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ABSTRACT
In this paper, we made an attempt to study the algebraic nature of intuitionistic fuzzy subbigroup of a bigroup.
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INTRODUCTION

In 1965, the fuzzy subset was introduced by L.A.Zadeh [10], after that several researchers explored on the
generalization of the concept of fuzzy sets. The concept of intuitionistic fuzzy subset was introduced by K.T.Atanassov
[2, 3], as a generalization of the notion of fuzzy set. The notion of fuzzy subgroups was introduced by Azriel Rosenfeld
[4]. Palaniappan.N & K.Arjunan [7] defined the intuitionistic fuzzy subgroups of a group. In this paper, we introduce
the some theorems in intuitionistic fuzzy subbigroup of a bigroup.

1. PRELIMINARIES

1.1 Definition: A set (G, +, ) with two binary operations + and e is called a bigroup if there exist two proper subsets
G;and G, of G such that (i) G = G;UG, (ii) (G, +) isa group (iii) (G,, e) is a group.

1.2 Definition: Let X be a non-empty set. A fuzzy subset A of X is a function A: X— [0, 1].

1.3 Definition: Let X be a non-empty set. A intuitionistic fuzzy subset A in X is defined as an object of the form
A= {< X, palX), va(x) >/ x in X}, where pa. X — [0, 1] and va. X — [0, 1] define the degree of membership and the
degree of non-membership of the element xe X respectively and for every xe X satisfying pa(x) + va(x) < 1.

1.4 Definition: Let (G, +) be a group. A fuzzy subset A of G is said to be a fuzzy subgroup of G if
pa(X=y) > min{pa(x), pa(y)} forall xand y in G.

1.5 Definition: Let (G, +) be a group. An intuitionistic fuzzy subset A of G is said to be an intuitionistic fuzzy
subgroup of G if it satisfies the following axioms:

() pa(x=y) = min {ua(X), nua(y)}
(i) va(x=y) <max {va(x), va(y)} for all xand y in G.
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1.6 Definition: Let G = (G,UG,, +, @) be a bigroup. Then a fuzzy set A of G is said to be a fuzzy subbigroup of G if
there exist two fuzzy subsets A; of G; and A, of G, such that (i) A=A;UA, (ii) A; is a fuzzy subgroup of (G, +)
(iii) A, is a fuzzy subgroup of (G,, e).

1.7 Definition: Let G = (G,UG,, +, ) be a bigroup. Then an intuitionistic fuzzy set A of G is said to be an intuitionistic
fuzzy subbigroup of G if there exist two intuitionistic fuzzy subsets A; of G; and A, of G, such that (i) A = AjUA,
(i) Ay is an intuitionistic fuzzy subgroup of (G, +) (iii) A; is an intuitionistic fuzzy subgroup of (G,, e).

1.8 Definition: Let A = MUN and B = OUP be any two intuitionistic fuzzy subbigroups of bigroups G = EUF and
H= 1uJ respectively. The product of A and B, denoted by AxB, is defined as AxB = (Mx0O) U (NxP) where
awvxo(X, Y) = min{pm(x), po(Y)}, vmxo(X, y) = max{vm(x), vo)} mnxe(X, Y) = min{un(x), pe(y)} and vn.e(X, y) =
max {vn(X), ve(y) }.

2. PROPERTIES

2.1 Theorem: If A = MUN is an intuitionistic fuzzy subbigroup of a bigroup G = EUF, then puu(—Xx) = um(X),
MM(X) < MM(E), VM(—X) = VM(X), VM(X) > VM(e) for all x, e in E, MN(Xil) = MN(X), MN(X) < },lN(e'), VN(Xil) = VN(X),
vn(X) = vy (e) for all x, e'in F.

