International Journal of Mathematical Archive-6(8), 2015, 95-99 Available online through www.ijma.info ISSN 2229-5046

INTUITIONISTIC FUZZY SUBBIGROUPS OF A BIGROUP

A. BALASUBRAMANIAN*
Department of mathematics,

A. P. S. A. College, Tiruppattur- 630211, Tamilnadu, India.
K. L. MURUGANANTHA PRASAD

Department of Mathematics,
H. H. The Rajahs College, Pudukkottai - 622001, Tamilnadu, India.
K. ARJUNAN

Department of mathematics,
H. H. The Rajahs College, Pudukkottai - 622001, Tamilnadu, India.
(Received On: 05-08-15; Revised \& Accepted On: 07-09-15)

Abstract

In this paper, we made an attempt to study the algebraic nature of intuitionistic fuzzy subbigroup of a bigroup.

2000 AMS Subject classification: 03F55, 06D72, 08A72.
KeyWords: Bigroup, fuzzy subset, intuitionistic fuzzy subset, fuzzy subbigroup, intuitionistic fuzzy subbigroup, Product.

INTRODUCTION

In 1965, the fuzzy subset was introduced by L.A.Zadeh [10], after that several researchers explored on the generalization of the concept of fuzzy sets. The concept of intuitionistic fuzzy subset was introduced by K.T.Atanassov [2, 3], as a generalization of the notion of fuzzy set. The notion of fuzzy subgroups was introduced by Azriel Rosenfeld [4]. Palaniappan.N \& K.Arjunan [7] defined the intuitionistic fuzzy subgroups of a group. In this paper, we introduce the some theorems in intuitionistic fuzzy subbigroup of a bigroup.

1. PRELIMINARIES

1.1 Definition: A set $(G,+, \bullet)$ with two binary operations + and \bullet is called a bigroup if there exist two proper subsets G_{1} and G_{2} of G such that (i) $\mathrm{G}=\mathrm{G}_{1} \cup \mathrm{G}_{2}\left(\right.$ ii) $\left(\mathrm{G}_{1},+\right.$) is a group (iii) $\left(\mathrm{G}_{2}, \bullet\right)$ is a group.
1.2 Definition: Let X be a non-empty set. A fuzzy subset A of X is a function $A: X \rightarrow[0,1]$.
1.3 Definition: Let X be a non-empty set. A intuitionistic fuzzy subset A in X is defined as an object of the form $\mathrm{A}=\left\{<\mathrm{x}, \mu_{\mathrm{A}}(\mathrm{x}), v_{\mathrm{A}}(\mathrm{x})>/ \mathrm{x}\right.$ in X$\}$, where $\mu_{\mathrm{A}} \mathrm{X} \rightarrow[0,1]$ and $v_{\mathrm{A}} \mathrm{X} \rightarrow[0,1]$ define the degree of membership and the degree of non-membership of the element $x \in X$ respectively and for every $x \in X$ satisfying $\mu_{A}(x)+v_{A}(x) \leq 1$.
1.4 Definition: Let $(G,+)$ be a group. A fuzzy subset A of G is said to be a fuzzy subgroup of G if $\mu_{A}(x-y) \geq \min \left\{\mu_{A}(x), \mu_{A}(y)\right\}$ for all x and y in G.
1.5 Definition: Let ($G,+$) be a group. An intuitionistic fuzzy subset A of G is said to be an intuitionistic fuzzy subgroup of G if it satisfies the following axioms:
(i) $\mu_{\mathrm{A}}(\mathrm{x}-\mathrm{y}) \geq \min \left\{\mu_{\mathrm{A}}(\mathrm{x}), \mu_{\mathrm{A}}(\mathrm{y})\right\}$
(ii) $v_{A}(x-y) \leq \max \left\{v_{\mathrm{A}}(\mathrm{x}), v_{\mathrm{A}}(\mathrm{y})\right\}$ for all x and y in G .

Corresponding Author: A. Balasubramanian*
Department of mathematics, A. P. S. A. College, Tiruppattur- 630211, Tamilnadu, India.

1.6 Definition: Let $G=\left(G_{1} \cup G_{2},+, \bullet\right)$ be a bigroup. Then a fuzzy set A of G is said to be a fuzzy subbigroup of G if there exist two fuzzy subsets A_{1} of G_{1} and A_{2} of G_{2} such that (i) $A=A_{1} \cup A_{2}$ (ii) A_{1} is a fuzzy subgroup of $\left(G_{1},+\right)$ (iii) A_{2} is a fuzzy subgroup of $\left(G_{2}, \bullet\right)$.
1.7 Definition: Let $G=\left(G_{1} \cup G_{2},+, \bullet\right)$ be a bigroup. Then an intuitionistic fuzzy set A of G is said to be an intuitionistic fuzzy subbigroup of G if there exist two intuitionistic fuzzy subsets A_{1} of G_{1} and A_{2} of G_{2} such that (i) $A=A_{1} \cup A_{2}$ (ii) A_{1} is an intuitionistic fuzzy subgroup of $\left(G_{1},+\right)($ iii $) A_{2}$ is an intuitionistic fuzzy subgroup of $\left(G_{2}, \bullet\right)$.
1.8 Definition: Let $A=M \cup N$ and $B=O \cup P$ be any two intuitionistic fuzzy subbigroups of bigroups $G=E \cup F$ and $H=I \cup J$ respectively. The product of A and B, denoted by $A \times B$, is defined as $A \times B=(M \times O) \cup(N \times P)$ where $\mu_{\mathrm{M} \times \mathrm{O}}(\mathrm{x}, \mathrm{y})=\min \left\{\mu_{\mathrm{M}}(\mathrm{x}), \mu_{\mathrm{O}}(\mathrm{y})\right\}, v_{\mathrm{M} \times \mathrm{O}}(\mathrm{x}, \mathrm{y})=\max \left\{\mathrm{v}_{\mathrm{M}}(\mathrm{x}), v_{\mathrm{O}}(\mathrm{y})\right\}, \mu_{\mathrm{N} \times \mathrm{P}}(\mathrm{x}, \mathrm{y})=\min \left\{\mu_{\mathrm{N}}(\mathrm{x}), \mu_{\mathrm{P}}(\mathrm{y})\right\}$ and $v_{\mathrm{N} \times \mathrm{P}}(\mathrm{x}, \mathrm{y})=$ $\max \left\{v_{N}(x), v_{P}(y)\right\}$.

