\right)$
(5) $\mathrm{R}(\mathrm{A})=\mathrm{R}\left(A^{*}\right)$
(6) $\mathrm{A}^{\dagger} \mathrm{A}=\mathrm{AA}^{\dagger}$
(7) $\mathrm{A}=\mathrm{A} * \mathrm{H}$ for a non - singular nxn matrix H .
(8) $\mathrm{A}=\mathrm{HA} *$ for a non - singular nxn matrix H .
(9) $\mathrm{A}^{*}=\mathrm{HA}$ for a non - singular nxn matrix H.
(10) $\mathrm{A}^{*}=\mathrm{AH}$ for anon - singular nxn matrix H .
(11) $H_{n}=\mathrm{R}(\mathrm{A}) \oplus \mathrm{N}\left(\mathrm{A}^{*}\right)$
(12) $H_{n}=R\left(A^{*}\right) \oplus N(A)$

Proof:

(1) $\Leftrightarrow(2)$

A is $\mathrm{q}-\mathrm{EP} \quad \Leftrightarrow \mathrm{A}$ is EP (by Remark 5)

$$
\begin{aligned}
& \Leftrightarrow \mathrm{A}^{\dagger} \text { is EP } \\
& \Leftrightarrow \mathrm{A}^{\dagger} \text { is } \mathrm{q}-\mathrm{EP}
\end{aligned}
$$

Thus the equivalence of (1) and (2) is proved.
(2) $\Leftrightarrow(3)$

$$
\begin{aligned}
A^{\dagger} \text { is } q-E P & \Leftrightarrow A \text { is } q-E P \\
& \Leftrightarrow N(A)=N\left(A^{*}\right) \\
& \Leftrightarrow N(A)=N\left(A^{\dagger}\right)
\end{aligned}
$$

(3) $\Leftrightarrow(4)$

$$
\begin{aligned}
N(A)=N\left(A^{\dagger}\right) & \Leftrightarrow A^{\dagger} \text { is } q-E P \\
& \Leftrightarrow A \text { is } q-E P(b y \text { definition } q-E P) \\
& \Leftrightarrow N(A)=N\left(A^{*}\right)
\end{aligned}
$$

Similarly by the definition (4) \Leftrightarrow (5). Thus equivalence of (3), (4) and (5).
(5) $\Leftrightarrow(6)$

$$
\begin{aligned}
R(A)=R\left(A^{*}\right) & \Leftrightarrow A \text { is } q-E P \\
& \Leftrightarrow A \text { is } E P \\
& \Leftrightarrow A A^{\dagger}=A^{\dagger} A
\end{aligned}
$$

(6) \Leftrightarrow (7)

$$
\begin{aligned}
A A^{\dagger}=A^{\dagger} A & \Leftrightarrow \mathrm{R}(\mathrm{~A})=\mathrm{R}\left(\mathrm{~A}^{*}\right) \\
& \Leftrightarrow \mathrm{A} \text { is } \mathrm{q}-\mathrm{EP} \\
& \Leftrightarrow A^{*}=A H_{1} \text { for a non singular nxn matrix } \mathrm{H}_{1} \\
& \Leftrightarrow \mathrm{~A}=\mathrm{A}^{*}\left(\mathrm{H}_{1}\right)^{-1} \\
& \Leftrightarrow \mathrm{~A}=\mathrm{A}^{*} \mathrm{H}, \text { where } \mathrm{H}=\left(\mathrm{H}_{1}\right)^{-1} \\
& \Leftrightarrow \mathrm{~A}=\mathrm{A}^{*} \mathrm{H}, \text { where } \mathrm{H}=\left(\mathrm{H}_{1}\right)^{-1} \text { is a non - singular nxn matrix. }
\end{aligned}
$$

(6) $\Leftrightarrow(8):$

$$
\begin{aligned}
A A^{\dagger}=A^{\dagger} A & \Leftrightarrow A \text { is } q-E P \\
& \Leftrightarrow A^{*}=H_{1} A \text { for a non-singular nxn matrix } H ., \\
& \Leftrightarrow A=H_{1}^{-1} A^{*} \\
& \Leftrightarrow A=H A^{*} \text {, where } H=\left(H_{1}\right)^{-1} \text { is a non }- \text { singular matrix. }
\end{aligned}
$$

Thus equivalence of (7) $\Leftrightarrow(9)$ and $(8) \Leftrightarrow(10)$ follows immediately by taking conjugate transpose.
(9) \Leftrightarrow (11): $A^{*}=$ HA for a non - singular nxn matrix H .

$$
\begin{aligned}
& \Leftrightarrow A * A=H A A \\
& \Leftrightarrow A * A=H A^{2} \\
& \Leftrightarrow \operatorname{rk}\left(A^{*} A\right)=\operatorname{rk}\left(H A^{2}\right) \\
& \Leftrightarrow \operatorname{rk}\left(A^{*} A\right)=r k\left(A^{2}\right)
\end{aligned}
$$