2.2 Theorem: If A= MUN is an intuitionistic fuzzy subbigroup of a bigroup G = EUF, then
(1) pm(X+y) = um(y+x) if and only if uy(x) = um(-y+x+y) forall xand y in E
(i) pn(xy) = pn(yx) if and only if un(x) = pn(y™xy) for all xand y in F
(i) vp(x+y) = vpq(y+x) if and only if vy(X) = vpu(-y+x+y) forall xand y in E
(iv) va(xy) = vn(yx) if and only if vi(x) = va(y™'xy ) for all x and y in F.

Proof: (i) Let x and y belongs to E and e; be an identity element of E. Assume that uy(X+y) = um(y+x), then
um(=y+x+y) = pm(=y+y+x) = pm(ertx) = um(x). Therefore pupm(X) = um(—y+x+y) for all x and y in E. Conversely,
assume that py(X) = pm(=y+x+y), then py(x+y) = upm(x+y—x+x) = up(y+x). Therefore py(x+y) = um(y+x) for all x and
y in E. (ii) Let x and y belongs to F and e, be an identity element of F. Assume that uy(Xy) = un(yx), then
pn(Y ™ Xy) = pn(ylyx) = pn(ex) = pn(x). Therefore pn(x) = un(y ™ xy) for all x and y in F. Conversely, assume that
pn(X) = pun(y ™ xy), then pun(xy) = pn(xyxx™®) = pn(yx). Therefore pn(Xy) = pun(yx) for all x and y in F. (iii) Let x and
y belongs to E and e, be an identity element of E. Assume that vy(X+y) = vm(y+X), then vy(=y+x+y) = vy( —y+y+x) =
vm(e1+X) = vm(X). Therefore viy(x) = vm(-y+x+y) for all x and y in E.

Conversely, assume that viy(X) = vm(=y+x+y), then viy(X+y) = vpu(X+y—Xx+X) = vi(y+x).

Therefore v(x+y) = vu(y+x) for all x and y in E. (iv) Let x and y belongs to F and e, be an identity element of F.
Assume that vy(xy) = va(yxX), then vi(y ™ xy) = (Y yX) = va(e2x) = vn(X). Therefore vy(x) = vy(y™xy) for all x and y
in F. Conversely, assume that vy(x) = vn(y™Xy), then viy(xy) = vn(xyxx™) = vy(yx). Therefore vy(xy) = vn(yx) for all x
andyinF.

2.3 Theorem: Let A= MUN be an intuitionistic fuzzy subbigroup of a bigroup G = EUF. If
() nm(x) < pu(y), then pum(x+y) = pm(x) = pw(y+x) for all xand y in E
(i) nn(x) < pn(y), then un(xy) = un(X) = pn(yx) forall xand y in F
(i) vm(Xx) < v(y), then vu(x+y) = vm(y) = vm(y+x) for all x and y in E
(iv) va(X) < vn(Y), then vi(xy) = vn(Y) = vn(yx) for all x and y in F.

Proof: (i) Let x and y belongs to E. Assume that py(X) < pm(y), then ppu(x+y) = min{ um(x), um(y)} = um(x); and
am(x) = pm(xty—y) = min {um(x+y), pm(y)} = pm(x+y). Therefore pw(x+y) = pw(x) for all x and y in E. And
pa(y+x) = mind pm(y), pm()3= pu(X); and pu(x) = pm(=y+y+x) = min{um(y), pm(y+x)} = pu(y+x). Therefore
um(y+x) = um(x) for all x and y in E. Hence py(X+y) = um(X) = um(y+x) for all x and y in E. (ii) Let x and y belongs to
F. Assume that pn(x) < pn(y), then pn(xy) > min{un(x), pn()} = mu(¥); and pn(x) = pn(xyy™) > minfun(xy),
un(Y)} = pn(xy). Therefore un(xy) = pn(x) for all x and y in F. And un(yx) = min{un(y), un(¥)} = pn(x); and

