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ABSTRACT 
Patterns of Pythagorean triangles in each of which hypotaneous minus 8 times Area / Perimeter may be expressed as a 
sum of two squares.  
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I. INTRODUCTION 
 
The Pythagorean numbers play a significant role in the theory of higher arithmetic as they come in the majority of 
indeterminate problems; had a marvelous effect on a credulous people and always occupy a remarkable position due to 
unquestioned   historical importance. The method of obtaining three non-zero integers x, y and z under certain relations 
satisfying the relation 2 2 2x y z+ = has been a matter of interest to various Mathematicians [1]-[6]. In [7]-[19], special 
Pythagorean problems are studied. In this communication, we search for patterns of Pythagorean triangles wherein each 
of which hypotaneous minus 8 times the ratio (Area / Perimeter) is represented as sum of two squares. 
 
II. METHOD OF ANALYSIS 
 
The most cited solution of the Pythagorean equation,  

2 2 2x y z+ =                                                                                                                                   (1) 
is represented by   

2 2 2 22 ; ;x pq y p q z p q= = − = +                                                                                               (2)   
 
Denoting the Area and Perimeter of the Pythagorean triangle by  A and P respectively, the assumption 

2 28 AHyp
P

α β − = + 
 

                                                                                                                 (3) 

leads to the equation  
2 2 2 25 4p q pq α β+ − = +                                                                                                            (4) 

 
We present below different methods of solving (4) and thus obtain different patterns of integral solutions to (1) 
satisfying (3). 
 
Pattern I: Assume equation (3) as quadratic in p then  

2 2 22p q qα β= + + −  
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The square root on the right hand side of the above equation is eliminated when 

; ;u v q u v r sα β= + = − = −   
and thus  

2( )p u v r s= − + +  where   uv rs=  
 
Substituting the values of &p q  in (2) we get the corresponding sides of the Pythagorean triangle are  

2 2( , ) 4( ) 2( )( )x u v u v r s u v= − + + −  
2 2( , ) 3( ) ( ) 4 ()( )y u v u v r s r s u v= − + + + + −  
2 2( , ) 5( ) ( ) 4 ()( )z u v u v r s r s u v= − + + + + −  

 
Pattern: II Assume equation (3) as quadratic in q then 

2 2 21 2 5( )
5

q p pα β = + + −
 

                                                                                                (5) 

 
To eliminate the square root on the right hand of (5) 
 
Consider,              2 2 2 25( ) p Aα β+ − =  
 
which is written as  

2 2 2 25( )A p α β+ = +                                                                                                                    (6) 
 
Write 5 as 

5 (2 )(2 )i i= + −                                                                                                                               (7) 
 
Substituting (7) in (6) and factorizing, we have 

( )( ) (2 )(2 )( )( )A ip A ip i i i iα β α β+ − = + − + −  
 
Equating real and imaginary parts, we get 

2 & 2A pα β α β= − = +  
 
Now, the value of q  is 

[ ]1 4 3
5

q α β= +  

 
q will be an integer when (5 2)kα β= − , and  we get the values of &p q as 

5
(4 1)

p k
q k

β
β

= 
= − 

                                                                                                                                 (8) 

 
Substituting (8) in (2), the corresponding sides of the pythagorean triangle are 

2( ) 10 (4 1)x k kβ β= −  
2 2( ) (9 8 1)y k kβ β= + −  
2 2( ) (41 8 1)z k kβ β= − +  

 
Remark.1: Instead of (6), write 5 as 

5 ( 1 2 )( 1 2 )i i= − + − −                                                                                                                      (9) 
 
Substituting (9) in (6) and following the above procedure, we get the corresponding sides of the Pythagorean triangle 
are 

2 2( ) (60 70 20)x k kβ β= − +  
2 2( ) (91 88 21)y k kβ β= − +  
2 2( ) (109 112 29)z k kβ β= − +  
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Remark.2: In addition to (7) and (9), one may consider the following representations for 5 

(1 2 )(1 2 )
(2 11 )(2 11 )5

25
(2 29 )(2 29 )

169

i i
i i

i i


 + −
 + −= 


+ −


 

 
Repeating the analysis presented above we obtain the corresponding sides of the Pythagorean triangle. 
 
Pattern III: Rewrite equation (4) as 

2 2 2 2( 2 ) ( ) 1p q q α β− + = + ×                                                                                                   (10) 
Write 1 as 

2 2 2 2

2 2 2

( 2 )( 2 )1 ; 0
( )

m n imn m n imn m n
m n

− + − −
=

+
                                                               (11) 

 
Substituting (11) in (10) and employing the method of factorization, define 

2 2

2 2

( 2 )( 2 ) ( ) m n imnp q iq i
m n

α β − +
− + = +

+
 

 
Equating the real and imaginary parts, we get 

2 2
2 2

1 ( )( 2 ) 2 (2 )p m n mn
m n

α β α β = − + + − +
 

2 2
2 2

1 ( ) 2q m n mn
m n

β α = − + +
 

 
When  2 2 2( ( ) 2 )k m n nα β= + −  then the values of &p q are 

4 4 2 2 2 2 2 2 2
2 2

2 2 3 2 2
2 2

1 ( ) 2 ( 1)( ) 4 ( ) 2 (4 1)

1 ( )2 4 ( )

p m n k n m n kmn m n mn n
m n

q m n kmn mn m n
m n

β β β β

β β β

 = − − − − + + − + +

 = + − + −  + 

              (12) 

 
Substituting (12) in (2) one may get the corresponding sides of the pythagorean triangle.  
 
3. CONCLUSION                
 
In this paper, we have presented Pythagorean triangle with hypotaneous minus 8 times the ratio (Area/Perimeter) as 
sum of two squares. It is worth to note that Pythagorean problem is a treasure house and finding patterns of 
Pythagorean triangle is a treasure hunt.  
 
To conclude one may search for other patterns of Pythagorean triangle with various characterizations. 
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