2. PROPERTIES

2.1 Theorem: If $A=M \cup N$ is an intuitionistic fuzzy subbigroup of a bigroup $G=E \cup F$, then $\mu_{M}(-x)=\mu_{M}(x)$, $\mu_{M}(x) \leq \mu_{M}(e), v_{M}(-x)=v_{M}(x), v_{M}(x) \geq v_{M}(e)$ for all x, e in $E, \mu_{N}\left(x^{-1}\right)=\mu_{N}(x), \mu_{N}(x) \leq \mu_{N}\left(e^{\prime}\right), v_{N}\left(x^{-1}\right)=v_{N}(x)$, $v_{\mathrm{N}}(\mathrm{x}) \geq v_{\mathrm{N}}\left(\mathrm{e}^{\prime}\right)$ for all x , e^{\prime} in F .
2.2 Theorem: If $A=M \cup N$ is an intuitionistic fuzzy subbigroup of a bigroup $G=E \cup F$, then
(i) $\mu_{\mathrm{M}}(\mathrm{x}+\mathrm{y})=\mu_{\mathrm{M}}(\mathrm{y}+\mathrm{x})$ if and only if $\mu_{\mathrm{M}}(\mathrm{x})=\mu_{\mathrm{M}}(-\mathrm{y}+\mathrm{x}+\mathrm{y})$ for all x and y in E
(ii) $\mu_{N}(x y)=\mu_{N}(y x)$ if and only if $\mu_{N}(x)=\mu_{N}\left(y^{-1} x y\right)$ for all x and y in F
(iii) $v_{M}(x+y)=v_{M}(y+x)$ if and only if $v_{M}(x)=v_{M}(-y+x+y)$ for all x and y in E
(iv) $v_{N}(x y)=v_{N}(y x)$ if and only if $v_{N}(x)=v_{N}\left(\mathrm{y}^{-1} \mathrm{xy}\right)$ for all x and y in F .

Proof: (i) Let x and y belongs to E and e_{1} be an identity element of E. Assume that $\mu_{M}(x+y)=\mu_{M}(y+x)$, then $\mu_{\mathrm{M}}(-\mathrm{y}+\mathrm{x}+\mathrm{y})=\mu_{\mathrm{M}}(-\mathrm{y}+\mathrm{y}+\mathrm{x})=\mu_{\mathrm{M}}\left(\mathrm{e}_{1}+\mathrm{x}\right)=\mu_{\mathrm{M}}(\mathrm{x})$. Therefore $\mu_{\mathrm{M}}(\mathrm{x})=\mu_{\mathrm{M}}(-\mathrm{y}+\mathrm{x}+\mathrm{y})$ for all x and y in E. Conversely, assume that $\mu_{M}(x)=\mu_{M}(-y+x+y)$, then $\mu_{M}(x+y)=\mu_{M}(x+y-x+x)=\mu_{M}(y+x)$. Therefore $\mu_{M}(x+y)=\mu_{M}(y+x)$ for all x and y in E. (ii) Let x and y belongs to F and e_{2} be an identity element of F. Assume that $\mu_{N}(x y)=\mu_{N}(y x)$, then $\mu_{\mathrm{N}}\left(\mathrm{y}^{-1} \mathrm{xy}\right)=\mu_{\mathrm{N}}\left(\mathrm{y}^{-1} \mathrm{yx}\right)=\mu_{\mathrm{N}}\left(\mathrm{e}_{2} \mathrm{x}\right)=\mu_{\mathrm{N}}(\mathrm{x})$. Therefore $\mu_{\mathrm{N}}(\mathrm{x})=\mu_{\mathrm{N}}\left(\mathrm{y}^{-1} \mathrm{xy}\right)$ for all x and y in F . Conversely, assume that $\mu_{N}(x)=\mu_{N}\left(y^{-1} x y\right)$, then $\mu_{N}(x y)=\mu_{N}\left(x y x x^{-1}\right)=\mu_{N}(y x)$. Therefore $\mu_{N}(x y)=\mu_{N}(y x)$ for all x and y in F. (iii) Let x and y belongs to E and e_{1} be an identity element of E. Assume that $v_{M}(x+y)=v_{M}(y+x)$, then $v_{M}(-y+x+y)=v_{M}(-y+y+x)=$ $v_{M}\left(e_{1}+x\right)=v_{M}(x)$. Therefore $v_{M}(x)=v_{M}(-y+x+y)$ for all x and y in E.

Conversely, assume that $v_{M}(x)=v_{M}(-y+x+y)$, then $v_{M}(x+y)=v_{M}(x+y-x+x)=v_{M}(y+x)$.
Therefore $v_{M}(x+y)=v_{M}(y+x)$ for all x and y in E. (iv) Let x and y belongs to F and e_{2} be an identity element of F. Assume that $v_{N}(x y)=v_{N}(y x)$, then $v_{N}\left(y^{-1} x y\right)=v_{N}\left(y^{-1} y x\right)=v_{N}\left(e_{2} x\right)=v_{N}(x)$. Therefore $v_{N}(x)=v_{N}\left(y^{-1} x y\right)$ for all x and y in F. Conversely, assume that $v_{N}(x)=v_{N}\left(y^{-1} x y\right)$, then $v_{N}(x y)=v_{N}\left(x y x x^{-1}\right)=v_{N}(y x)$. Therefore $v_{N}(x y)=v_{N}(y x)$ for all x and y in F .
2.3 Theorem: Let $A=M \cup N$ be an intuitionistic fuzzy subbigroup of a bigroup $G=E \cup F$. If
(i) $\mu_{M}(x)<\mu_{M}(y)$, then $\mu_{M}(x+y)=\mu_{M}(x)=\mu_{M}(y+x)$ for all x and y in E
(ii) $\mu_{\mathrm{N}}(\mathrm{x})<\mu_{\mathrm{N}}(\mathrm{y})$, then $\mu_{\mathrm{N}}(\mathrm{xy})=\mu_{\mathrm{N}}(\mathrm{x})=\mu_{\mathrm{N}}(\mathrm{yx})$ for all x and y in F
(iii) $v_{M}(x)<v_{M}(y)$, then $v_{M}(x+y)=v_{M}(y)=v_{M}(y+x)$ for all x and y in E
(iv) $v_{N}(x)<v_{N}(y)$, then $v_{N}(x y)=v_{N}(y)=v_{N}(y x)$ for all x and y in F.