Over the complex field, $\mathrm{A} * \mathrm{~A}$ and A have the same rank. Therefore,

$$
\begin{aligned}
\operatorname{rk}\left((A)^{2}\right) & =r k\left(A^{*} A\right)=r k(A)=r k\left(A^{*}\right) \\
& \Leftrightarrow \mathrm{R}\left(\mathrm{~A}^{*}\right) \cap \mathrm{N}\left(\mathrm{~A}^{*}\right)=\{0\} \\
& \Leftrightarrow \mathrm{R}\left(\mathrm{~A}^{*}\right) \cap \mathrm{N}(\mathrm{~A})=\{0\} \\
& \Leftrightarrow \mathrm{H}_{\mathrm{n}}=\mathrm{R}\left(\mathrm{~A}^{*}\right) \oplus \mathrm{N}(\mathrm{~A})
\end{aligned}
$$

This can be proved along the same line and using $\operatorname{rk}\left(A^{*}\right)=r k(A)$. Thus $(11) \Leftrightarrow(12)$
(11) $\Leftrightarrow(1)$: If $H_{n}=R\left(A^{*}\right) \oplus N(A)$ then $R\left(A^{*}\right) \bigcap N(A)=\{0\}$. For $x \in N(A), x \notin R(A)^{*} \Leftrightarrow x \in N(A)^{*}=N\left(A^{*}\right)$

Hence $N(A) \subseteq N\left(A^{*}\right)$ and $\operatorname{rk}(A)=r k\left(A^{*}\right)$

$$
\Leftrightarrow N(A)=N\left(A^{*}\right)
$$

$$
\Leftrightarrow \mathrm{A} \text { is } \mathrm{q}-\mathrm{EP}
$$

Thus (11) $\Leftrightarrow(1)$ holds. Similarly, we can prove (12) $\Leftrightarrow(1)$. Hence the theorem.
Theorem 2: If $A \in H_{n \times n}$ is normal and $A A *$ is $q-E P$ then A is $q-E P$.
Proof: Since A is normal, A is EP moreover AA* is q-EP.
$\Rightarrow \mathrm{R}\left(\mathrm{AA}^{*}\right)=\mathrm{R}\left(\left(\mathrm{AA}^{*}\right)^{*}\right)$
$\Rightarrow \mathrm{R}(\mathrm{A})=\mathrm{R}\left((\mathrm{A})^{*}\right)$
$\Rightarrow \mathrm{R}(\mathrm{A})=\mathrm{R}\left(\mathrm{A}^{*}\right)$
$\Rightarrow A$ is q-EP.
Hence the theorem.
Theorem 3: Let ' E ' be quaternion hermitian idempotent. Then $\mathrm{Hq}(\mathrm{E})=\{\mathrm{A}: \mathrm{A}$ is $\mathrm{q}-\mathrm{EP}$ and $\mathrm{R}(\mathrm{A})=\mathrm{R}(\mathrm{E})\}$ forms a maximal subgroup at $\mathrm{H}_{\mathrm{nxn}}$ containing E as identity.

Proof: Since E as identity is quaternion hermitian, it is automatically q-Ep. Thus $E \in H_{q}(E)$.
Next we shall prove that for any $\mathrm{A} \in \mathrm{Hq}(\mathrm{E})$ then $A^{\dagger} \in \mathrm{H}_{\mathrm{q}}(\mathrm{E})$. Now for any
$\mathrm{A} \in \mathrm{H}_{\mathrm{q}}(\mathrm{E}) \Leftrightarrow \mathrm{A}$ is $\mathrm{q}-\mathrm{EP}$ and $\mathrm{R}(\mathrm{A})=\mathrm{R}(\mathrm{E})$.

$$
\begin{aligned}
R\left(A^{\dagger}\right) & =R(A)^{\dagger}=R(A)^{*} \\
& =R\left(A^{*}\right) \\
& =R(A) \\
& =R(E)
\end{aligned}
$$

Thus $A^{\dagger} \in \mathrm{H}_{\mathrm{q}}(\mathrm{E})$. Since $\mathrm{E}=\mathrm{E}^{*}=\mathrm{E}^{2}$.
E being hermitian idempotent with $R(A)=R(E) . E$ is Projection on $R(A)$.

K. Gunasekaran, S. Sridevi* / On Range Quaternion Hermitian Matrices / IJMA- 6(8), August-2015.

Therefore
$\mathrm{E}=A A^{\dagger}=A^{\dagger} A$ that is $\mathrm{E}=$ for any $\mathrm{A} \in \mathrm{H}_{\mathrm{q}}(\mathrm{E})$.

Now $E A=A=A E \Rightarrow$ for every $A \in H_{q}(E)$ which shows that ' E ' is identity, for $H q(E)$. Now for any $A \in H_{q}(E)$ we have $A A^{\dagger}=E \Rightarrow A^{\dagger}$

That is $A A^{\dagger}=E \Rightarrow A^{\dagger}$ is the inverse of A .