(%) = pn(ytyx) = mind pa(y), pn(yX)} = un(yx). Therefore pn(yx) = pn(x) for all x and y in F. Hence pn(xy) = pn(X)
= un(yx) for all x and y in F. (iii) Let x and y belongs to E. Assume that viy(X) < vu(y), then vpu(x+y) < max{vu(x),
vmY)} = vm(y); and vy(y) = vu(— X+x+y) < max{vpm(x+y), vm(X)} = vm(x+y). Therefore vy (x+y) = vy(y) for all x and
y in E. And vy(y+x) < max{vm(y), vm(X)}= vm(y); and vu(y) = vm(y+x=x) < max{vm(x), vm(y+x)} = vm(y+Xx).
Therefore v(y+x) = v(y) for all x and y in E. Hence vi(x+y) = vm(y) = vm(y+x) for all x and y in E. (iv) Let x and y
belongs to F. Assume that vy(X) < vn(y), then va(xy) < max{va(X), va(y)} = va(y); and va(y) = va(Xxy) <
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max{vn(xy), vn(X)} = vn(Xy). Therefore vy(xy) = vn(y) for all x and y in F. And vy(yx) < max{ vn(Y), va(¥)} = vn(V);
and vn(y) = va(yxx™) < max{vn(x), va(yX)} = va(yx). Therefore va(yx) = v(y) for all x and y in F. Hence vy(xy) =
vn(Y) = vn(yx) forall x and y in F.

2.4 Theorem: Let A = MUN be an intuitionistic fuzzy subbigroup of a bigroup G = EUF. If
(D) pm(X) > pu(y), then pm(x+y) = pu(y) = pm(y+x) for all xand y in E
(il) pn(X) > pn(y), then pn(xy) = un(y) = pn(yx) forall xand y in F
(i) vm(x) > vm(y), then vy (x+y) = vpu(X) = vm(y+x) forall xand y in E
(iv) vn(X) > vn(y), then vy(Xy) = vn(X) = va(yX) for all x and y in F.

Proof: Itis trivial.

2.5 Theorem: Let A = MUN be an intuitionistic fuzzy subbigroup of a bigroup G = EUF. If (i) there is a sequence {x,}
in E such that ||m min { um(Xn), um(Xn)} = 1, then uy(e) = 1, where e, is the identity element in E, (ii) there is a

n—-a
sequence {x,} in F such that ||m min{ un(Xn), un(Xn)} = 1, then un(ez) = 1, where e, is the identity in F, (iii) there is
n—-a
a sequence {x,} in E such that | |m max { vm(X,), vm(Xn)} = 0, then v(e1) = 0, where e, is the identity element in E,
n—-a
(iv) there is a sequence {x,} in F such that | |m max{vn(Xn), vn(Xn)} = 0, then vy(e,) = O, where e, is the identity in F.

n-a

Proof: (i) Let e; be the identity element in E and X, in E. Then py(e1) = um(Xn — Xn) = min{um(Xn), pm(n)} = um(xn).
Therefore for each n, we have py(ey) > um(x,). But pwm(er) > ||m min{um(x,), um(X)} = 1. Therefore pu(e)) =1

n—->a

(ii) Let e, be the identity element in F and x, in F. Then pun(€2) = pn(Xn Xn™) > min{ pn(Xn), in(n)} = pin(Xn). Therefore
for each n, we have py(ez) > pn(Xs). But pn(e2) > | 1 mindun(a), in(Xa)}= 1. Therefore py(ez) = 1.

n—>a

(iii) Let e; be the identity element in E and X, in E. Then vy(ey) = vm(Xy — Xn) < max{vm(Xn), vm(*n)} = vm(Xn).
Therefore for each n, we have vy(e;) < vu(X,). But vy(e) < ||m max{vm(Xn), vm(Xn)} = 0. Therefore vy (ey) = 0. (iv)

n-a

Let e, be the identity element in F and x, in F. Then vy(€2) = v(Xa Xo*) < max{vn(Xn), vn(Xn)} = vn(Xn). Therefore for
each n, we have vy(ez) < vn(Xs). But va(e2) < | | max{vn(Xn), va(Xn)} = 0. Therefore vy(e;) = 0.

n-a

2.6 Theorem: If A = MUN and B = OUP are intuitionistic fuzzy subbigroups of the bigroups G = EUF and H = U],
respectively, then AxB = (MxO ) U (NxP ) is an intuitionistic fuzzy subbigroup of GxH = (ExI) U (FxJ).