Proof: (i) Let x and y belongs to E. Assume that $\mu_{M}(x)<\mu_{M}(y)$, then $\mu_{M}(x+y) \geq \min \left\{\mu_{M}(x), \mu_{M}(y)\right\}=\mu_{M}(x)$; and $\mu_{\mathrm{M}}(\mathrm{x})=\mu_{\mathrm{M}}(\mathrm{x}+\mathrm{y}-\mathrm{y}) \geq \min \left\{\mu_{\mathrm{M}}(\mathrm{x}+\mathrm{y}), \mu_{\mathrm{M}}(\mathrm{y})\right\}=\mu_{\mathrm{M}}(\mathrm{x}+\mathrm{y})$. Therefore $\mu_{\mathrm{M}}(\mathrm{x}+\mathrm{y})=\mu_{\mathrm{M}}(\mathrm{x})$ for all x and y in E. And $\mu_{M}(y+x) \geq \min \left\{\mu_{M}(y), \mu_{M}(x)\right\}=\mu_{M}(x)$; and $\mu_{M}(x)=\mu_{M}(-y+y+x) \geq \min \left\{\mu_{M}(y), \mu_{M}(y+x)\right\}=\mu_{M}(y+x)$. Therefore $\mu_{\mathrm{M}}(\mathrm{y}+\mathrm{x})=\mu_{\mathrm{M}}(\mathrm{x})$ for all x and y in E. Hence $\mu_{\mathrm{M}}(\mathrm{x}+\mathrm{y})=\mu_{\mathrm{M}}(\mathrm{x})=\mu_{\mathrm{M}}(\mathrm{y}+\mathrm{x})$ for all x and y in E. (ii) Let x and y belongs to F. Assume that $\mu_{N}(x)<\mu_{N}(y)$, then $\mu_{N}(x y) \geq \min \left\{\mu_{N}(x), \mu_{N}(y)\right\}=\mu_{N}(x)$; and $\mu_{N}(x)=\mu_{N}\left(x y y^{-1}\right) \geq \min \left\{\mu_{N}(x y)\right.$, $\left.\mu_{N}(y)\right\}=\mu_{N}(x y)$. Therefore $\mu_{N}(x y)=\mu_{N}(x)$ for all x and y in F. And $\mu_{N}(y x) \geq \min \left\{\mu_{N}(y), \mu_{N}(x)\right\}=\mu_{N}(x)$; and $\mu_{\mathrm{N}}(\mathrm{x})=\mu_{\mathrm{N}}\left(\mathrm{y}^{-1} \mathrm{yx}\right) \geq \min \left\{\mu_{\mathrm{N}}(\mathrm{y}), \mu_{\mathrm{N}}(\mathrm{yx})\right\}=\mu_{\mathrm{N}}(\mathrm{yx})$. Therefore $\mu_{\mathrm{N}}(\mathrm{yx})=\mu_{\mathrm{N}}(\mathrm{x})$ for all x and y in F. Hence $\mu_{\mathrm{N}}(\mathrm{xy})=\mu_{\mathrm{N}}(\mathrm{x})$ $=\mu_{\mathrm{N}}(\mathrm{yx})$ for all x and y in F. (iii) Let x and y belongs to E. Assume that $v_{M}(\mathrm{x})<v_{\mathrm{M}}(\mathrm{y})$, then $v_{\mathrm{M}}(\mathrm{x}+\mathrm{y}) \leq \max \left\{v_{\mathrm{M}}(\mathrm{x})\right.$, $\left.v_{M}(\mathrm{y})\right\}=v_{\mathrm{M}}(\mathrm{y})$; and $v_{\mathrm{M}}(\mathrm{y})=v_{\mathrm{M}}(-\mathrm{x}+\mathrm{x}+\mathrm{y}) \leq \max \left\{\mathrm{v}_{\mathrm{M}}(\mathrm{x}+\mathrm{y}), v_{\mathrm{M}}(\mathrm{x})\right\}=v_{\mathrm{M}}(\mathrm{x}+\mathrm{y})$. Therefore $v_{\mathrm{M}}(\mathrm{x}+\mathrm{y})=v_{\mathrm{M}}(\mathrm{y})$ for all x and y in E. And $v_{M}(y+x) \leq \max \left\{v_{M}(y), v_{M}(x)\right\}=v_{M}(y)$; and $v_{M}(y)=v_{M}(y+x-x) \leq \max \left\{v_{M}(x), v_{M}(y+x)\right\}=v_{M}(y+x)$. Therefore $v_{M}(y+x)=v_{M}(y)$ for all x and y in E. Hence $v_{M}(x+y)=v_{M}(y)=v_{M}(y+x)$ for all x and y in E. (iv) Let x and y belongs to F. Assume that $v_{N}(x)<v_{N}(y)$, then $v_{N}(x y) \leq \max \left\{v_{N}(x), v_{N}(y)\right\}=v_{N}(y)$; and $v_{N}(y)=v_{N}\left(x^{-1} x y\right) \leq$
$\max \left\{v_{N}(x y), v_{N}(x)\right\}=v_{N}(x y)$. Therefore $v_{N}(x y)=v_{N}(y)$ for all x and y in F. And $v_{N}(y x) \leq \max \left\{v_{N}(y), v_{N}(x)\right\}=v_{N}(y)$; and $v_{N}(y)=v_{N}\left(y x x^{-1}\right) \leq \max \left\{v_{N}(x), v_{N}(y x)\right\}=v_{N}(y x)$. Therefore $v_{N}(y x)=v_{N}(y)$ for all x and y in F. Hence $v_{N}(x y)=$ $v_{N}(y)=v_{N}(y x)$ for all x and y in F.
2.4 Theorem: Let $A=M \cup N$ be an intuitionistic fuzzy subbigroup of a bigroup $G=E \cup F$. If
(i) $\mu_{\mathrm{M}}(\mathrm{x})>\mu_{\mathrm{M}}(\mathrm{y})$, then $\mu_{\mathrm{M}}(\mathrm{x}+\mathrm{y})=\mu_{\mathrm{M}}(\mathrm{y})=\mu_{\mathrm{M}}(\mathrm{y}+\mathrm{x})$ for all x and y in E
(ii) $\mu_{\mathrm{N}}(\mathrm{x})>\mu_{\mathrm{N}}(\mathrm{y})$, then $\mu_{\mathrm{N}}(\mathrm{xy})=\mu_{\mathrm{N}}(\mathrm{y})=\mu_{\mathrm{N}}(\mathrm{yx})$ for all x and y in F
(iii) $v_{M}(x)>v_{M}(y)$, then $v_{M}(x+y)=v_{M}(x)=v_{M}(y+x)$ for all x and y in E
(iv) $v_{N}(x)>v_{N}(y)$, then $v_{N}(x y)=v_{N}(x)=v_{N}(y x)$ for all x and y in F.

Proof: It is trivial.
2.5 Theorem: Let $A=M \cup N$ be an intuitionistic fuzzy subbigroup of a bigroup $G=E \cup F$. If (i) there is a sequence $\left\{x_{n}\right\}$ in E such that $\lim _{n \rightarrow \alpha} \min \left\{\mu_{M}\left(\mathrm{x}_{\mathrm{n}}\right), \mu_{\mathrm{M}}\left(\mathrm{x}_{\mathrm{n}}\right)\right\}=1$, then $\mu_{\mathrm{M}}\left(\mathrm{e}_{1}\right)=1$, where e_{1} is the identity element in E , (ii) there is a sequence $\left\{\mathrm{x}_{\mathrm{n}}\right\}$ in F such that $\lim _{n \rightarrow \alpha} \min \left\{\mu_{\mathrm{N}}\left(\mathrm{x}_{\mathrm{n}}\right), \mu_{\mathrm{N}}\left(\mathrm{x}_{\mathrm{n}}\right)\right\}=1$, then $\mu_{\mathrm{N}}\left(\mathrm{e}_{2}\right)=1$, where e_{2} is the identity in F , (iii) there is a sequence $\left\{x_{n}\right\}$ in E such that $\lim _{n \rightarrow \alpha} \max \left\{v_{M}\left(x_{n}\right), v_{M}\left(x_{n}\right)\right\}=0$, then $v_{M}\left(e_{1}\right)=0$, where e_{1} is the identity element in E, (iv) there is a sequence $\left\{\mathrm{x}_{\mathrm{n}}\right\}$ in F such that $\lim _{n \rightarrow \alpha} \max \left\{v_{N}\left(\mathrm{x}_{\mathrm{n}}\right), v_{N}\left(\mathrm{x}_{\mathrm{n}}\right)\right\}=0$, then $v_{N}\left(\mathrm{e}_{2}\right)=0$, where e_{2} is the identity in F .