Suppose A, B $\in H_{q}(E) \Rightarrow A$ and B are q-EP with $R(A)=R(E)=R(B)$.
Also rk $(A)=r k\left(A^{2}\right) . A B$ is $q-E P_{r} . \Rightarrow$ Moreover,
Thus $\mathrm{E}=A A^{\dagger}=A^{\dagger} A=B B^{\dagger}=B^{\dagger} B$
Now
$R(A B) \subseteq R(A)=R(E)$
$R(A B) \subseteq R(E)$
Therefore, $A B H_{q}(E)$ is closed under multiplication Thus we have shows that $\mathrm{H}_{\mathrm{q}}(\mathrm{E})$ is a subgroup of $\mathrm{H}_{\mathrm{nxn}}$ with identity E. Maximality of $\mathrm{H}_{\mathrm{q}}(\mathrm{E})$ follows from the theorem $\mathrm{H}(\mathrm{E})=\{$; Ais EP and $R(A)=R(E)\}$ forms a maximal subgroup containing E as identity" Hence the theorem.

Remark 6: Let $F=F^{2}=F^{*}$ be symmetric idempotent in $\mathrm{H}_{\mathrm{nxn}}$ Then
$\mathrm{H}(\mathrm{F})=\left\{B \in H_{n \times n}\right.$: Bis $q-E P$ and $\left.R(B)=R(F)\right\}$ is maximal Subgroup of $\mathrm{H}_{\mathrm{nxn}}$ Containing F as identity theorem 2.1, (4).

Theorem 4: $H_{q}(E)$ and $H(F)$ are isomorphic Subgroups of $H_{n \times n}$.
Proof: By defining the mapping $\phi: \mathrm{H}_{\mathrm{q}}(\mathrm{E}) \rightarrow \mathrm{H}(\mathrm{F})$ Such that $\phi(\mathrm{A})=$ A. One can Prove that ϕ is well defined, $1-1$, onto homomorphism. That is, ϕ is an isomorphism. Thus $H_{q}(E)$ and $H(F)$ are isomorphic subgroups of $H_{n x n}$. Hence the theorem.

Remark 7: For $\mathrm{A} \in \mathrm{H}_{\mathrm{nxn}}$ there exists q - hermitian matrices P and Q such that $\mathrm{A}=\mathrm{P}+\mathrm{Q}$ where $Q=x i+y j+z k, \mathrm{Q}$ is a matrix then $P=\frac{1}{2}\left(A+A^{*}\right)$ and $Q=\frac{1}{2}\left(A-A^{*}\right)$. In the following theorem equivalent condition for matrix A to be $q-E P$.

Theorem 5: For $A \in H_{n x n}$, A is $q-E P \Leftrightarrow N(A) \subseteq N(P)$ where P is the q - hermitian part of A.
Proof: If A is q-EP, then by the definition $N(A)=N\left(A^{*}\right) \Rightarrow N\left(A^{\dagger}\right)=N\left(A^{*}\right)$ Then for $\mathrm{x} \in \mathrm{N}(\mathrm{A})$, both $\mathrm{Ax}=0$ and $\mathrm{A} * \mathrm{x}=0$ which implied that $\mathrm{px}=\left[\frac{1}{2}\left(A+A^{*}\right)\right] x=0$

Thus $N(A) \subseteq N(P)$. Conversely, let $N(A) \subseteq N(P)$; then $A x=0 \Rightarrow P x=0$ and hence $Q x=0$. Therefore, $N(A) \subseteq N(Q)$. Thus $N(A) \subseteq N(P) \bigcap N(Q)$. Since both P and Q are q - hermition $P=P^{*}, Q=Q^{*}$

Hence $\mathrm{N}(\mathrm{P})=\mathrm{N}\left(\mathrm{P}^{*}\right)$ and $\mathrm{N}(\mathrm{Q})=\mathrm{N}\left(\mathrm{Q}^{*}\right)$
Now,
$N(A) \subseteq N(P) \cap N(Q)$

$$
\begin{aligned}
& =\mathrm{N}\left(\mathrm{P}^{*}\right) \cap \mathrm{N}\left(\mathrm{Q}^{*}\right) \\
& \subseteq \mathrm{N}\left(\mathrm{P}^{*}-\mathrm{Q}^{*}\right)
\end{aligned}
$$

Therefore, $N(A) \subseteq N\left(A^{*}\right)$ and $r k(A)=r k\left(A^{*}\right)$.Hence $N(A)=N\left(A^{*}\right)$. Thus A is $q-E P$.
Hence the the theorem.

REFERENCES

1. Baokett. TS and katz. IJ: Theorems on product EPr matrices; lin. Alg. Appl., 2, 87-103 (1969).
2. Ben Isreal.A and Greville.TNE: Generalized Inverses, Theory and Applications: wiley and sons, NewYork (1974).
3. Meenakshi.AR: On Epre matrices with entries from an arbitrary field; lin. and multi. Alg., 9, 159-164 (1980).
4. Schwedtfeger. H: Introduction to lin. Alg. and Theory of matrices; P. Noordhogt, Groningen (1962).
5. Zhang.F, Quaternions and matrices of quaternions, linear Algebra and its Application, 251 (1997), 21 - 57.

Source of support: Nil, Conflict of interest: None Declared

[Copy right © 2015. This is an Open Access article distributed under the terms of the International Journal of Mathematical Archive (IJMA), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.]