Proof: Let x; and x, be in E, y; and y, be in I. Then (Xy, y1) and (X,, ¥,) are in Exl. Now pw.ol(X1, Y1) — (X2, Y2)]
tmo((Xi=X2), (Yi— ¥2)) = min{um(xi— X2), po(yi—y2)}= min{ min{um(xs), pm(x2)}, min{uo(ys), ro(y2)}}
min{min{um(X1), to(yn)} min{ pm(X2), to(y2)}}= min{um.o(X1, Y1), tmo(X2, Y2)}. Therefore ww.ol (X1, Y1) — (X2, ¥2)1=
min{pmo(Xe, Y1), tvo(Xz, Y2)}- And viol(Xe, Y1)—(X2, Y2)] = vmso( (X1—Xz2), (Y1~ Y2)) = max {vm(Xi— X2), vo(yi—Y2)}<
max{max{vm(x1), vm(*2)}, max{vo(ys), vo(y2)}} = max {max{vm(x1), vo(y)}, max {vm(x2), vo(y2)}} = max{vmo
(X1, Y1), Vmeo(X2, Y2)}. Therefore vy.ol(X1, Y1) — (X2, ¥2)] < max{vm.o(X1, Y1), vmo(X2, ¥2)}. Hence MxO is an
intuitionistic fuzzy subgroup of ExI. Let X; and x, be in F, y; and y, be in J. Then (X, y1) and (X,, y») are in FxJ. Also
e[ (6, YD (X2, ¥2)™'T = e (XaX2 ™, yay2 ™) = min {un(axe™), pe(yry2 D} = min {min{ pn(xq), pn(x2 )}, min{us(ys),
ue(y2)}}= min{min{un(x1), pe(yn)}, min{un(x2), ue(y2)}}=min{un.e(Xe, Y1), pn-e(X2, Y2)}. Therefore pn.e[(X1, Y1)
(X2 ¥2)'1 = min{une(Xe, Y1), te(Xer Y2} And el (X1, YD)(Xar ¥2)'] = vie(Xoxe ™, yiy2 ™) = max {vn(xaxz”),
ve(y1yz )} < max{max{vn(xs), vn(X2)} max{ve(ys), ve(y2)}} = max {max{vn(xy), ve(y)}, max{vn(xz), ve(y2)}}= max
{VNXp(Xl, yl), VNXP(X21 yz)} Therefore VNXp[(Xl, yl)(Xz, yz)_]'] < max {VNXp(Xl, yl), VNxP(XZy yz)} Therefore NxP is an
intuitionistic fuzzy subgroup of FxJ. Hence AxB is an intuitionistic fuzzy subbigroup of GxH.