Proof: (i) Let e_{1} be the identity element in E and x_{n} in E. Then $\mu_{M}\left(e_{1}\right)=\mu_{M}\left(x_{n}-x_{n}\right) \geq \min \left\{\mu_{M}\left(x_{n}\right), \mu_{M}\left(x_{n}\right)\right\}=\mu_{M}\left(x_{n}\right)$. Therefore for each n, we have $\mu_{M}\left(e_{1}\right) \geq \mu_{M}\left(x_{n}\right)$. But $\mu_{M}\left(e_{1}\right) \geq \lim _{n \rightarrow \alpha} \min \left\{\mu_{M}\left(x_{n}\right), \mu_{M}\left(x_{n}\right)\right\}=1$. Therefore $\mu_{M}\left(e_{1}\right)=1$ (ii) Let e_{2} be the identity element in F and x_{n} in F . Then $\mu_{N}\left(\mathrm{e}_{2}\right)=\mu_{\mathrm{N}}\left(\mathrm{x}_{\mathrm{n}} \mathrm{X}_{\mathrm{n}}{ }^{-1}\right) \geq \min \left\{\mu_{\mathrm{N}}\left(\mathrm{x}_{\mathrm{n}}\right), \mu_{\mathrm{N}}\left(\mathrm{x}_{\mathrm{n}}\right)\right\}=\mu_{\mathrm{N}}\left(\mathrm{x}_{\mathrm{n}}\right)$. Therefore for each n, we have $\mu_{N}\left(e_{2}\right) \geq \mu_{N}\left(x_{n}\right)$. But $\mu_{N}\left(e_{2}\right) \geq \lim _{n \rightarrow \alpha} \min \left\{\mu_{N}\left(x_{n}\right), \mu_{N}\left(x_{n}\right)\right\}=1$. Therefore $\mu_{N}\left(e_{2}\right)=1$.
(iii) Let e_{1} be the identity element in E and x_{n} in E. Then $v_{M}\left(e_{1}\right)=v_{M}\left(x_{n}-x_{n}\right) \leq \max \left\{v_{M}\left(x_{n}\right), v_{M}\left(x_{n}\right)\right\}=v_{M}\left(x_{n}\right)$. Therefore for each n, we have $v_{M}\left(e_{1}\right) \leq v_{M}\left(X_{n}\right)$. But $v_{M}\left(e_{1}\right) \leq \lim _{n \rightarrow \alpha} \max \left\{v_{M}\left(X_{n}\right), v_{M}\left(x_{n}\right)\right\}=0$. Therefore $v_{M}\left(e_{1}\right)=0$. (iv) Let e_{2} be the identity element in F and x_{n} in F. Then $v_{N}\left(e_{2}\right)=v_{N}\left(x_{n} x_{n}{ }^{-1}\right) \leq \max \left\{v_{N}\left(x_{n}\right), v_{N}\left(x_{n}\right)\right\}=v_{N}\left(x_{n}\right)$. Therefore for each n, we have $v_{N}\left(e_{2}\right) \leq v_{N}\left(x_{n}\right)$. But $v_{N}\left(e_{2}\right) \leq \lim _{n \rightarrow \alpha} \max \left\{v_{N}\left(x_{n}\right), v_{N}\left(x_{n}\right)\right\}=0$. Therefore $v_{N}\left(e_{2}\right)=0$.
2.6 Theorem: If $A=M \cup N$ and $B=O \cup P$ are intuitionistic fuzzy subbigroups of the bigroups $G=E \cup F$ and $H=I \cup J$, respectively, then $A \times B=(M \times O) \cup(N \times P)$ is an intuitionistic fuzzy subbigroup of $G \times H=(E \times I) \cup(F \times J)$.

Proof: Let x_{1} and x_{2} be in E, y_{1} and y_{2} be in I. Then $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ are in E×I. Now $\mu_{M \times 0}\left[\left(x_{1}, y_{1}\right)-\left(x_{2}, y_{2}\right)\right]=$ $\mu_{\mathrm{M} \times \mathrm{O}}\left(\left(\mathrm{x}_{1}-\mathrm{x}_{2}\right),\left(\mathrm{y}_{1}-\mathrm{y}_{2}\right)\right)=\min \left\{\mu_{\mathrm{M}}\left(\mathrm{x}_{1}-\mathrm{x}_{2}\right), \mu_{\mathrm{O}}\left(\mathrm{y}_{1}-\mathrm{y}_{2}\right)\right\} \geq \min \left\{\min \left\{\mu_{\mathrm{M}}\left(\mathrm{x}_{1}\right), \mu_{\mathrm{M}}\left(\mathrm{x}_{2}\right)\right\}, \min \left\{\mu_{\mathrm{O}}\left(\mathrm{y}_{1}\right), \mu_{\mathrm{O}}\left(\mathrm{y}_{2}\right)\right\}\right\}=$ $\min \left\{\min \left\{\mu_{\mathrm{M}}\left(\mathrm{x}_{1}\right), \mu_{\mathrm{O}}\left(\mathrm{y}_{1}\right)\right\}, \min \left\{\mu_{\mathrm{M}}\left(\mathrm{x}_{2}\right), \mu_{\mathrm{O}}\left(\mathrm{y}_{2}\right)\right\}\right\}=\min \left\{\mu_{\mathrm{M} \times \mathrm{O}}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right), \mu_{\mathrm{M} \times \mathrm{O}}\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)\right\}$. Therefore $\mu_{\mathrm{M} \times \mathrm{O}}\left[\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)-\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)\right] \geq$ $\min \left\{\mu_{\mathrm{M} \times \mathrm{O}}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right), \mu_{\mathrm{M} \times \mathrm{O}}\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)\right\}$. And $v_{\mathrm{M} \times \mathrm{O}}\left[\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)-\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)\right]=v_{\mathrm{M} \times \mathrm{O}}\left(\left(\mathrm{x}_{1}-\mathrm{x}_{2}\right),\left(\mathrm{y}_{1}-\mathrm{y}_{2}\right)\right)=\max \left\{\mathrm{v}_{\mathrm{M}}\left(\mathrm{x}_{1}-\mathrm{x}_{2}\right), v_{\mathrm{O}}\left(\mathrm{y}_{1}-\mathrm{y}_{2}\right)\right\} \leq$ $\max \left\{\max \left\{\mathrm{v}_{\mathrm{M}}\left(\mathrm{x}_{1}\right), \mathrm{v}_{\mathrm{M}}\left(\mathrm{x}_{2}\right)\right\}, \max \left\{\mathrm{v}_{\mathrm{O}}\left(\mathrm{y}_{1}\right), \mathrm{v}_{\mathrm{O}}\left(\mathrm{y}_{2}\right)\right\}\right\}=\max \left\{\max \left\{\mathrm{v}_{\mathrm{M}}\left(\mathrm{x}_{1}\right), \mathrm{v}_{\mathrm{O}}\left(\mathrm{y}_{1}\right)\right\}, \max \left\{\mathrm{v}_{\mathrm{M}}\left(\mathrm{x}_{2}\right), \mathrm{v}_{\mathrm{O}}\left(\mathrm{y}_{2}\right)\right\}\right\}=\max \left\{\mathrm{v}_{\mathrm{M} \times \mathrm{O}}\right.$ $\left.\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right), \mathrm{v}_{\mathrm{M} \times \mathrm{O}}\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)\right\}$. Therefore $\mathrm{v}_{\mathrm{M} \times \mathrm{O}}\left[\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)-\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)\right] \leq \max \left\{\mathrm{v}_{\mathrm{M} \times \mathrm{O}}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right), \mathrm{v}_{\mathrm{M} \times \mathrm{O}}\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)\right\}$. Hence $\mathrm{M} \times \mathrm{O}$ is an intuitionistic fuzzy subgroup of $E \times I$. Let x_{1} and x_{2} be in F, y_{1} and y_{2} be in J. Then (x_{1}, y_{1}) and (x_{2}, y_{2}) are in $F \times J$. Also $\mu_{\mathrm{N} \times \mathrm{P}}\left[\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)^{-1}\right]=\mu_{\mathrm{N} \times \mathrm{P}}\left(\mathrm{x}_{1} \mathrm{x}_{2}{ }^{-1}, \mathrm{y}_{1} \mathrm{y}_{2}{ }^{-1}\right)=\min \left\{\mu_{\mathrm{N}}\left(\mathrm{x}_{1} \mathrm{x}_{2}{ }^{-1}\right), \mu_{\mathrm{P}}\left(\mathrm{y}_{1} \mathrm{y}_{2}{ }^{-1}\right)\right\} \geq \min \left\{\min \left\{\mu_{\mathrm{N}}\left(\mathrm{x}_{1}\right), \mu_{\mathrm{N}}\left(\mathrm{x}_{2}\right)\right\}, \min \left\{\mu_{\mathrm{P}}\left(\mathrm{y}_{1}\right)\right.\right.$, $\left.\left.\mu_{\mathrm{P}}\left(\mathrm{y}_{2}\right)\right\}\right\}=\min \left\{\min \left\{\mu_{\mathrm{N}}\left(\mathrm{x}_{1}\right), \mu_{\mathrm{P}}\left(\mathrm{y}_{1}\right)\right\}, \min \left\{\mu_{\mathrm{N}}\left(\mathrm{x}_{2}\right), \mu_{\mathrm{P}}\left(\mathrm{y}_{2}\right)\right\}\right\}=\min \left\{\mu_{\mathrm{N} \times \mathrm{P}}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right), \mu_{\mathrm{N} \times \mathrm{P}}\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)\right\}$. Therefore $\mu_{\mathrm{N} \times \mathrm{P}}\left[\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)\right.$ $\left.\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)^{-1}\right] \geq \min \left\{\mu_{\mathrm{N} \times \mathrm{P}}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right), \mu_{\mathrm{N} \times \mathrm{P}}\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)\right\}$. And $v_{\mathrm{N} \times \mathrm{P}}\left[\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)^{-1}\right]=v_{\mathrm{N} \times \mathrm{P}}\left(\mathrm{x}_{1} \mathrm{x}_{2}{ }^{-1}, \mathrm{y}_{1} \mathrm{y}_{2}{ }^{-1}\right)=\max \left\{v_{\mathrm{N}}\left(\mathrm{x}_{1} \mathrm{x}_{2}{ }^{-1}\right)\right.$, $\left.v_{P}\left(\mathrm{y}_{1} \mathrm{y}_{2}{ }^{-1}\right)\right\} \leq \max \left\{\max \left\{v_{\mathrm{N}}\left(\mathrm{x}_{1}\right), v_{\mathrm{N}}\left(\mathrm{x}_{2}\right)\right\}, \max \left\{\mathrm{v}_{\mathrm{P}}\left(\mathrm{y}_{1}\right), v_{\mathrm{P}}\left(\mathrm{y}_{2}\right)\right\}\right\}=\max \left\{\max \left\{\mathrm{v}_{\mathrm{N}}\left(\mathrm{x}_{1}\right), v_{\mathrm{P}}\left(\mathrm{y}_{1}\right)\right\}, \max \left\{v_{\mathrm{N}}\left(\mathrm{x}_{2}\right), v_{\mathrm{P}}\left(\mathrm{y}_{2}\right)\right\}\right\}=\max$ $\left\{v_{N \times P}\left(x_{1}, y_{1}\right), v_{N \times P}\left(x_{2}, y_{2}\right)\right\}$. Therefore $v_{N \times P}\left[\left(x_{1}, y_{1}\right)\left(x_{2}, y_{2}\right)^{-1}\right] \leq \max \left\{v_{N \times P}\left(x_{1}, y_{1}\right), v_{N \times P}\left(x_{2}, y_{2}\right)\right\}$. Therefore $N \times P$ is an intuitionistic fuzzy subgroup of $\mathrm{F} \times \mathrm{J}$. Hence $\mathrm{A} \times \mathrm{B}$ is an intuitionistic fuzzy subbigroup of $\mathrm{G} \times \mathrm{H}$.
2.7 Theorem: Let an intuitionistic fuzzy subbigroup $A=M \cup N$ of a bigroup $G=E \cup F$ be conjugate to an intuitionistic fuzzy subbigroup $K=Q \cup R$ of $G=E \cup F$ and an intuitionistic fuzzy subbigroup $B=O \cup P$ of a bigroup $H=I \cup J$ be conjugate to an intuitionistic fuzzy subbigroup $\mathrm{L}=\mathrm{S} \cup \mathrm{T}$ of $\mathrm{H}=\mathrm{I} \cup \mathrm{J}$. Then an intuitionistic fuzzy subbigroup $\mathrm{A} \times \mathrm{B}=(\mathrm{M} \times \mathrm{O}) \cup(\mathrm{N} \times \mathrm{P})$ of a bigroup $\mathrm{G} \times \mathrm{H}=(\mathrm{E} \times \mathrm{I}) \cup(\mathrm{F} \times \mathrm{J})$ is conjugate to an intuitionistic fuzzy subbigroup $K \times L=(Q \times S) \cup(R \times T)$ of $G \times H=(E \times I) \cup(F \times J)$.