2.7 Theorem: Let an intuitionistic fuzzy subbigroup A= MUN of a bigroup G = E\UF be conjugate to an intuitionistic
fuzzy subbigroup K = QUR of G = EUF and an intuitionistic fuzzy subbigroup B = OUP of a bigroup H = 1UJ be
conjugate to an intuitionistic fuzzy subbigroup L= SUT of H= luJ. Then an intuitionistic fuzzy subbigroup
AxB = (Mx0O) u (NxP) of a bigroup GxH = (ExI) u (FxJ) is conjugate to an intuitionistic fuzzy subbigroup
KxL = (QxS) U (RxT) of GxH = (ExI) U (FxJ).
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Proof: Let x, —x and f be in E and y, -y and g be in I. Then (X, y), (=X, =y) and (f, g) are in Exl. Now
mmo(f, ) = min {um(f), po(9)} = min{uo( X + f-X), sy + 9- ¥)} = nous(x+f=x, y+g-y) = po.sl(x, y) +(f, 9)+(—x, )]
= gl (X, Y)+(f, 9) — (%, y)]. Therefore pyv.off, 9) = poxs[(x, ) + (f, 9) —(x, Y)I. And vm.off, 9) = max{vwm(f), vo(9)} =
max{vo( X+F-X), vs( Y+g-Y)} = Vos(xHX, Y+g-y) = vous[(x, ¥) +(f, )+(=x, Y] = vous[(x, V(. 9) — (x, Y)].
Therefore vm.o(f, 9) = vaxs[(X, ¥) + (f. 9) — (X, y)]. Hence an intuitionistic fuzzy subgroup MxO of a group ExI is
conjugate to an intuitionistic fuzzy subgroup QxS of ExI. Let x, x* and f be in Fand y, y* and g be in J. Then (x, y),
(<%, y*) and (f, g) are in FxJ. Now pe(f, 9) = min {un(f), ue(9)} = min { pa( xfx?), pr( yoy™)} = prar(xfx™, ygy™) =
et Y)(F @) (¢ Y] = prarl(x, Y)(E 9)(x, ) 1. Therefore ue(f, @) = prerl (X, Y)(F 9)(X, y) 1. And vye(f, 9) =
max{vn(f), ve(g) 3= max{va( xfx™), vi( yay )} = ver( X, yay™) = vaal (%, Y)(E 9)(X", yHI = veal (x, Y)(E, 9)(x,
y) 1. Therefore ve(f, 9) = vrer[ (%, Y)(F, 9)(X, y)™]. Therefore an intuitionistic fuzzy subgroup NxP of a group FxJ is
conjugate to an intuitionistic fuzzy subgroup RxT of FxJ. Hence an intuitionistic fuzzy subbigroup
AxB = (Mx0O) u (NxP) of a bigroup GxH = (ExI) u (FxJ) is conjugate to an intuitionistic fuzzy subbigroup
KxL = (QxS) u (RxT) of GxH = (ExI) U (FxJ).

2.8 Theorem: Let A = MUN and B = OUP be intuitionistic fuzzy subsets of the bigroups G = EUF and H = 10,
respectively and AxB = (MxQO) u (NxP) be an intuitionistic fuzzy subbigroup of GxH = (Exl) U (FxJ). Then the
followings are true:

(i) if pm(X) < pol(er), vim(x) = vo(ey), then M is an intuitionistic fuzzy subgroup of E

(i) if pn(X) < pp(ey), un(X) = pp(ey), then N is an intuitionistic fuzzy subgroup of F

(iii) A'is an intuitionistic fuzzy subbigroup of G

(iv) if po(X) < um(e1), vo(x) = viu(ey), then O is an intuitionistic fuzzy subgroup of |

(V) if up(X) < un(er)), pe(X) = pn(er)), then P is an intuitionistic fuzzy subgroup of J

(vi) B is an intuitionistic fuzzy subbigroup of H

(vii) either A is an intuitionistic fuzzy subbigroup of G or B is an intuitionistic fuzzy subbigroup of H.