Proof: Let $\mathrm{x},-\mathrm{x}$ and f be in E and $\mathrm{y},-\mathrm{y}$ and g be in I . Then ($\mathrm{x}, \mathrm{y}),(-\mathrm{x},-\mathrm{y})$ and (f,g) are in ExI. Now $\mu_{\mathrm{M} \times \mathrm{O}}(\mathrm{f}, \mathrm{g})=\min \left\{\mu_{\mathrm{M}}(\mathrm{f}), \mu_{\mathrm{O}}(\mathrm{g})\right\}=\min \left\{\mu_{\mathrm{Q}}(\mathrm{x}+\mathrm{f}-\mathrm{x}), \mu_{\mathrm{S}}(\mathrm{y}+\mathrm{g}-\mathrm{y})\right\}=\mu_{\mathrm{Q} \times \mathrm{S}}(\mathrm{x}+\mathrm{f}-\mathrm{x}, \mathrm{y}+\mathrm{g}-\mathrm{y})=\mu_{\mathrm{Q} \times \mathrm{S}}[(\mathrm{x}, \mathrm{y})+(\mathrm{f}, \mathrm{g})+(-\mathrm{x},-\mathrm{y})]$ $=\mu_{\mathrm{Q} \times \mathrm{S}}[(\mathrm{x}, \mathrm{y})+(\mathrm{f}, \mathrm{g})-(\mathrm{x}, \mathrm{y})]$. Therefore $\mu_{\mathrm{M} \times \mathrm{O}}(\mathrm{f}, \mathrm{g})=\mu_{\mathrm{Q} \times \mathrm{S}}[(\mathrm{x}, \mathrm{y})+(\mathrm{f}, \mathrm{g})-(\mathrm{x}, \mathrm{y})]$. And $v_{\mathrm{M} \times \mathrm{O}}(\mathrm{f}, \mathrm{g})=\max \left\{\mathrm{v}_{\mathrm{M}}(\mathrm{f}), v_{\mathrm{o}}(\mathrm{g})\right\}=$ $\max \left\{v_{\mathrm{Q}}(\mathrm{x}+\mathrm{f}-\mathrm{x}), v_{\mathrm{S}}(\mathrm{y}+\mathrm{g}-\mathrm{y})\right\}=v_{\mathrm{Q} \times \mathrm{S}}(\mathrm{x}+\mathrm{f}-\mathrm{x}, \mathrm{y}+\mathrm{g}-\mathrm{y})=\mathrm{v}_{\mathrm{Q} \times \mathrm{S}}[(\mathrm{x}, \mathrm{y})+(\mathrm{f}, \mathrm{g})+(-\mathrm{x},-\mathrm{y})]=\mathrm{v}_{\mathrm{Q} \times 5}[(\mathrm{x}, \mathrm{y})+(\mathrm{f}, \mathrm{g})-(\mathrm{x}, \mathrm{y})]$. Therefore $v_{\mathrm{M} \times \mathrm{O}}(\mathrm{f}, \mathrm{g})=\mathrm{v}_{\mathrm{Q} \times} \leq[(\mathrm{x}, \mathrm{y})+(\mathrm{f}, \mathrm{g})-(\mathrm{x}, \mathrm{y})]$. Hence an intuitionistic fuzzy subgroup $\mathrm{M} \times \mathrm{O}$ of a group $\mathrm{E} \times \mathrm{I}$ is conjugate to an intuitionistic fuzzy subgroup $\mathrm{Q} \times$ S of $\mathrm{E} \times \mathrm{I}$. Let $\mathrm{x}, \mathrm{x}^{-1}$ and f be in F and $\mathrm{y}, \mathrm{y}^{-1}$ and g be in J . Then (x, y), $\left(\mathrm{x}^{-1}, \mathrm{y}^{-1}\right)$ and (f, g) are in $\mathrm{F} \times \mathrm{J}$. Now $\mu_{\mathrm{N} \times \mathrm{P}}(\mathrm{f}, \mathrm{g})=\min \left\{\mu_{\mathrm{N}}(\mathrm{f}), \mu_{\mathrm{P}}(\mathrm{g})\right\}=\min \left\{\mu_{\mathrm{R}}\left(\mathrm{xfx}^{-1}\right), \mu_{\mathrm{T}}\left(\mathrm{ygy}^{-1}\right)\right\}=\mu_{\mathrm{R} \times \mathrm{T}}\left(\mathrm{xfx}^{-1}, \mathrm{ygy}^{-1}\right)=$ $\mu_{\mathrm{R} \times \mathrm{T}}\left[(\mathrm{x}, \mathrm{y})(\mathrm{f}, \mathrm{g}) \quad\left(\mathrm{x}^{-1}, \mathrm{y}^{-1}\right)\right]=\mu_{\mathrm{R} \times \mathrm{T}}\left[(\mathrm{x}, \mathrm{y})(\mathrm{f}, \mathrm{g})(\mathrm{x}, \mathrm{y})^{-1}\right]$. Therefore $\mu_{\mathrm{N} \times \mathrm{P}}(\mathrm{f}, \mathrm{g})=\mu_{\mathrm{R} \times \mathrm{T}}\left[(\mathrm{x}, \mathrm{y})(\mathrm{f}, \mathrm{g})(\mathrm{x}, \mathrm{y})^{-1}\right]$. And $v_{\mathrm{N} \times \mathrm{P}}(\mathrm{f}, \mathrm{g})=$ $\max \left\{v_{\mathrm{N}}(\mathrm{f}), v_{\mathrm{P}}(\mathrm{g})\right\}=\max \left\{v_{\mathrm{R}}\left(\mathrm{xfx}{ }^{-1}\right), v_{\mathrm{T}}\left(\mathrm{ygy}^{-1}\right)\right\}=v_{\mathrm{R} \times \mathrm{T}}\left(\mathrm{xfx}{ }^{-1}, \operatorname{ygy}^{-1}\right)=v_{\mathrm{R} \times \mathrm{T}}\left[(\mathrm{x}, \mathrm{y})(\mathrm{f}, \mathrm{g})\left(\mathrm{x}^{-1}, \mathrm{y}^{-1}\right)\right]=v_{\mathrm{R} \times \mathrm{T}}[(\mathrm{x}, \mathrm{y})(\mathrm{f}, \mathrm{g})(\mathrm{x}$, $\left.y)^{-1}\right]$. Therefore $v_{\mathrm{N} \times \mathrm{P}}(\mathrm{f}, \mathrm{g})=v_{\mathrm{R} \times \mathrm{T}}\left[(\mathrm{x}, \mathrm{y})(\mathrm{f}, \mathrm{g})(\mathrm{x}, \mathrm{y})^{-1}\right]$. Therefore an intuitionistic fuzzy subgroup $\mathrm{N} \times \mathrm{P}$ of a group $\mathrm{F} \times \mathrm{J}$ is conjugate to an intuitionistic fuzzy subgroup $\mathrm{R} \times \mathrm{T}$ of $\mathrm{F} \times \mathrm{J}$. Hence an intuitionistic fuzzy subbigroup $\mathrm{A} \times \mathrm{B}=(\mathrm{M} \times \mathrm{O}) \cup(\mathrm{N} \times \mathrm{P})$ of a bigroup $\mathrm{G} \times \mathrm{H}=(\mathrm{E} \times \mathrm{I}) \cup(\mathrm{F} \times \mathrm{J})$ is conjugate to an intuitionistic fuzzy subbigroup $K \times L=(Q \times S) \cup(R \times T)$ of $G \times H=(E \times I) \cup(F \times J)$.
2.8 Theorem: Let $A=M \cup N$ and $B=O \cup P$ be intuitionistic fuzzy subsets of the bigroups $G=E \cup F$ and $H=I \cup J$, respectively and $A \times B=(M \times O) \cup(N \times P)$ be an intuitionistic fuzzy subbigroup of $G \times H=(E \times I) \cup(F \times J)$. Then the followings are true:
(i) if $\mu_{M}(x) \leq \mu_{0}\left(e_{2}\right), v_{M}(x) \geq v_{O}\left(e_{2}\right)$, then M is an intuitionistic fuzzy subgroup of E
(ii) if $\mu_{N}(x) \leq \mu_{P}\left(e_{2}^{\prime}\right), \mu_{N}(x) \geq \mu_{P}\left(e_{2}\right)$, then N is an intuitionistic fuzzy subgroup of F
(iii) A is an intuitionistic fuzzy subbigroup of G
(iv) if $\mu_{O}(x) \leq \mu_{M}\left(e_{1}\right), v_{O}(x) \geq v_{M}\left(e_{1}\right)$, then O is an intuitionistic fuzzy subgroup of I
(v) if $\mu_{P}(x) \leq \mu_{N}\left(e_{1}^{1}\right), \mu_{P}(x) \geq \mu_{N}\left(e_{1}{ }^{\prime}\right)$, then P is an intuitionistic fuzzy subgroup of J
(vi) B is an intuitionistic fuzzy subbigroup of H
(vii) either A is an intuitionistic fuzzy subbigroup of G or B is an intuitionistic fuzzy subbigroup of H .

Proof: Let $A \times B=(M \times O) \cup(N \times P)$ be an intuitionistic fuzzy subbigroup of $G \times H=(E \times I) \cup(F \times J)$. (i) Let x and y be in E and e_{2} be in I. Then (x, e_{2}) and (y, e_{2}) are in E×I. Using the property $\mu_{M}(x) \leq \mu_{0}\left(e_{2}\right), v_{M}(x) \geq v_{0}\left(e_{2}\right)$, we get $\mu_{M}(x-y)$ $=\min \left\{\mu_{M}(x-y), \mu_{0}\left(e_{2}+e_{2}\right)\right\}=\mu_{M \times O}\left((x-y),\left(e_{2}+e_{2}\right)\right)=\mu_{M \times O}\left[\left(x, e_{2}\right)+\left(-y, e_{2}\right)\right] \geq \min \left\{\mu_{M \times O}\left(x, e_{2}\right), \mu_{M \times O}\left(-y, e_{2}\right)\right\}=\min \{\min$ $\left.\left\{\mu_{M}(x), \mu_{O}\left(e_{2}\right)\right\}, \min \left\{\mu_{M}(y), \mu_{O}\left(e_{2}\right)\right\}\right\}=\min \left\{\mu_{M}(x), \mu_{M}(y)\right\}$. Therefore $\mu_{M}(x-y) \geq \min \left\{\mu_{M}(x), \mu_{M}(y)\right\}$ for all x and y in E. And $v_{M}(x-y)=\max \left\{v_{M}(x-y), v_{O}\left(e_{2}+e_{2}\right)\right\}=v_{M \times O}\left((x-y),\left(e_{2}+e_{2}\right)\right)=v_{M \times O}\left[\left(x, e_{2}\right)+\left(-y, e_{2}\right)\right] \leq \max \left\{v_{M \times O}\left(x, e_{2}\right)\right.$, $\left.v_{M \times O}\left(-y, e_{2}\right)\right\}=\max \left\{\max \left\{v_{M}(x), v_{0}\left(e_{2}\right)\right\}, \max \left\{v_{M}(y), v_{O}\left(e_{2}\right)\right\}\right\}=\max \left\{v_{M}(x), v_{M}(y)\right\}$. Therefore $v_{M}(x-y) \leq$ $\max \left\{v_{\mathrm{M}}(\mathrm{x}), v_{\mathrm{M}}(\mathrm{y})\right\}$ for all x and y in E . Hence M is an intuitionistic fuzzy subgroup of E . (ii) Let x and y be in F and $\mathrm{e}_{2}{ }^{1}$ be in J. Then (x, e_{2}^{\prime}) and (y, e_{2}^{\prime}) are in $F \times J$. Using the property $\mu_{N}(x) \leq \mu_{P}\left(e_{2}^{\prime}\right), v_{N}(x) \geq v_{P}\left(e_{2}^{\prime}\right)$, we get $\mu_{N}\left(x^{-1}\right)=$ $\min \left\{\mu_{\mathrm{N}}\left(\mathrm{xy}^{-1}\right), \mu_{\mathrm{P}}\left(\mathrm{e}_{2}^{\prime} \mathrm{e}_{2}^{\prime}\right)\right\}=\mu_{\mathrm{N} \times \mathrm{P}}\left(\left(\mathrm{xy}^{-1}\right),\left(\mathrm{e}_{2}^{\prime} \mathrm{e}_{2}^{\prime}\right)\right)=\mu_{\mathrm{N} \times \mathrm{P}}\left[\left(\mathrm{x}, \mathrm{e}_{2}^{\prime}\right)\left(\mathrm{y}^{-1}, \mathrm{e}_{2}^{\prime}\right)\right] \geq \min \left\{\mu_{\mathrm{N} \times \mathrm{P}}\left(\mathrm{x}, \mathrm{e}_{2}^{\prime}\right), \mu_{\mathrm{N} \times \mathrm{P}}\left(\mathrm{y}^{-1}, \mathrm{e}_{2}^{\prime}\right)\right\}=\min$ $\left\{\min \left\{\mu_{N}(x), \mu_{P}\left(e_{2}^{\prime}\right)\right\}, \min \left\{\mu_{N}(y), \mu_{P}\left(e_{2}^{\prime}\right)\right\}\right\}=\min \left\{\mu_{N}(x), \mu_{N}(y)\right\}$. Therefore $\mu_{N}\left(x^{-1}\right) \geq \min \left\{\mu_{N}(x), \mu_{N}(y)\right\}$ for all x and y in F. And $v_{N}\left(x y^{-1}\right)=\max \left\{v_{N}\left(x y^{-1}\right), v_{P}\left(e_{2}^{\prime} e_{2}^{\prime}\right)\right\}=v_{N \times P}\left(\left(x y^{-1}\right),\left(e_{2}^{\prime} e_{2}^{\prime}\right)\right)=v_{N \times P}\left[\left(x, e_{2}^{\prime}\right)\left(y^{-1}, e_{2}^{\prime}\right)\right] \leq \max \left\{v_{\mathrm{N} \times \mathrm{P}}\left(\mathrm{x}, \mathrm{e}_{2}^{\prime}\right)\right.$, $\left.v_{N \times P}\left(y^{-1}, e_{2}^{\prime}\right)\right\}=\max \left\{\max \left\{v_{N}(x), v_{P}\left(e_{2}^{\prime}\right)\right\}, \max \left\{v_{N}(y), v_{P}\left(e_{2}^{\prime}\right)\right\}\right\}=\max \left\{v_{N}(x), v_{N}(y)\right\}$. Therefore $v_{N}\left(x y^{-1}\right) \leq \max \left\{v_{N}(x)\right.$, $\left.v_{N}(y)\right\}$ for all x and y in F. Hence N is an intuitionistic fuzzy subgroup of F. (iii) From (i) and (ii), A is an intuitionistic fuzzy subbigroup of G. (iv) Let x and y be in I and e_{1} be in E. Then ($\left.e_{1}, x\right)$ and (e_{1}, y) are in E×I. Using the property $\mu_{\mathrm{O}}(\mathrm{x}) \leq \mu_{\mathrm{M}}\left(\mathrm{e}_{1}\right), v_{\mathrm{O}}(\mathrm{x}) \geq v_{M}\left(\mathrm{e}_{1}\right)$, we get $\mu_{\mathrm{O}}(\mathrm{x}-\mathrm{y})=\min \left\{\mu_{\mathrm{O}}(\mathrm{x}-\mathrm{y}), \mu_{\mathrm{M}}\left(\mathrm{e}_{1}+\mathrm{e}_{1}\right)\right\}=\mu_{\mathrm{M} \times \mathrm{O}}\left(\left(\mathrm{e}_{1}+\mathrm{e}_{1}\right)\right.$, $\left.(\mathrm{x}-\mathrm{y})\right)=$ $\mu_{M \times O}\left[\left(e_{1}, x\right)+\left(e_{1},-y\right)\right] \geq \min \left\{\mu_{M \times O}\left(e_{1}, x\right), \mu_{M \times O}\left(e_{1},-y\right)\right\}=\min \left\{\min \left\{\mu_{M}\left(e_{1}\right), \mu_{O}(x)\right\}, \min \left\{\mu_{M}\left(e_{1}\right), \mu_{O}(y)\right\}\right\}=\min \left\{\mu_{O}(x)\right.$, $\left.\mu_{0}(y)\right\}$. Therefore $\mu_{0}(x-y) \geq \min \left\{\mu_{0}(x), \mu_{0}(y)\right\}$ for all x and y in I. And $v_{0}(x-y)=\max \left\{v_{0}(x-y), v_{M}\left(e_{1}+e_{1}\right)\right\}=$ $v_{M \times O}\left(\left(e_{1}+e_{1}\right),(x-y)\right)=v_{M \times O}\left[\left(e_{1}, x\right)+\left(e_{1},-y\right)\right] \leq \max \left\{v_{M \times O}\left(e_{1}, x\right), v_{M \times O}\left(e_{1},-y\right)\right\}=\max \left\{\max \left\{v_{M}\left(e_{1}\right), v_{O}(x)\right\}, \max \left\{v_{M}\left(e_{1}\right)\right.\right.$, $\left.\left.v_{\mathrm{O}}(\mathrm{y})\right\}\right\}=\max \left\{v_{\mathrm{O}}(\mathrm{x}), v_{\mathrm{O}}(\mathrm{y})\right\}$. Therefore $v_{\mathrm{O}}(\mathrm{x}-\mathrm{y}) \leq \max \left\{v_{\mathrm{O}}(\mathrm{x}), v_{\mathrm{O}}(\mathrm{y})\right\}$ for all x and y in I . Hence O is an intuitionistic fuzzy subgroup of I (v) Let x and y be in J and $e_{1}{ }^{1}$ be in F. Then ($e_{1}{ }^{\prime}, x$) and ($e_{1}{ }^{1}, y$) are in $F \times J$. Using the property $\mu_{P}(x) \leq \mu_{N}\left(e_{1}{ }^{\prime}\right), v_{P}(x) \geq v_{N}\left(e_{1}{ }^{\prime}\right)$, we get $\mu_{P}\left(x^{-1}\right)=\min \left\{\mu_{P}\left(x^{-1}\right), \mu_{N}\left(e_{1}{ }^{\prime} e_{1}{ }^{\prime}\right)\right\}=\mu_{N \times P}\left(\left(e_{1}{ }^{\prime} e_{1}{ }^{\prime}\right),\left(x y^{-1}\right)\right)=\mu_{N \times P}\left[\left(e_{1}{ }^{\prime}, x\right)\left(e_{1}{ }^{\prime}, y^{-1}\right)\right]$ $\geq \min \left\{\mu_{N \times P}\left(e_{1}{ }^{\prime}, x\right), \mu_{N \times P}\left(e_{1}{ }^{\prime}, y^{-1}\right)\right\}=\min \left\{\min \left\{\mu_{N}\left(e_{1}{ }^{\prime}\right), \mu_{P}(x)\right\}, \min \left\{\mu_{N}\left(e_{1}{ }^{\prime}\right), \mu_{P}(y)\right\}\right\}=\min \left\{\mu_{P}(x), \mu_{P}(y)\right\}$. Therefore $\mu_{\mathrm{P}}\left(\mathrm{xy}^{-1}\right) \geq \min \left\{\mu_{\mathrm{P}}(\mathrm{x}), \mu_{\mathrm{P}}(\mathrm{y})\right\}$ for all x and y in J . And $v_{\mathrm{P}}\left(\mathrm{xy}^{-1}\right)=\max \left\{v_{\mathrm{P}}\left(\mathrm{xy}^{-1}\right), v_{\mathrm{N}}\left(\mathrm{e}_{1}{ }^{\prime} \mathrm{e}_{1}^{\prime}\right)\right\}=v_{\mathrm{N} \times \mathrm{P}}\left(\left(\mathrm{e}_{1}{ }^{\prime} \mathrm{e}_{1}{ }^{\prime}\right),\left(\mathrm{xy}^{-1}\right)\right)=$ $v_{N \times P}\left[\left(e_{1}{ }^{\prime}, x\right)\left(e_{1}{ }^{\prime}, y^{-1}\right)\right] \leq \max \left\{v_{N \times P}\left(e_{1}{ }^{\prime}, x\right), v_{N \times P}\left(e_{1}{ }^{\prime}, y^{-1}\right)\right\}=\max \left\{\max \left\{v_{N}\left(e_{1}{ }^{\prime}\right), v_{P}(x)\right\}, \max \left\{v_{N}\left(e_{1}{ }^{\prime}\right), v_{P}(y)\right\}\right\}=\max \left\{v_{P}(x)\right.$, $\left.v_{P}(y)\right\}$. Therefore $v_{P}\left(x^{-1}\right) \leq \max \left\{v_{P}(x), v_{P}(y)\right\}$ for all x and y in J. Hence P is an intuitionistic fuzzy subgroup of J. (vi) From (iv) and (v), B is an intuitionistic fuzzy subbigroup of H. (vii) is clear.