Proof: Let AxB = (MxQO) U (NxP) be an intuitionistic fuzzy subbigroup of GxH = (ExI) u (FxJ). (i) Let x and y be in
E and e, be in 1. Then (x, e,) and (y, e,) are in ExI. Using the property pum(X) < po(€2), vm(X) > vo(ez), we get up(x=y)
= min{um(X-y), Ho(e2t€2)}=pmxo((X=Y), (e2t€2))= mmxol(X, €2)+(=y, €2)] = min{um«o(X, €2), hvxo(=Y, €2)}= min{min
{um(X), po(e2)}, min{um(y), no(e2)}}= min{um(x), um(y)}. Therefore py(x—y) = min{um(x), wm(y)}or all x and y in
E. And vm(x=y) = max {vm(x-y), vo(e2t€2)} = vmxo((X-Y), (e2+€2)) = vmeol(X, e2)+(-y, €)] < max{vm.o(X, &),
vimxo(=Y, €)} = max{max{vm(x), vo(e2)}, max{vm(y), vo(e2)}} = max {vm(x), vm(y)}. Therefore vu(x-y) <
max{vu(X), vm(y)Hor all x and y in E. Hence M is an intuitionistic fuzzy subgroup of E. (ii) Let x and y be in F and &,'
be in J. Then (x, &,) and (y, &,) are in FxJ. Using the property pn(X) < pe(€2' ), va(X) > vp(e2), We get un(xy™) =
min{un(xy™), pe(e2' &)} = pnee( (XYY, (€2€2)) = mnwal(X, €)Y, €2)] = min{unua(X, €2), (Y™, €2)} = min
{min{un(x), pe(e2)}, minfun(y), ue(e2)} = min{un(x), un(y)}- Therefore un(xy™) = min{un(x), un(y)}or all x and y
in F. And vn(xy™) = max{vn(xy™), ve(e2'e2)} = vne((Xy™), (&2€2)) = viel(X, €)™, )] < max{vn.e(X, &),
V(Y™ €2)} = max{max{vn(x), ve(e2)}, max{vn(y), ve(e2)}} = max {vn(X), vn(y)}. Therefore vy(xy™) < max{ vn(X),
vn(y)} for all x and y in F. Hence N is an intuitionistic fuzzy subgroup of F. (iii) From (i) and (ii), A is an intuitionistic
fuzzy subbigroup of G. (iv) Let x and y be in | and e; be in E. Then (e;, X) and (e, y) are in ExI. Using the property
Ho(X) < pm(er ), vo(X) = vm(er ), we get po(x-y) = min {uo(X-y), pm(eiten)} = pmo( (€1ter), (X-y)) =
tm-ol(e1, X)+(e1,-Y)] = min{um.o(e1, X), tmxo(€1,~Y)} = min{min{um(es), po(X)}, min{um(es), ro(y)}} = min{uo(x),
uo(y)}. Therefore po(x—y) = min{uo(x), po(y)} for all x and y in 1. And vo(X—y) = max {vo(X-Yy), vm(ei+e))} =
vmo((e1t€1), (X=Y)) = vmxol (€1, X)+(e1,=Y)] < max{vm.o(e1, X), vmxo(€1,=Y)} = max{max{vwm(es), vo(x)}, max{vm(es),
vo(Y)}} = max {vo(X), vo(y)}. Therefore vo(X—y) < max{vo(X), vo(y)} for all x and y in I. Hence O is an intuitionistic
fuzzy subgroup of I (v) Let x and y be in J and e,' be in F. Then (e,', x) and (e{', y) are in FxJ. Using the property
Hp(X) < pn(er'), ve(X) = v(er'), we get pp(xy™)= min {up(xy™), un(er'e:r)} = unwe((er'er), (xy™)= pnnel(er, x) (e, y™)]
> min{ pe(er, ), pnee(er's Y3 = min{min{un(er), pe(x)}, min{un(er), e(y)3} = min {ue(x), pe(y)}. Therefore
pe(xy™) = min{up(x), pp(y)} for all x and y in J. And ve(xy™ ) = max {ve(xy™), vn(er'e:)} = vase( (e1'81), (xy™)) =
e[ (81, X)(e1', Y1) < max{vi.e(er', X), viep(er Y1)} = max{max{vn(es), ve(x)}, max{vn(es), ve(y)}} = max{ve(x),
ve(y)}. Therefore  vp(xy™) < max{ve(x), ve(y)} for all x and y in J. Hence P is an intuitionistic fuzzy subgroup of J.
(vi) From (iv) and (v), B is an intuitionistic fuzzy subbigroup of H. (vii) is clear.
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	(A(x(y) ≥ min {(A(x), (A(y)}
	(A(x(y) ≤ max {(A(x), (A(y)} for all x and y in G.