REFERENCE

1. Anthony.J.M. and Sherwood.H, Fuzzy groups Redefined, Journal of Mathematical analysis and applications, 69, 124-130 (1979)
2. Atanassov.K, Intuitionistic fuzzy sets, fuzzy sets and systems, 20(1), 87-96 (1986).
3. Atanassov.K.T, Intuitionistic fuzzy sets theory and applications, Physica-Verlag, A Springer-Verlag Company, April 1999, Bulgaria.
4. Azriel Rosenfeld, Fuzzy Groups, Journal of Mathematical analysis and applications, 35, 512-517 (1971).
5. Balasubramanian.A, K.L.Muruganantha Prasad \& K.Arjunan, Notes on intuitionistic fuzzy subbigroups of a bigroup, International Journal of Scientific Research, Vol.4, Iss. 5, 1-3 (2015).
6. Chakrabarty, K., Biswas, R., Nanda, A note on union and intersection of intuitionistic fuzzy sets, Notes on intuitionistic fuzzy sets , 3(4), (1997).
7. Palaniappan. N \& K.Arjunan. 2007. Some properties of intuitionistic fuzzy subgroups, Acta Ciencia Indica, Vol.XXXIII (2): 321-328.
8. Rajesh Kumar, Fuzzy Algebra, Volume 1, University of Delhi Publication Division, July-1993.
9. Vasantha kandasamy.W.B, Smarandache fuzzy algebra, American research press, Rehoboth-2003.
10. Zadeh.L.A, Fuzzy sets, Information and control, Vol.8, 338-353 (1965).

Source of support: Nil, Conflict of interest: None Declared

[Copy right © 2015. This is an Open Access article distributed under the terms of the International Journal of Mathematical Archive (IJMA), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.]

